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ProtGPT2 is a deep unsupervised language
model for protein design

Noelia Ferruz 1,3 , Steffen Schmidt 2 & Birte Höcker 1

Protein design aims to build novel proteins customized for specific purposes,
thereby holding the potential to tackle many environmental and biomedical
problems. Recent progress in Transformer-based architectures has enabled
the implementation of language models capable of generating text with
human-like capabilities. Here, motivated by this success, we describe
ProtGPT2, a language model trained on the protein space that generates de
novo protein sequences following the principles of natural ones. The gener-
ated proteins display natural amino acid propensities, while disorder predic-
tions indicate that 88% of ProtGPT2-generated proteins are globular, in line
with natural sequences. Sensitive sequence searches in protein databases
show that ProtGPT2 sequences are distantly related to natural ones, and
similarity networks further demonstrate that ProtGPT2 is sampling unex-
plored regions of protein space. AlphaFold prediction of ProtGPT2-sequences
yields well-folded non-idealized structures with embodiments and large loops
and reveals topologies not captured in current structure databases. ProtGPT2
generates sequences in a matter of seconds and is freely available.

Natural language processing (NLP) has seen extraordinary advances in
recent years. Large pre-trained language models have drastically
transformed the NLP field and with it, many of the tools we use in our
daily lives, such as chatbots, smart assistants, or translation machines.
Analogies between protein sequences and human languages have long
beennotedbyus andothers1,2. Protein sequences canbedescribed as a
concatenation of letters from a chemically defined alphabet, the nat-
ural amino acids, and like human languages, these letters arrange to
form secondary structural elements (“words”),whichassemble to form
domains (“sentences”) that undertake a function (“meaning”). One of
the most attractive similarities is that protein sequences, like natural
languages, are information-complete: they store structure and func-
tion entirely in their amino acid orderwith extreme efficiency.With the
extraordinary advances in the NLP field in understanding and gen-
erating language with near-human capabilities, we hypothesized that
thesemethods open a newdoor to approach protein-related problems
from sequence alone, such as protein design.

Although protein sequences and human languages are not with-
out dissimilarities, their analogies have stimulated applying NLP

methods to solve protein research problems for decades2. Supervised
NLP methods, where the input sequences are trained jointly with their
labels to produce predictive models, have been applied to various
tasks, such as detecting structural similarity or predicting stability3,4. A
remarkable collection of supervised language models applied to bio-
molecules is available in the BioSeq-BLM platform5,6. Nevertheless,
since the inception of the Transformer7, unsupervised learning, where
the training occurs on unlabeled data, has emerged as a versatile tool
for language modeling. Several Transformer-based models, such as
TCR-BERT8, epiBERTope9, ESM10, ProtTrans11, or ProteinBERT12, have
shown to be very competitive with other methods13,14. Most of these
models use BERT-like15 architectures and denoising autoencoding
training objectives, i.e., they are pre-trained by corrupting the input
tokens in some way and trying to reconstruct the original sentence2.
Although these models could be adjusted for generation16, their most
direct application is sequence embedding.

Another important branch of language models benefits from
autoregressive training, i.e., models are trained to predict subsequent
words given a context. These models, the most well-known of which
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arepossibly theGPT-x series17, excel at generating long, coherent text—
sometimes to the extent thatmuch debate has been raised about their
potential misuse18. Protein autoregressive language models, such as
ProGen19–21, RITA22, and DARK23 have also been studied, and show the
potential of autoregressive Transformers for protein design. Moti-
vated by these works and the ever-increasing capabilities of English-
speaking models such as the GPT-x series, we wondered whether we
could train a generative model to (i) effectively learn the protein lan-
guage, (ii) generate fit, stable proteins, and (iii) understand how these
sequences relate to natural ones, including whether they sample
unseen regions of the protein space.

Here, we introduce ProtGPT2, an autoregressive Transformer
model with 738 million parameters capable of generating de novo
protein sequences in a high-throughput fashion. ProtGPT2 has effec-
tively learned the protein language upon being trained on about 50
non-annotated million sequences spanning the entire protein space.
ProtGPT2 generates protein sequences with amino acid and disorder
propensities on par with natural ones while being “evolutionarily”
distant from the current protein space. Secondary structureprediction
calculates 88% of the sequences to be globular, in line with natural
proteins. Representation of theprotein spaceusing similarity networks
reveals that ProtGPT2 sequences explore ‘dark’ areas of the protein
space by expanding natural superfamilies. The generated sequences
show predicted stabilities and dynamic properties akin to their natural
counterparts. Since ProtGPT2 has been already pre-trained, it can be
used to generate sequences on standard workstations in a matter of
seconds or be further finetuned on sequence sets of a user’s choice to
augment specific protein families. The model and datasets are avail-
able in the HuggingFace repository24 at (https://huggingface.co/
nferruz/ProtGPT2). Since protein design has an enormous potential
to solve problems in fields ranging from biomedical to environmental
sciences25,26, we believe that ProtGPT2 is a timely advance towards
efficient high-throughput protein engineering and design.

