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An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction.
The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term 𝑥(𝑡 + 6). The performance
prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical
system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was
complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the
predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus,
we studied the impact of noise for several cases with a white noise level (𝜎

𝑁
) from 0.01 to 0.1.

1. Introduction

Currently, the prediction of time series has played an impor-
tant role in many science fields of practical application as
engineering, biology, physics, meteorology, and so forth. In
particular, and due to their dynamical properties, the analysis
and prediction of chaotic time series have been of interest
for the science community. In general, the chaotic time series
are usually modeled by delay-differential equations; standard
examples are the Mackey-Glass system [1], or the Ikeda
equation [2] (for more examples, see [3]). Also, many meth-
ods have been used in the chaotic time series analysis [4].
However, in the last decades, different types of artificial neural
networks (ANN) have been widely used for forecasting of
chaotic time series, for example, backpropagation algorithm
[5], radial basic function [6], and recurrent network [7].

On the other hand, the analysis of real-life time series
requires taking into account the error propagation of input
uncertainties. The observed data could be contaminated for
different instrumental noise types as white noise or propor-
tional to signal (the latter mainly arises from instrumental
calibration). In the modeling of chaotic time series, the
impact of noise can be treated as errors-invariable problem
where the noise is propagated into the prediction model.

In the literature, the noisy impact on chaotic time series
prediction has been barely considered. We can find studies
where the algorithms were tested from a theoretical point of
view (e.g., see [8–12]) and works where the implementation
was applied on real-life time series (e.g., see [9, 13, 14]).
In addition, some authors have proposed a modification to
the standard methods in order to improve the performance
prediction in presence of noise [9, 14].

In this work, we used the Mackey-Glass chaotic time
series in order to study the short-term prediction (𝑥(𝑡 + 6))
with an artificial neural network optimized with a particle
swarm algorithm (ANN+PSO). The method was applied on
noiseless and noisy chaotic time series. In order to carry out
the error propagation of the input noise, this hybrid algo-
rithm was complemented with a Gaussian stochastic proce-
dure to compute a new estimator of the predictions and their
uncertainties. Note that ANNs have been used in combina-
tionwith PSO in several applications. Principally, these appli-
cations include feed-forward neural network training [15–
18], design of recurrent neural networks [19], design of radial
basis function networks [20], and neural network control
for nonlinear processes [21]. In addition, there are several
current versions of PSO available in the literature (e.g., see
the following reviews [22–24]), but our application uses
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a standard PSO with inertial weight [25]. In this point, the
use of a PSO with inertial weight is based on the following
reasons: (1) this version of PSO is easy to understand and
implement due to its simple concept and learning strategy; (2)
as pointed out in [26], the PSO with inertia weight [25] and
PSO with constriction factor [27] are mathematically equiv-
alent, and PSO with constriction factor can be considered
as a special case of PSO with inertia weight [22, 26] (note
that this equivalence can be applied to other improved PSO
algorithms that include a varying inertia weight schedule);
(3) inertia weight PSO algorithm is quite stable to population
changes [23]; (4) the advantages anddisadvantages of variants
of PSO depend on the problem to solve [22–24]; (5) as a first
approach for study of noise effect on dynamical systems using
an ANN combined with inertia weight PSO algorithm, the
present studymaymotivate and help the researchers working
in the field of evolutionary algorithms to develop new hybrid
models or to apply other existing PSO models to solve this
problem. To the best of the authors’ knowledge, there is
no application for forecasting the noisy chaotic time series
such as the one presented here, using a hybrid method that
combined ANN with PSO algorithm.

Organization of this paper is as follows. In Section 2,
we present a detailed description of the hybrid ANN+PSO
method. Sections 3 and 4 present the simulation, algorithm
implementation, and the principal results obtained for the
forecasting of noiseless chaotic time series and noisy time
series, respectively. Finally, conclusions are given in Section 5.

2. Hybrid ANN+PSO Algorithm

Artificial neural networks (ANNs) are similar to biological
neural networks in performing functions collectively and in
parallel using connection nodes. Thus, ANNs are a family of
statistical learning algorithms biologically inspired.