Results
Learning the protein language
The major advances in the NLP field can be partially attributed to the
scale-up of unsupervised languagemodels. Unlike supervised learning,
which requires the labeling of each data point, self-supervised (or
often named unsupervised) methods do not require annotated data,
thus promoting the use of ever-growing datasets such asWikipedia or
the C4 Corpus27. Given both the growth of protein sequence databases
and the lack of annotation for a significant part of the protein space,
protein sequences have become great candidates for unsupervised
training4,10,11 and now offer the opportunity to encode and generate
protein sequences.

To achieve this goal, we trained a Transformer7 to produce a
model that generates protein sequences. Language models are
statistical models that assign probabilities to words and sentences.
We are interested in a model that assigns high probability to sen-
tences (W) that are semantically and syntactically correct or fit and
functional, in the case of proteins. Because we are interested in a
generative language model, we trained the model using an auto-
regressive strategy. In autoregressive models, the probability of a
particular token or word (wi) in a sequence depends solely on its
context, namely the previous tokens in the sequence. The total
probability of a sentence (W) is the combination of the individual
probabilities for each word (wi):

p Wð Þ=
Yn

i

p wi∣w<i

� �
ð1Þ

We trained the Transformer by minimizing the negative log-
likelihood over the entire dataset. More intuitively, the model must
learn the relationships between a word wi —or amino acid—and all the

previous ones in the sequence, and must do so for each sequence k in
dataset (D):
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D

k = 1
log pθ wk
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To learn the protein language, we used UniRef50 (UR50) (version
2021_04), a clustering of UniProt at 50% identity.We chose this dataset
versus larger versions of UniParc (such as UR100) as it was previously
shown to improve generalization and performance for the ESM
Transformers10. Uniref50’s sequences populate the entire protein
space, including the dark proteome, regions of the protein space
whose structure is not accessible via experimental methods or
homology modeling28,29. For evaluation, we randomly excluded 10% of
the dataset sequences—these sequences are not seen by ProtGPT2
during the training process. The final training datasets contained 44.9
and 4.9million sequences for training and evaluation, respectively.We
tokenized our dataset using the BPE algorithm30. The final model is a
decoder-only architecture of 36 layers and 738 million parameters.

Analogous to the GLUE benchmark31—a collection of tools that
computational linguists use to evaluate language models on different
tasks such as question answering or translation—we also developed a
series of extrinsic tests to assess the quality of ProtGPT2-generated
sequences. The following sections elaborate on how ProtGPT2 gen-
erates de novo sequences with properties that resemble modern
protein space.

Statistical sampling of natural amino acid propensities
Autoregressive language generation is based on the assumption that
the probability distribution of a sequence can be decomposed into the
product of conditional next-word distributions (Eq. 1). However, there
is still considerable debate about the best decoding strategy to emit
sequences from a model32. It is not uncommon that well-trained gen-
eric language models that perform well in GLUE tasks generate inco-
herent gibberish or repetitive text depending on the sampling
procedure32. We briefly summarize here the most used sampling
strategies for language generation that we applied in this study.

Greedy search strategy selects the word with the highest prob-
ability at each timestep. Although algorithmically simple, the gener-
ated sequences are deterministic and soon also become repetitive
(Fig. 1a). Beam search tries to alleviate this problem by retaining the
most probable candidates, although the resulting texts still suffer from
repetitiveness and are not as surprising as those from humans, which
tend to alternate low and high probability tokens32 (Fig. 1b). Lastly,
random sampling moves away from deterministic sampling by ran-
domly picking a word out of the top-k most probable ones (Fig. 1c, d).

In a recent study, Holtzman et al.32 investigated several sampling
strategies to find the best parameters for text generation. Inspired by
this work, we systematically generated sequences following different
sampling strategies and parameters (Fig. 1). To assess what sampling
procedure generates the most natural-like sequences, we compared
the amino acid propensities of the generated set to that found in
natural protein sequences (Methods). As stated by Hoffmann et al., we
also observe greedy and beam search to produce repetitive, determi-
nistic sequences, while random sampling dramatically improves the
generated propensities (Fig. 1). Moreover, we also observe that high
values of k are needed to generate sequences that resemble natural
ones, i.e., our best results occur in the range of k > 800 and we speci-
fically chose k = 950 in this work (Fig. 1h). As observed with other
generative models33,34, our sampling improves when applying a repe-
titionpenalty of 1.2. Consequently,weused these sampling parameters
for the rest of this work.
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ProtGPT2 sequences encode globular proteins
In order to evaluate ProtGPT2’s generated sequences in the context of
sequence and structural properties, we created two datasets, one with
sequences generated from ProtGPT2 using the previously described
inference parameters, and the other with randomly chosen sequences
from UR50. Each dataset consists of 10,000 sequences. Since
ProtGPT2 was trained in an unsupervised manner, i.e., without
including functional annotations, our analyses focus on validating the
structural and biochemical properties of ProtGPT2 sequences.

We first studied disordered and secondary structural content in
the datasets. It has been previously shown that approximately 14% of
the proteins found in bacteria and archaea are disordered28. To this
end, we ran IUPred335 to analyze if the ProtGPT2-generated sequences
are more prone to be disordered than a set of natural sequences.
Interestingly, our analysis shows a similar number of globular domains
among the ProtGPT2-generated sequences (87.59%) and natural
sequences (88.40%). Several methods have been reported that detect
short intrinsically disorder regions36. Since our goal is to provide high-
level comparisons of globularity and prevalent disorder across data-
sets, we further performed an analysis of the protein sequences at the
amino acid level using IUPred3. Remarkably, our results show a similar
distribution of ordered/disordered regions for the two datasets, with
79.71 and 82.59% of ordered amino acids in the ProtGPT2 and natural
datasets, respectively (Table 1).

We next investigated whether the similarities in disorder are a
consequence of equivalent secondary structure element content.
To this end, we computed PSIPRED37 predictions for the ProtGPT2
and natural sequence datasets. The natural sequences display alpha-
helical, beta-sheet, and coil contents of 45.19, 41.87, and 12.93%,
respectively. The ProtGPT2 dataset presented percentages of 48.64,
39.70, and 11.66%, respectively.

These results indicate that ProtGPT2 generates sequences that
resemble globular domains whose secondary structure contents are
comparable to those found in the natural space.

ProtGPT2 sequences are similar yet distant to natural ones
Proteins have diversified immensely in the course of evolution via
point mutations as well as duplication and recombination. Using
sequence comparisons, it is, however, possible to detect similarities
between two proteins even when their sequences have significantly
diverged. We wondered how related ProtGPT2 sequences are to nat-
ural ones. To this end, we utilized HHblits, a sensitive remote homol-
ogy detection tool that uses profile hidden Markov models to search
query sequences against a database38. We searched for homologs of
the 10,000 sequences in ProtGPT2’s dataset against the Uniclust30
database39. For comparison purposes, we also performed the same
search with the natural dataset using the same settings. In addition, to
analyze how completely random sequences would compare against
ProtGPT2 ones, we also crafted a third dataset by randomly con-
catenating the 25 letters in the vocabulary.

Because we want to provide a quantitative comparison of the
datasets’ relatedness to modern protein space, we produced identity
vs sequence length plots (Fig. 2). In detail, for each of the alignments
found in Uniclust30, we depict the one with the highest identity and
length. As a reference point in this sequence identity-length space, we
use the HSSP curve40, a boundary set to define the confidence of

Fig. 1 | Examples with different sampling parameters for GPT2-large after the
context input: ‘ten best things to do in Lisbon’ (a–d) and ProtGPT2 without
context (e–h).While greedy and beam search produce repetitive sentences (a, b)
and protein sequences (e, f), sampling generates creative texts, which, however,

can be degenerate (c) or not sample natural sequence propensities (g) for small
values of k. Larger values of k produce quality text (d) and sequences whose pro-
pensities match natural ones. Repetitive and degenerative text are shown in blue
and orange, respectively.

Table 1 | Disorder and secondary structure predictions of the
natural and ProtGPT2 dataset

Natural dataset ProtGPT2 dataset

IUPred3 (globular domains) 88.40% 87.59%

Ordered content 79.71% 82.59%

Alpha-helical content 45.19% 48.64%

Beta-sheet content 41.87% 39.70%

Coil content 12.93% 11.66%

(n = 10,000 independent sequences/dataset).
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protein sequence relatedness. Proteins whose identity falls below this
curve, an area known as the “twilight zone”, do not necessarily have
similar 3D structures nor are likelyhomologous. Since the sequences in
the ProtGPT2 and randomdatasets are not the consequenceof protein
evolution, we use the curve as a well-known threshold to compare the
datasets.