In this study, we consider one of the most successful and
frequently used types of neural networks: a multilayer feed-
forward neural network with a backpropagation learning
algorithm (gradient descent error). This ANN was imple-
mented replacing standard backpropagation with particle
swarm optimization (PSO).

PSO is a population-based optimization tool, where the
system is initialized with a population of random particles
and the algorithm searches for optima by updating genera-
tions [28]. In each iteration, the velocity of each particle 𝑗 is
calculated according to the following formula [29]:

V𝑘+1
𝑗

= 𝜔V𝑘
𝑗
+ 𝑐1𝑟1 (𝜓

𝑘

𝑗
− 𝑠
𝑘

𝑗
) + 𝑐2𝑟2 (𝜓

𝑘

𝑔
− 𝑠
𝑘

𝑗
) , (1)

where 𝑠 and V denote a particle position and its corresponding
velocity in a search space, respectively. 𝑘 is the current step
number, 𝜔 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration
constants, and 𝑟1, 𝑟2 are elements from two random sequences
in the range (0, 1). 𝑠𝑘

𝑗
is the current position of the particle,

𝜓
𝑘

𝑗
is the best one of the solutions that this particle has

reached, and 𝜓
𝑔
is the best solutions that all the particles

have reached. In general, the value of each component in V
can be clamped to the range [−Vmax, +Vmax] control excessive

roaming of particles outside the search space [28, 29]. After
calculating the velocity, the new position of each particle is

𝑠
𝑘+1
𝑗

= 𝑠
𝑘

𝑗
+ V𝑘+1
𝑗

. (2)

The procedure to calculate the output values, using the
input values, is described in detail in [30].

The net inputs (𝑁) are calculated for the hidden neurons
coming from the inputs neurons. In the case of a neuron in
the hidden layer, one has

𝑁
ℎ

𝑖
=

𝑛

∑

𝑖

𝑤
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𝑖,𝑗
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𝑖,𝑗
, (3)

where 𝑝
𝑖
is the vector of the inputs of the training, 𝑤ℎ

𝑖,𝑗
is the

weight of the connection among the input neurons with the
hidden layer ℎ, and the term 𝑏

ℎ

𝑖,𝑗
corresponds to the bias of the

neuron of the hidden layer ℎ, reached in its activation. The
PSO algorithm is very different than any of the traditional
methods of training [28]. Each neuron contains a position
and velocity. The position corresponds to the weight of a
neuron (𝑠

𝑘

𝑖
→ 𝑤
ℎ

𝑖,𝑗
).The velocity is used to update the weight

(V𝑘+1
𝑖

→ 𝑤


𝑖,𝑗
). Starting from these inputs, the outputs (𝑦

𝑖
) of

the hidden neurons are calculated, using a transfer function
𝑓
ℎ associated with the neurons of this layer:
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The transfer functions 𝑓
ℎ can be linear or nonlinear.

We used one hidden layer with 𝑓
ℎ

𝑖
as a tangent hyperbolic

function (tansing) and 𝑓
ℎ

𝑗
as a linear function in the output

layer:

𝑓 (𝑁
𝑖
) =

𝑒
𝑁𝑖

− 𝑒
−𝑁𝑖

𝑒
𝑁𝑖 + 𝑒

−𝑁𝑖
. (5)

All the neurons of the ANN have an associated activation
value for a given input pattern, and the algorithm continues
finding the error that is presented for each neuron, except
those of the input layer. After finding the output values, the
weights of all layers of the network are actualized𝑤

𝑖,𝑗
→ 𝑤


𝑖,𝑗

by PSO, using (1) and (2) [29]. The velocity is used to control
how much the position is updated. On each step, PSO
compares each weight using the data set. The network with
the highest fitness is considered the global best. The other
weights are updated based on the global best network rather
than their personal error or fitness [28]. In this paper, we
used the mean square error (MSE) to determine network
fitness for the entire training set:

MSE =

∑
𝑛

𝑖=1 (𝑌
true
𝑖

− 𝑌
calc
𝑖

)

2

𝑛

,
(6)

where 𝑌
true
𝑖

is the real data and 𝑌
calc
𝑖

is the calculated output
value obtained from the normalized output (𝑦

𝑖
) of the

network. This process was repeated for the total number
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Figure 1: Illustration of the behaviour of some parameters of the ANN+PSO against the number of iterations. (a) and (b) correspond to the
number of particles in the swarm (𝑁part) and the inertia weight (𝜔), respectively.