When looking at the distribution of hits above and below the
curve, we observe that HHblits finds many hits in the Uniclust30
database that are related to the dataset of natural sequences (Fig. 2a).
Specifically, out of the 10,000dataset sequences, 9621 (96.2%) showed
identities above the HSSP curve. Similarly, 9295 ProtGPT2-generated
sequences (93%) also have counterparts in the Uniclust30 database
that align above the HSSP curve (Fig. 2b). Conversely, 93% of the ran-
domly generated sequences fall below this threshold (Fig. 2c). Despite
these similar patterns for the natural and ProtGPT2 datasets, the two
datasets show differences in their distribution of hits. With a one-
standard-deviation range of 31.5–69.7%, the natural dataset has a
highermean identity than the ProtGPT2 set, with a range of 32.9–64.1%
(Fig. 2a, b). The differences between the natural and ProtGPT2 se-
quence distributions are not statistically significant (p value <0.05
Kolmogorov–Smirnoff). However, substantial differences between the
natural and ProtGPT2 datasets occur in the high-identity range (>90%).
Although 365 sequences in the ProtGPT2 dataset have high-identity
sequences in Uniclust30, they correspond in all cases to alignments
below 15 amino acids, whereas the natural dataset displays
760 sequences over 90%with an alignment length in the one-standard-
deviation range of 14.8–77.3 amino acids. These results suggest that
ProtGPT2 effectively generates sequences that are distantly related to
natural ones but are not a consequence of memorization and
repetition.

ProtGPT2 generates ordered structures
One of the most important features when designing de novo sequen-
ces is their ability to fold into stable ordered structures. We have
evaluated the potential fitness of ProtGPT2 sequences in comparison
to natural and random sequences in the context of AlphaFold pre-
dictions, Rosetta Relax scores, and molecular dynamics (MD)
simulations.

AlphaFold41,42 produces a per-residue estimate of its confidence
on a scale from0–100 (pLDDT). This scorehasbeen shownto correlate
with order43: Low scores (pLDDT > 50) tend to appear in disordered
regions, while excellent scores (pLDDT > 90) appear in ordered ones43.

Here we produced five structure predictions per sequence. The mean
pLDDT of the dataset is 63.2 when taking the best-scoring structure
per sequence and 59.6 when averaging across all five predictions
per sequence. Moreover, 37% of sequences show pLDDT values over
70, in agreement with other recent studies23. A representation of all
data points is shown in Supplementary Fig. 2a. Since pLDDT scores are
a proxy for structural order, we turned to the natural and random
datasets to see how they compare to ProtGPT2 sequences. In agree-
ment with previous works, 66% of the sequences in the natural dataset
were predicted with pLDDT values greater than 7043, giving an average
valueof 75.3 for thewhole dataset (Supplementary Fig. 2b). In contrast,
the predictions in the randomdataset revealed amean pLDDT value of
44, with only 7.4% of sequences with pLDDT values over 70 (Supple-
mentary Fig. 2c).

To further validate the quality of the model, we performed
Rosetta-RelaxBB runs on the three datasets44. Rosetta Relaxperforms a
Monte Carlo optimization over the Rosetta energy function, which
results in different backbone and rotamer conformations. Lower
Rosetta Energy conformers correlate with more relaxed structures45.
The most recent Rosetta Energy Forcefield (REF2015) strongly corre-
lates with experimental variables such as heat capacity, density, and
enthalpy46. This scoring function reflects the thermodynamic stability
of one static protein conformation. Here we have performed Rosetta
Relax experiments for the 30,000 sequences of the three datasets
(Fig. 3a). A broad rule of thumb is that the total score (Rosetta Energy
Units, REU) should lie between −1 and −3 per residue47. We observe
such distribution in the natural and ProtGPT2 datasets, with averages
of 1.90 and 1.73 REU/residue, respectively. As expected, the dataset of
random sequences showed an average value of 0.13 REU/residue.

We further tested if ProtGPT2 sequences show similar dynamic
properties as natural sequences. Proteins are dynamic entities; without
their inherent flexibility, they would not be capable of interacting with
other biomolecules and performing their functions in the cell48. To
evaluate whether ProtGPT2 sequences show flexibility patterns in the
same range as natural proteins, we randomly selected 12 sequences per
dataset and ran three replicas of molecular dynamics (MD) of 100ns
each, totaling 108 trajectories and an aggregate time of 10.8 micro-
seconds (Methods). To ensure that the dynamics observed during the
simulations were not an artifact of different pLDDT values—and hence
possible different disorder predictions—wemade sure that differences
among dataset-pLDDT mean values were not statistically different
(Supplementary Fig. 3). The Root Mean Square Deviation means for

Fig. 2 | Pairwise sequence identities vs. alignment length for each of the data-
sets (a: natural (yellow), b: ProtGPT2 (green), and c: random (red)) as com-
putedwithHHblits against theUniclust30database.The lines depicted in redon
each plot represent the HSSP curve, which we use as a reference to compare the
three datasets40. Each plot shows a hexbin compartmentalization of the best-

scoring identities and their distributions. While natural (a) and protGPT2 (b)
sequences show similar percentages below the curve, 93% of the sequences in the
random dataset (c) do not have significantly similar sequences in the Uniclust30
database. Natural and ProtGPT2 datasets show significant differences in the high-
identity range (n = 10,000 independent sequences/dataset).
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each of the trajectories in the natural and ProtGPT2 datasets resulted
in average values of 2.93 and 3.12 Å, respectively (Fig. 3b). As expected,
the random sequences showed significant deviations during the tra-
jectories, with an average of 9.41 Å.While ProtGPT2 sequences showed
higher values than the natural ones, the distributions are not sig-
nificantly different (Mann–Whitney U-test, p value 0.39). The results
indicate that ProtGPT2 sequences might have similar dynamic prop-
erties as proteins found in nature. The complete list of the trajectories’
RMSD is presented in Supplementary Figs. 4, 5.

ProtGPT2 transcends the boundaries of the current pro-
tein space
Several studies tried to reduce the large dimensionality of protein
sequences into a few discernible dimensions for their analysis. Most
representation methods consist of (i) hierarchical classifications of
protein structures such as the ECOD and CATH databases49,50, (ii)
Cartesian representations51, and similarity networks52,53. We recently
represented the structural space in a network that showed proteins as
nodes, linked when they have a homologous and structurally-similar
fragment in common54 and made the results available in the Fuzzle
database55. The network represented 25,000 domains from the seven
major SCOP classes and showed that themodern known protein space
has both connected and “island-like” regions.

It is implausible that evolution has explored all possible
protein sequences56. Therefore, the challenge has been posed
whether we can design proteins that populate unexplored—or
dark—regions of the protein space and if, by doing so, we can design
novel topologies and functions56. Here, we integrated the
ProtGPT2 sequences into our network representation of the protein
space. To this end, we generated an HMM profile for each
SCOPe2.07 and ProtGPT2 sequence, compared them in an all-
against-all fashion using HHsearch and represented the networks
with Protlego57. To avoid that specific sequences with several
alignments end up represented by the same node in the network, we
duplicate entries with two non-overlapping alignments, as pre-
viously described54.

The network contains 59,612 vertices and 427,378 edges, com-
prising 1847 components or ‘island-like’ clusters (Fig. 4). The major
component accumulates more than half of the nodes (30,690)—a

number significantly higher than the number observed in a network
produced with the same settings but excluding ProtGPT2 sequences
(Supplementary Fig. 6)— strongly suggesting that ProtGPT2 generates
sequences that bridge separate islands in protein space. We select six
examples across different areas of the network from topologically
different SCOPe classes to showcase ProtGPT2 sequences at the
structural level (Fig. 4). In particular, we report an all-β (751), two α/β
(4266, 1068), one membrane protein (4307), an α + β (486) and all-α
(785) structures. These structures illustrate ProtGPT2’s versatility at
generating de novo structures. For each case, we searched the most
similar protein structure found in the PDB database using FoldSeek58.
ProtGPT2 generates well-folded all-β structures (751, 4307), which
despite recent impressive advances59, have for long remained very
challenging60. ProtGPT2 also produces membrane proteins (4307),
which pose a difficult target for protein design due to the challenges at
specifying structure within the membrane and the laborious experi-
mental characterizations61. Besides the generation of natural fold
representatives, ProtGPT2 also produces previously unreported
topologies. For example, we report protein 4266, whose topology
does not match any of the currently reported structures in the PDB,
with a low DALI Z-score of 5.4 and an RMSD of 3.0 Å to PDB 5B48 over
67 residues (identity 9%).

Nevertheless, possibly the most remarkable property of
ProtGPT2 sequences is their significant deviation from all previously
designed de novo structures, which often feature idealized topologies
with loops andminimal structural elements.De novo proteins have the
advantage of not carrying any evolutionary history and are thus
amenable as a scaffold for virtually any function, but in practice, the
lack of embodiments and longer loops hamper the design of crevices,
surfaces, and cavities—necessary for the interaction with other mole-
cules and function realization. ProtGPT2 sequences resemble the
complexity of natural proteins, with multifaceted surfaces capable of
allocating interacting molecules and substrates, thus paving the way
for functionalization. In Fig. 4, we show structures 486 and 1060, two
examples of such complex structures. In particular, 1068 shows a TIM-
barrel fold, a topology which to date has met impressive success in de
novo design62–64, but whose idealized structure has nevertheless pro-
ven challenging to extend via additional secondary elements and
longer loops65,66.