of patterns in the training set. For a successful process, the
objective of the algorithm is to modernize all the weights
minimizing the total root mean squared error (RMSE):

RMSE = √MSE, (7)

𝜀 = min (RMSE) . (8)

In PSO, the inertial weight 𝜔, the constants 𝑐1 and 𝑐2, the
number of particles𝑁part, and themaximum speed of particle
summarize the parameters to synchronize for their applica-
tion in a given problem. Then, an exhaustive trial-and-error
procedure was applied to tune the PSO+ANN parameters.
Firstly, the effect of population 𝑁part is analyzed for values
of 25 to 100 individuals in the swarm. For other applications,
some authors have shown that a larger swarm increases the
number of function evaluations to converge to an error limit
[31]. In addition, Shi and Eberhart [32] illustrated that the
population size has hardly any effect on the performance of a
swarm algorithm. Figure 1(a) shows that the best population
to solve the problem is of 50 individuals. Next, the effect
of 𝜔 is analyzed for values of 0.1 to 0.9. Figure 1(b) shows
the values of 𝜔 that favoured the search of the particles and
accelerated the convergence. This figure shows that for a
linearly decreasing inertia weight starting at 0.7 and ending
at 0.5, the PSO+ANN presents a good convergence. In other
aspect, a usual choice for the acceleration coefficients 𝑐1 and
𝑐2 is 𝑐1 = 𝑐2 [31]. The effect of variation of constants was
evaluated for the commonly used values of 𝑐1 and 𝑐2 such
as 1.49 and 2.00 [31, 32]. For this analysis, 𝑐1 = 𝑐2 = 1.49

presents a better convergence than other values. Table 1 shows
the selected parameters for this hybrid algorithm.

The step-to-step approach of PSO+ANN can be summa-
rized as follows.

Step 1. Initialize the positions (weights and biases) and
velocities of a group of particles randomly. The particles
represent the weight vectors of ANN, including biases.

Table 1: Parameters used in the hybrid ANN+PSO algorithm.

ANN
NN-type Feed-forward
Number of hidden layers 1
Transfer function Tansig
Number of iterations 1500
Normalization range [−1, 1]

Weight range [−100, 100]

Bias range [−10, 10]

Minimum error 1𝑒 − 3

PSO
Number of particles in swarm (𝑁part) 50
Number of iterations (𝑘max) 1500
Cognitive component (𝑐1) 1.494
Social component (𝑐2) 1.494
Maximum velocity (Vmax) 12
Minimum inertia weight (𝜔min) 0.5
Maximum inertia weight (𝜔max) 0.7
Objective function RMSE

The dimension of the search space is therefore the total
number of weights and biases.

Step 2. TheANN is trained using the initial particles position
in PSO.The learning error produced fromANN network can
be treated as particles fitness value according to initial weight
and bias. The current best fitness achieved by particle 𝑗 is set
as 𝜓
𝑘

𝑗
. The 𝜓

𝑘

𝑗
with best value is set as 𝜓

𝑔
and this value is

stored.

Step 3. Evaluate the desired optimization fitness function (7)
over a given data set.
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Step 4. Compare the evaluated fitness value of each particle
(𝐹
𝑗
) with its value. If 𝐹

𝑗
< 𝜓
𝑘

𝑗
, then 𝜓

𝑘

𝑗
= 𝑠
𝑘

𝑗
is the coordinates

corresponding to best particle so far.

Step 5. The objective function value is calculated for new
positions of each particle. If a better position is achieved by an
agent, 𝜓𝑘

𝑗
value is replaced by the current value. As in Step 1,

𝜓
𝑔
value is selected among 𝜓

𝑘

𝑗
values. If the new 𝜓

𝑔
value is

better than the previous value, it is replaced by the current𝜓
𝑔

value and this value is stored. If 𝐹
𝑗
< 𝜓
𝑔
, then 𝜓

𝑔
= 𝑠
𝑘

𝑗
is the

particle having the overall best fitness over all particles in the
swarm.