Preserved functional hotspots
Visual inspection of the structural superimposition of the best hits
found with FoldSeek revealed several instances where the sidechains
of ligand-interacting residues are conserved. Two examples are shown
in Fig. 5. The natural structure most similar to sequence 357 (Fig. 5a)
corresponds to PDB code 1X0P (chain A), a blue-light sensor domain
that binds FAD. When superimposing the structures, we observe that
357 has retained the sidechain binding hotspots, with three residues
identical (D169, Q150, and N131) and two different but capable of
forming the same interactions, Lysine at position R165 and Histidine at
position K127. Sequence475 (Fig. 5b) ismost similar to PDB code 5M1T
(chainA), a phosphodiesterase that folds into a TIM-barrel andbinds to
the bacterial second messenger cyclic di-3′,5′-guanosine monopho-
sphate (PDB three-letter code C2E). Out of the five sidechain-
interacting residues, the ProtGPT2 sequence preserves three resi-
dues (Q455, R473, and E469), and includes one substitution for
another residue capable of hydrogen-bonding (aspartic acid for Q513).
It is remarkable to note that ProtGPT2 has generated these sequences
in a zero-shot fashion, i.e., without further finetuning in these two
particular folds. These results have impactful consequences for pro-
tein engineering because ProtGPT2 appears to preserve binding
positions in the generated sequences, despite the low identities (31.1
and 29.2% for 357 and 45, respectively), and can be used to augment
the repertoires of specific folds and families.

Fig. 3 | Comparison ofRosetta andmolecular dynamics calculations among the
three datasets. a Average Rosetta energy units per residue for the three datasets.
AlphaFold prediction structures were used as input for the Rosetta RelaxBB pro-
tocol. 10,000 structures were run per dataset, one replica per system.b Rootmean
square deviation (RMSD) distribution for each MD dataset as computed by aver-
aging RMSDs independently for each trajectory, represented as a boxplot. Twelve
structures were simulated per dataset, three replicas per system. In both plots, the
median is indicated as a black line; boxes depict the interquartile range (IQR), and
whiskers represent 1.5 x IQR. Points outside this range are displayed as individual
data points.
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Discussion
The design of de novo proteins harnessing artificial intelligence
methods has been meeting incredible success in the last 2 years10,67,68.
Motivated by the unprecedented advances in NLP, we have imple-
mented a generative language model, ProtGPT2, which has effectively
learned the protein language. ProtGPT2 can generate sequences that
aredistantly related to natural ones andwhose structures resemble the
known structural space, with non-idealized complex structures. Since
ProtGPT2 has been trained on the entire sequence space, the
sequences produced by the model can sample any region, including

the dark proteome and areas traditionally regarded as very challenging
in the protein design field, such as all-β structures and membrane
proteins. Visual superimposition of ProtGPT2 proteins with distantly
related natural protein structures reveals that ProtGPT2 has also cap-
tured functional determinants, preserving ligand-binding interactions.
As the design of artificial proteins can solve many biomedical and
environmental problems, we see extraordinarypotential in our protein
language model. ProtGPT2 designs fit globular proteins in a matter of
seconds without requiring further training on a standard workstation.
ProtGPT2 can be conditioned towards a particular family, function, or

a: All alpha proteins

b: All beta proteins f: Membrane/cell surface proteins

g: Small proteinsc: ( / ) proteins e: Multi-domain proteins

d: (  + ) proteins

751 
4GZV_H (13 %)

pLDDT: 81.4

4266 
*5B48_C (9%, 67aa)

pLDDT: 72.5

785 
6EOU_A (26 %)

pLDDT: 94.8

4307 
3QRC_B (18 %)

pLDDT: 70.4

486 
2HIY_B (23.2 %)

pLDDT: 94.8

1068 
3CT7_A (28%)
pLDDT: 90.2

ProtGPT2

Fig. 4 | Anoverviewof theprotein space andexamplesofproteins generatedby
ProtGPT2. Each node represents a sequence. Two nodes are linkedwhen they have
an alignment of at least 20 amino acids and 70% HHsearch probability. Colors
depict the different SCOPe classes, and ProtGPT2 sequences are shown in white. As
examples, we select proteins of each of themajor five SCOP classes: all-β structures

(751), α/β (4266 and 1068), membrane protein (4307), α+β (486), and all-α (785).
The selected structures are colored according to the class of their most similar hit.
The structures were predicted with AlphaFold, and we indicate the code of the
most similar structure in the PDB as found by FoldSeek58, except for protein 4266,
where no structures were found.
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fold byfinetuning themodel on a set of sequences of a user’s choice. In
this context, ProtGPT2 will enable the screening for proteins with
similarities to natural proteins in order to improve, fine-tune or alter a
specific biochemical function of a natural protein. Large-scale
screening of ProtGPT2-designed protein libraries might identify pro-
teinswith folds not captured in structural databases and functions that
have no related counterpart in the natural space. ProtGPT2 constitutes
a big step forward towards efficient proteindesign andgeneration, and
lays the groundwork for future experimental studies exploring the
structural and functional parameters of designed proteins, and their
subsequent real-world applications. Future efforts include the inclu-
sion of conditional tags, whichwill enable the controlled generation of
specific functions.

Methods
Vocabulary encoding
Weuse a BPE30 tokenizer to train the vocabulary of our dataset. BPE is a
sub-word tokenization algorithm that finds the most frequently used
word roots, ensuring better performance than one-hot tokenization
and avoiding the out-of-vocabulary problem. Given the size of Uni-
ref50, we used Swiss-Prot (2021_04) containing >0.5M sequences to
train our tokenizer. Following the training strategy of GPT217, our final
vocabulary contained 50,256 tokens that correspond to the most
widely reused oligomers in protein space, with an average size of four
amino acids per token (Supplementary Fig. 1). Learned positional
embeddings were used as in the original GPT2.

Dataset preparation
We took Uniref50 version 2021_04 as the dataset for training, con-
taining 49,874,565 sequences. 10% of the sequences were randomly
selected to produce the validation dataset. The final training and
validation datasets contained 44.88 and 4.99 million sequences,

respectively. We produced two datasets, one using a block size
of 512 tokens, and another one with 1024 tokens. The results shown
in this work correspond to a model trained with a block size of
512 tokens.

Model pre-training
We use a Transformer decoder model as architecture for our training
which processes input sequences tokenized with a BPE strategy. The
model uses during training the original dot-scale self-attention as
introduced by ref. 7. The model consist of 36 layers with a model
dimensionality of 1280. The architecture matches that of the pre-
viously released GPT2-large Transformer17, which was downloaded
fromHuggingFace24.Modelweightswere reinitialized prior to training.
The model was optimized using Adam (β1 = 0.9, β2 = 0.999) with a
learning rate of 1e-03. For our main model, we trained 65,536 tokens
per batch (128 GPUs × 512 tokens). A batch size of 8 per device was
used, totaling 1024. Themodel trained on 128 NVIDIA A100s in 4 days.
Parallelism of the model was handled with DeepSpeed69.

Model inference
We systematically sampled sequences using our main model using
different inference parameters. In particular, we varied the repetition
penalty from a range of 1.1 to 3.0 at each 0.1 units, top_k from 250 to
1000 sampling every 50 units, and a top_p from 0.7 to 1.0 with a
window of 0.05 units. 100 sequences were produced for each sam-
pling parameter set and the frequency of their amino acids compared
to natural sequences. We observed which parameters produced
fewer differences in the set of the sevenmost commonamino acids in
natural sequences. We also explored the beam search algorithm for
beams in the range 50 to 100 using awindowof 1 unit but it produced
worse matches in all cases. To determine amino acid frequencies in
natural sequences for comparison to ProtGPT2 samples, we

a

1X0P_A

357

FAD

Q150

N131

K127

R165

D169

5M1T_A

475

R473

Q513

R614

Q455E469

C2E

b

Fig. 5 | Superimposition of the predicted structures for sequences 357 and 475
and the respective top scoring proteins in FoldSeek. a Structural alignment of
357 with pdb 1X0P (chain A, blue). Shown are five residues in 1X0P that interact via
their sidechains with the ligand FAD. Of these, three are identical in 357, and
another two correspond to substitutions to the same amino acid type (R165 to

lysine andQ150 to histidine).b Structural alignment of475with pdb 5M1T (chain A)
depicting five sidechain-interacting residueswith ligand C2E. All amino acids in475
are conserved except for residue R614,whichwas substituted by a glycine. The PDB
structures are shown in color with their sidechains in a thinner representation.
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randomly picked 1 million sequences from the Uniref50 dataset. The
best matching parameters were further downsampled with finer
windows and their frequencies compared with radar plots, as shown
in Fig. 1 in the main text. The best performing parameters in our
dataset were top_k 950, repetition penalty of 1.2, and default tem-
perature and top_p values of 1.