Step 6. The learning error at current epoch will be reduced by
changing the particles position, which will update the weight
and bias of the network. Change the velocity and location of
the particle according tomovement equations (1) and (2).The
new sets of positions (weights and biases) are produced by
adding the calculated velocity value to the current position
value.Then, the new sets of positions are used to produce new
learning error in ANN.

Step 7. This process is repeated until the stopping conditions
either minimum learning error or maximum number of
iterations are met and then stop; otherwise, loop to Step 3
until convergence.

Step 8. The optimum weight and biases for ANN model are
obtained by PSO. Best training process is obtained for ANN.

In our time series analysis, if the input noise level
contribution is available, the RMSE in the training phase will
be computed as follows:

RMSE =
√
1
𝑛

𝑛

∑

𝑖=1

(𝑌
cal
𝑖

− 𝑌
true
𝑖

)

2

𝜎
2
𝑁,𝑖

,
(9)

where𝜎
𝑁,𝑖

is the noise level of each 𝑖-element. Note that𝜎
𝑁,𝑖

=

𝜎
𝑁
, for a white noise assumption.
Henceforth, we refer as the standard ANN+PSO to the

hybrid ANN+PSO defined above.

2.1. The Stochastic ANN+PSO. Up to now, the standard
ANN+PSO is not developed to carry out the error propaga-
tion of the input noise level contribution. Nevertheless, once
the standard ANN+PSO has been executed and has provided
the optimal topology, we can apply an additional method in
order to compute uncertainty of the prediction.

Note that once the topology is established (number
of hidden layers, neurons in each hidden layer, transfer
functions𝑓ℎ, andweights and biases (𝑤ℎ

𝑖,𝑗
and 𝑏
ℎ

𝑖,𝑗
)), the neural

network acts as a function (called function ANN) whose
output only depends on the input vector (see (4)). The idea
is to generate simulations from the input data (𝑑

𝑖
≡ 𝑑(𝑡)) via

Gaussian randomnumber generator in order to propagate the
intrinsic data noise through the function ANN.

For each 𝑖-element of the input time series, we generate
𝑘-simulations as

𝑑
𝑖,𝑘

= 𝑑
𝑖
+GR
𝑘
(𝜎
𝑁,𝑖

) , (10)

where the input noise level 𝜎
𝑁,𝑖

is known. GR(𝜎
𝑁,𝑖

) is a
random number generator following a Gaussian distribution
with mean zero and standard deviation equal to 𝜎

2
𝑁,𝑖

.
Finally, for the 𝑖th element, each 𝑘 input data set 𝑑

𝑖,𝑘

provides an output 𝑦
𝑖,𝑘
. These 𝑦

𝑖,𝑘
are used in the estimation

of a new estimator of prediction (𝑦
𝑖
) and an error on the

prediction (𝜎
𝑦
) as follows:

𝑦
𝑖
= ⟨𝑦
𝑖,𝑘
⟩ ,

𝜎
𝑦
= ⟨𝑦

2
𝑖,𝑘
⟩

1/2
.

(11)

3. Noiseless Chaotic Time Series Prediction

We computed the chaotic time series from the Mackey-Glass
time-delay differential system [1, 33], which is described as
follows:

𝑑𝑥

𝑑𝑡

= 𝛽𝑥 (𝑡) +

𝛼𝑥 (𝑡 − 𝜏)

1 + 𝑥 (𝑡 − 𝜏)
10 , (12)

where 𝑥 (unitless) is the series in the time 𝑡 and 𝜏 is the time
delay. Here, we assumed that 𝛼 = 0.2, 𝛽 = 0.1, and 𝑥(0) = 1.2.
Note that if 𝜏 ≥ 17, the time series shows a chaotic behaviour
[33, 34]. The nominal Mackey-Glass time series is obtained
from numerical integration by a fourth order Runge-Kutta
method. This series was computed with a time sampling of
1 second. Thus, 𝑥(𝑡) is derived from 0 ≤ 𝑡 ≤ 𝑡

ℎ
with 𝑥(𝑡) = 0

for 𝑡 < 0, where 𝑡
ℎ
is the time horizon considered.

Mackey-Glass chaotic time series with 𝜏 = 17 is consid-
ered as the nominal case 𝑥

Noiseless (without noise contribut-
ion). Here, we generate two thousand data points (𝑡

ℎ
= 2000).

From this data set, the input is created as a vector using
𝑑 points of the time series spaced Δ apart; that is, x(𝑡) =

[𝑥(𝑡), 𝑥(𝑡 + Δ), . . . , 𝑥(𝑡 + (𝑑 − 1)Δ)]. The output is generated
with the value 𝑥(𝑡 + 𝑇).

According to the standard analysis of the Mackey-Glass
chaotic time series, we consider four nonconsecutive points
in the chaotic time series in order to predict the short-term
𝑥(𝑡 + 6):

𝑥 (𝑡 + 6) = 𝐹 [𝑥 (𝑡) , 𝑥 (𝑡 − 6) , 𝑥 (𝑡 − 12) , 𝑥 (𝑡 − 18)] , (13)

where this standard test assumes 𝑑 = 4 andΔ = 𝑇 = 6 [6, 34].
For this input, the first thousand data sets were used

for learning (training), while the others were used for the
prediction validation (prediction). In the ANN+PSO imple-
mentation on the nominal case, the optimum value of 𝑁HL
found was six; that is, the architecture is described as 4-6-1.

Figure 2 presents a comparison between recorded and
predicted values of theMackey-Glass time series for the train-
ing and prediction phases.This figure shows that, for training
and validation phases, the nominal and reconstructed values
are in total agreement. In fact, for training, we computed a
remainder average, ⟨𝑥in−𝑥out⟩, of −1.4×10

−3 and a remainder
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Figure 2: Performance of ANN+PSOmethod on theMackey-Glass chaotic time series (noiseless). (a) and (b) show the training and prediction
performance for the short-term 𝑥(𝑡 + 6) analysis, respectively. The grey and blue lines correspond to the input (𝑥in) and output (𝑥out) data.
The red line with diamond draws the difference between the input and output data (in a factor of 10−2).

maximum, max{|𝑥in − 𝑥out|}, of 3.20 × 10−2. Similar results
are obtained for the prediction phase, with a maximum of
3.22 × 10−2 and an average of−1.5 × 10−3.

Table 2 shows the RMSE (for short-term prediction of
Mackey-Glass chaotic time series) from different computa-
tional methods obtained from literature, for example, the
backpropagation NN [35], the conjugate gradient ANN [36],
the product operator 𝑇-norm [37], and the fuzzy system [38]
(see references in Table 2). In the ANN+PSO configuration
used here, the RMSE = 0.014 indicates that the performance
prediction is in good agreement with other methods. Clearly,
the inclusion of the PSO approach allows us to improvemeth-
ods based on ANN without PSO, for example, the conjugate
gradient ANN (RMSE = 0.229) and the backpropagation NN
(RMSE = 0.026).

3.1. Chaotic Behaviour. As the Mackey-Glass time series
without noise is a known system, it is possible to compare
the ability of ANN+PSO method of reproducing its chaotic
behavior. Figure 3 shows a representation of the chaotic
attractor studied from Mackey-Glass time series. This figure
shows that with 𝜏 = 17 the system operates in a high-
dimensional regime. The Mackey-Glass system is infinite
dimensional system (because it is a time-delay equation) and,
thus, has an infinite number of Lyapunov exponents (𝜆

𝑖
)

[33]. The Lyapunov exponents of dynamical systems are one
of a number of invariants that characterize the attractors

Table 2: Root mean squared error (RMSE) reported for different
methods in the Mackey-Glass chaotic time series analysis.

Method RMSE
𝑥(𝑡+6)

Linear model [35] 0.5503
Conjugate gradient ANN [36] 0.2296
Product operator 𝑇-norm [37] 0.0907
Fuzzy system [38] 0.0816
Cascade correlation NN [39] 0.0624
Genetic algorithm and fuzzy system [40] 0.0490
Backpropagation NN [35] 0.0262
Linguistic model (20 rules) [41] 0.0256
𝐾-nearest neighbor [42] 0.0194
This work 0.0138

of the system in a fundamental way [43]. Table 3 shows a
comparison of the first four largest Lyapunov exponents of
theMackey-Glass system reported in [33], with the Lyapunov
exponents obtained for the ANN+PSO method for 𝜏 = 17.