Sequence dataset generation
Three sequence datasets were produced to compare their properties.
The ProtGPT2 dataset was generated by sampling 1000 batches of
100 sequences, each with the selected inference parameters and a
window context of 250 tokens. This step produced 100,000 sequen-
ces. We filtered from this set those sequences whose length had
been cut due to the window context, giving a total of 29,876 sequen-
ces. From this set, we randomly selected 10,000 sequences.
Their average length is 149.2 ± 50.9 amino acids. The natural dataset
was created by randomly sampling 100,000 sequences from Uni-
ref50. 10,000 of these sequences were further chosen to ensure their
average and standard deviation lengths matched that of the ProtGPT2
dataset sequences. The random dataset was created by concatenating
the 25 amino acids that appear in UniRef50, which includes the
20 standard amino acids and other IUPAC codes such as “X”, “B”, “U”,
“O”, and “Z”, by randomly concatenating them into sequences with a
length taken from a normal distribution between 5 and 267
amino acids.

Homology detection
Each sequence in the three 10k datasets was searched for similarity
against the PDB70 and uniclust30 databases using HHblits70. We used
the Uniclust30 database version 2018_08 and the pdb70 version
2021_04. As HHblits produces a list of alignments we selected all those
over the HSSP curve as possiblematches, and from these, selected the
largest alignment. Thus, for each sequence in each dataset, the longest
and the highest identity scoring alignment was selected and repre-
sented in Fig. 2.

Disorder prediction
IUPred3 was run on ProtGPT2 and natural datasets using all
three possible options to detect shorter (“short”) or longer (“longer”)
unstructured regions, as well as structured regions (“glob”)35. Ordered
content was determined with the “short” option. The output of the
“glob” analysis also reports if any structured, globular domain was
found, as shown in Table 1. We ran secondary structure prediction
using PSIPRED v4.0 for each sequence in natural and ProtGPT2
datasets37. The alignments of the abovementioned HHblits searches
were used as multiple sequence alignments. We computed the per-
centages for each secondary element by dividing the number of amino
acids with a certain prediction by the total number of amino acids with
a confidence value of 5 or more.

AlphaFold2 structure prediction
We predicted five structures for each sequence in the ProtGPT2
dataset using AlphaFold ColabFold batch v1.241.

Network construction
Sequences in the ProtGPT2 andSCOP2.07filtered at95%datasetswere
joined. For each sequence, we produced a multiple sequence align-
ment (MSA) using HHblits against the database Uniclust 2018_08.
Hidden Markov model profiles were produced for each MSA using
HHblits70, and an all-against-all search for each profile was performed
using HHsearch38. The network was constructed by representing every
sequence as a node, and linking two nodes whenever they have an
alignment of at least 20 amino acids with 70% HHsearch probability.
Extensive details on the all-against-all comparison and network con-
struction, and tools to generate the networks can be found in our

previous works Fuzzle54,55 and Protlego57. Detection of similar topolo-
gies was determined with FoldSeek58.

Molecular dynamics simulations
Simulation systems were built and run with the software HTMD71. In all
cases, systems comprised solvated all-atom cubic boxes. Simulation
boxes consisted of a protein centered at the origin of coordinates and
explicit solvent molecules and neutralizing NaCl ions were added to
each box. The Amber 19SB forcefield was used72. Three replicas were
constructed per sequence. All systems were minimized, equilibrated,
and run with ACEMD73 using default parameters: each system was
minimized and relaxed under NPT conditions for 1 ns at 1 atm and
300K using a time-step of 4 fs, rigid bonds, cutoff of 9 Å, and PME for
long-range electrostatics. Heavy protein and ligand atoms were con-
strained by a 10 kcal/mol/Å2 spring constant. Production simulations
were run in the NVT ensemble using a Langevin thermostat with a
damping of 0.1 ps−1 and a hydrogen mass repartitioning scheme to
achieve timesteps of 4 fs74.

Rosetta calculations
Rosetta Relax runs were produced with the Rosetta Software Suite
v3.1244 using as input structure the best-scoring prediction from
AlphaFold.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The model weights are publicly available in the HuggingFace
repository: https://huggingface.co/nferruz/ProtGPT2 and Zenodo:
https://doi.org/10.5281/zenodo.6796843 [https://zenodo.org/record/
6796843#.YswB9XbMIVA]. The dataset for training is available at:
https://huggingface.co/datasets/nferruz/UR50_2021_04. The three
sequence datasets in this work are available at: https://huggingface.co/
datasets/nferruz/dataset_fastas. The AlphaFold predictions for the
three datasets are available at https://huggingface.co/datasets/
nferruz/dataset_alphafold. The Uniref50 original database version
21_04 is available at https://ftp.uniprot.org/pub/databases/uniprot/
previous_releases/release-2021_04/. The Uniclust30 database version
2018_08 is available at http://gwdu111.gwdg.de/~compbiol/uniclust/
2018_08/uniclust30_2018_08_hhsuite.tar.gz.

Code availability
The model was trained with the HugginFace transformers Trainer
version 4.14.1. The code and documentation are available here: https://
huggingface.co/docs/transformers/main_classes/trainer.
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