An approach to determine an appropriate cutoff value
for the number of exponents can be related to the Lyapunov
dimension [43]. This idea was originally explored by Kaplan
and York [44]. Thus, Kaplan and York conjecture that this
dimension (𝐷KY) is equal to the information dimension [45].
In our case, 𝐷KY is computed as 2.10. Note that, in Farmer
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Figure 3: Chaotic attractor for the Mackey-Glass noiseless chaotic
time series (𝜏 = 17).

Table 3: Lyapunov exponents reported in Farmer [33] versus those
calculated for the ANN+PSO method.

𝜆
𝑖

𝜆
𝑖,ANN+PSO

0.00860 0.00900
0.00100 0.00132
−0.03950 −0.04100
−0.05050 −0.05000

[33], the authors reported a fractal dimension 𝐷F = 2.13

and a Lyapunov dimension calculated by the Kaplan-York
conjecture of𝐷KY = 2.10.

4. Noisy Chaotic Time Series Prediction

In the previous section, the ANN+PSO has proven to be
an efficient method to the prediction of chaotic time series.
Nevertheless, up to now, effects of noise on the hybrid
ANN+PSO implementation have not been studied.

In order to study the impact of noise on chaotic series
time prediction, we constructed the noisy time series as the
contribution of a noise level on the nominal case without
noise. The Mackey-Glass noisy chaotic time series, 𝑥

𝑖
≡ 𝑥(𝑡),

is generated as

𝑥
𝑖
= 𝑥

Noiseless
𝑖

+ 𝜂
𝑖
, (14)

where 𝜂
𝑖
is the particular contribution of noise on the 𝑖-

element. It is estimated as 𝜂
𝑖
= GR(𝜎

𝑁,𝑖
), with GR(𝜎

𝑁,𝑖
), a

Gaussian random number generator.
Note that 𝜎2

𝑁,𝑖
corresponds to the noise level considered.

Here, we assume that the original data are effected by a white
noise; that is, the noise level is the same in each 𝑖-element,
𝜎
𝑁,𝑖

= 𝜎
𝑁
(for clarification, although the noise level 𝜎

𝑁
is

the same in each time, the noise contribution 𝜂
𝑖
is not the

same (the latter depends on the Gaussian random number
generator)). Different white noise levels are considered: 𝜎

𝑁
=

0.01, 𝜎
𝑁

= 0.04, 𝜎
𝑁

= 0.06, 𝜎
𝑁

= 0.08, and 𝜎
𝑁

= 0.1. These
values are nearly related to the 1%, 4%, 6%, 9%, and 11% of
the pick-to-pick amplitude of nominal case (∼ 𝑥

Noiseless
max −
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Figure 4: Mackey-Glass chaotic time series considered in this work
(𝜏 = 17). The black solid line shows the noiseless case (nominal
case).The green, blue, and red lines correspond to theMackey-Glass
noisy time series with a white noise level (𝜎

𝑁
) contribution of 0.01,

0.04, and 0.1, respectively.

𝑥
Noiseless
min ). Figure 4 shows that the noisy chaotic time series

for 𝜎
𝑁
is equal to 0.01 (green), 0.04 (blue), and 0.1 (red). As

expected, the noisy time series with 𝜎
𝑁

= 0.01 is the closest
to the nominal case. However, the cases with 𝜎

𝑁
= 0.04

and 𝜎
𝑁

= 0.1 show a slightly more modified shape from the
noiseless case, in particular with 𝜎

𝑁
= 0.1.

4.1. Noise Effect on ANN+PSO. The standard ANN+PSO
is applied to our noisy time series, which provides the
optimum topology and the 𝑦

𝑖
prediction.Then, the stochastic

ANN+PSO is run in order to obtain a new prediction
estimator 𝑦

𝑖
and the uncertainty of the prediction (𝜎

𝑦𝑖
).

Impact on Architecture. For each noisy time series, in the
standardANN+PSO implementation, we carry out a detailed
study of the architecture characterization. In the determina-
tion of the optimum𝑁HL, the RMSE is computed for different
number of neurons in the hidden layer (from two up to
thirty), which are presented in Figure 5. For each series, the
optimum 𝑁HL is obtained when the RMSE reaches a mini-
mum. As expected, the characterization of the architecture is
strongly related to the noise level in the input data. In lower
noise (as 0.01), the optimum 𝑁HL is clearly identified from
Figure 5; in contrast, in the most contaminated case (𝜎

𝑁
=

0.1), the selection depends on the fourth decimal of the RMSE
(0.1292, 0.1291, and 0.1293 for 19, 20, and 21 neurons in the
hidden layer, resp.). The RMSE and the 𝑁HL optimum are
presented in Table 4. Using these values and according to the
trend seen in Figure 5, we fit a lineal model, which provides
a correlation with a slope of 0.0085. Although the 𝑁HL for
𝜎
𝑁

= 0.08 is not well characterized for thismodel, we can find
a clear lineal correlation between the RMSE and the 𝑁HL for
different noise levels. In this context, as an illustration, in the
overplot (in top-right side of Figure 5), we show the relation
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Figure 5: Impact of the noise on the architecture.

Table 4: Parameters used in the evaluation of the prediction
performance of the standard and stochastic ANN+PSO approach.

𝑁HL RMSE 𝜉

Noiseless 6 0.0138 1
𝜎
𝑁

= 0.01 6 0.016 1.2
𝜎
𝑁

= 0.04 11 0.054 3.9
𝜎
𝑁

= 0.06 14 0.078 5.7
𝜎
𝑁

= 0.08 15 0.103 7.5
𝜎
𝑁

= 0.1 20 0.129 9.4

of the 𝑁HL and the noise level, whose best lineal fit model is
𝑁HL = 146𝜎

𝑁
+ 4.7. Therefore, the impact of noise on the

architecture of this hybrid neural network, for contributions
lower than 0.1, can be characterized by a lineal correlation of
the RMSE with the𝑁HL and the𝑁HL with the input noise 𝜎𝑁.

The Prediction Performance. As an illustration, the predic-
tions obtained for noisy case 𝜎

𝑁
= 0.1, from the standard

ANN+PSO (𝑦
𝑖
) and the stochastic ANN+PSO (𝑦

𝑖
) proce-

dures, are presented in Figure 6. As expected, even on this
high noise level case, the 𝑦

𝑖
and 𝑦

𝑖
predictions are in total

agreement. Actually, the RMSE obtained from both methods
is the same (in the approximation of the third decimal) for
each noisy case. For this reason, the RMSE shown in Table 4
represents the RMSE of both methods.

On the other hand, as expected, the RMSE increases with
the growing the noise level (see Figure 7). For example, we
obtained RMSE of 0.0138 and 0.13 for the noiseless and noisy
(with𝜎

𝑁
= 0.1) cases, respectively. FromFigure 7, we observe

a linear correlation between the RMSE and the input noise
level. The best fit model, without considering the RMSE of
the noiseless case, corresponds to RMSE = 1.3𝜎

𝑁
, which

shows a strong lineal correlation. Therefore, we confirm that
a higher noise level in input data leads to a poor estimation of
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Figure 6: Predictions of Mackey-Glass noisy chaotic time series
with a white noise contribution of 𝜎

𝑁
= 0.1. The grey solid

line corresponds to the original Mackey-Glass noisy chaotic time
series. The red and blue lines identified the results from standard
ANN+PSO and stochasticANN+PSO, respectively.The upper panel
draws the 𝑦

𝑖
and 𝑦

𝑖
predictions, and the lowe panel draws the

residual contribution (𝑥in − 𝑥out) of both methods.

the prediction estimator, which is related linearly to the input
noise level.

Also, the ratio 𝜉 = RMSEnoisy/RMSEnoiseless (third column
in Table 4) can be used to study the impact of noise on the
performance efficiency of our implementation (with respect
to nominal case). The bottom-right panel of Figure 7 shows
the performance efficiency against the input noise level. In the
worst case, the performance efficiency (𝜉) is strongly affected
by one order of magnitude with respect to the noiseless case.
Even so, the standard and stochasticANN+PSO confirm to be
a powerful tool for making predictions of chaotic time series.

In the literature, we do not find a similar implementation
(due to the ahead prediction, type and level of noise, etc.)
that allows for us a straightforward comparison of results.
For example, we can contrast our results with those presented
by Sheng et al. 2012 [14]. They applied the Echo State
Network (ESN) based on dual estimation on a noisyMackey-
Glass time series (with a sampling of 2 seconds) with a
white noise level of 𝜎 = 0.1. However, the prediction
ahead was one, which is considered lower than ours. Yet,
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let us carry out a plain comparison. Depending on the
prediction performance, they obtained RMSE of 0.05 for
Generic ESN (hereafter GESN) and 0.04 for CKF/KF based
ESN (henceforth CESN). In this context, the impact of the
noise on the performance efficiency is lower in ANN+PSO
implementation (with respect to the ESN). In fact, we have a
performance efficiency 𝜉 of 9.4, while they obtained 𝜉 of 1161
and 33.5 for GESN and CESN, respectively.

Prediction Uncertainties.One of themain goals of this work is
to estimate the uncertainty on the prediction. The prediction
measurement (𝑦

𝑖
) and the error bars (𝜎

𝑦𝑖
) obtained from the

stochasticANN+PSO, for the noisy time series with 𝜎
𝑁

= 0.1,
are presented in Figure 8. We confirm that our forecast and
input data, for the strong noise contribution, are in agreement
at one sigma (at 68.5% of confidential level) when the error
bars are considered.The uncertainties obtained are presented
in the low panel of Figure 8. We found a minimum and
maximum uncertainty of 0.024 and 0.13, respectively, with an
average of ⟨𝜎

𝑦𝑖
⟩ = 0.07. This value is lower than the input

noise level (⟨𝜎
𝑦𝑖
⟩/𝜎
𝑁

= 0.7), and this shows the impact of
the error propagation in our methods. According to Figure 8,
a relationship between the uncertainties and the times is not
appreciated.

Finally, from Figures 6 and 8, we have proven that
ANN+PSO (with the standard and/or the stochastic imple-
mentation) is a robust tool in the predictability (for the short-
term prediction) of time series affected by a white noise. In
addition, now the ANN+PSO method can provide, for first
time, an estimation of the uncertainty of the prediction.

5. Conclusions

In this paper, a hybrid algorithm based on artificial neural
network and particle swarm optimization (ANN+PSO) is
used in the short-term 𝑥(𝑡 + 6) prediction of Mackey-Glass
chaotic time series. In addition, a study of the impact of the
noise on our hybridmethod is presented. Based on the results
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Figure 8: Predictions and uncertainties from the stochastic
ANN+PSO for the Mackey-Glass chaotic time series. This corre-
sponds to the case with a white noise of 𝜎
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panel, the gray solid line draws the original Mackey-Glass noisy
chaotic time series. The blue points with error bars correspond to
the 𝑦
𝑖
prediction and their uncertainties 𝜎

𝑦
. For optimal display of

the uncertainties, these are presented in the lower panel.

and discussion presented in this study, we have the following
conclusions.

(i) The current value 𝑥(𝑡) and the past values used have
influential effects on the good training and predicting
capabilities of the chosen network.

(ii) In noiseless case, simulation shows that this hybrid
ANN+PSO algorithm is a very powerful tool for
making prediction of chaotic time series, and the low
deviations found with the proposed method show an
accuracy comparable with other methods available in
the literature.

(iii) In noisy cases, we have proven that the hybrid
ANN+PSO is a robust tool in the predictability of the
short-term prediction of chaotic time series affected
by a white noise.

(iv) The impact of the noise on the topology and per-
formance efficient of the ANN+PSO is important.
However, this study shows that the error propagation
through the ANN+PSO has a linear behaviour, which
generates a linear relationship between the RMSE
(optimization parameter) and the input noise level.
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Therefore, the PSO optimization provides a linearity
which ensures that the neural network will converge
to an appropriate solution, even if a noise level
contribution is present.

(v) For noisy cases, although a straightforward com-
parison with literature is unavailable, the perfor-
mance efficient 𝜉 proves that the standard/stochastic
ANN+PSO implementation is affected in a lesser
degree than the other similar performances.
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