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Min‑entropy estimation 
for semiconductor superlattice true 
random number generators
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Semiconductor superlattice true random number generator (SSL-TRNG) has an outstanding 
practical property on high-throughput and high-security cryptographic applications. Security in 
random number generators is closely related to the min-entropy of the raw output because feeding 
cryptographic applications with insufficient entropy leads to poor security and vulnerability to 
malicious attacks. However, no research has focused on the min-entropy estimation based on the 
stochastic model for SSL-TRNG, which is a highly recommended method for evaluating the security 
of a specific TRNG structure. A min-entropy estimation method is proposed in this paper for the SSL-
TRNG by extending the Markov stochastic model derived from the memory effects. By calculating the 
boundary of the transition matrix, the min-entropy result is the average value of each sample (1 bit) 
is 0.2487. Moreover, the experimental results show that the estimator is accurate enough to adjust 
compression rate dynamically in post-processing to reach the required security level, estimating 
entropy on the fly rather than off-line.

Random number generators play a vital role in the security of communication systems and are basic primitive 
in cryptographic applications1,2. There are two main categories of random number generators according to the 
random numbers generated whether to rely on deterministic algorithms: pseudo-random number generators 
(PRNGs) and true random number generators (TRNGs). The random number is used in various cryptographic 
application scenarios3, such as keys, digital signatures, padding values, etc. Moreover, many cryptographic algo-
rithms, protocols, and even hardware attack countermeasures depend on the security of the random number 
generator in the final analysis.

PRNG generates random numbers based on algorithmic processes and a short true random seed. PRNGs are 
usually faster than TRNGs and provide highly unbiased random numbers, but the numbers are predictable. If the 
random number generated by RNGs has lower unpredictable, then the random number can be easily guessed and 
will cause an attack on the cryptographic system4–6. In this way, an unpredictable random sequence is essential to 
the security of the entire cryptographic application. Therefore, numerous efforts have been devoted to develop-
ing TRNGs that generate random numbers via physical noise. TRNGs are attractive alternatives because they 
provide randomness based on physical phenomena, such as thermal noise, radiation, radio noise, or noise from 
sensors in mobile devices7–12. In addition, TRNGs also provide a solution to the problem of having insufficient 
entropy13. However, the direct output of the available source is biased, so the post-processing part of the source 
is essential to generate a full entropy sequence14,15. Thus, it is imperative to evaluate the entropy of the source.

Entropy is a measurable physical property correlated with a state of disorder, randomness, or uncertainty. It 
reflects the uncertainty by predicting a value prior to observation-the more significant the amount of entropy, the 
greater the uncertainty in predicting the value of observation16. The information entropy contained in the random 
numbers generated by TRNG is widely used, which can effectively measure the true randomness of TRNG and 
become an evaluation standard of TRNG security. The post-processing called randomness extraction in TRNG 
aims to produce shorter and almost uniformly distributed random sequences. The scientific literature provides 
us the method of how many random bits are extracted from the entropy source, which adjusts the parameter of 
the extractor17–19. Shannon entropy often leads to overestimating total security when applied to a weak source 
and causes real-world attacks20,21. Thus, it fulfills to know the min-entropy to construct a good random number 
generator, which is a very conservative method and provides the lower bound extracted from the entropy source.

However, estimating entropy is a challenging task since the output distribution of the entropy source is usu-
ally unknown, and the common assumptions made on the entropy source may not match the actual situation. 
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At present, theoretical entropy estimation and statistical entropy estimation are the mainstream methods to 
estimate the entropy. References22–25 introduced the theoretical proof of TRNG safety obtained from a reasonable 
random model. However, making appropriate assumptions is already complicated, not to mention that some 
TRNG structures do not even have apposite stochastic models26,27. Relatively, statistical entropy estimation treats 
various types of TRNGs as black boxes for statistical testing and still based on the idea of entropy estimation, 
which can solve some problems that TRNGs cannot quantify by modeling entropy estimation. According to the 
ISO/IEC 1803128 and AIS 3129 standards, it is recommended to use theoretical entropy estimation to evaluate 
the quality of TRNG.

Semiconductor superlattices (SSL) is an all-solid-state electronic device periodically grown by two semi-
conductor materials with matching lattice30. In 1996, Zhang et al.31 first observed the chaos current oscillation 
in a lightly doped and weakly coupled GaAs/AlAs superlattice under a DC bias voltage. However, the chaos 
oscillation phenomenon only can be observed in a limited temperature range. In 2012, Huang et al.32 proposed 
to use GaAs/Al0.45 Ga0.55 As material instead of GaAs/AlAs to grow semiconductor superlattice and successfully 
observed chaos oscillation phenomenon at room temperature experimentally. Many scholars have confirmed 
that the SSL is an ideal entropy source by exploring the structure of the GaAs/Al0.45 Ga0.55 As SSL and the 
large-amplitude chaos current oscillation generate truly random numbers33–35. Moreover, the high-throughput 
embedded system of semiconductor superlattice true random number generator (SSL-TRNG) was reported 
recently36. SSL-TRNG is very practical, and the random numbers generated can be used as a key in high-end 
security cryptographic applications to ensure security. However, no research has focused on the security analysis 
based on the stochastic model for SSL-TRNG.

In this paper, for the first time, we introduce the Markov stochastic model derived from the memory effects 
of SSL-TRNG and its use for min-entropy estimation in realistic conditions. First, the lower bound of the min-
entropy is obtained by computing the boundary of the transition matrix at a high confidence level. Then we 
design simulations and experiments to verify the theoretical conclusions. By computing bounds on the transition 
matrix, the min-entropy result is 0.2487 on average per sample (1 bit). Therefore, more SSL-SKD output bits can 
significantly increase the speed of random number generation and the efficiency of entropy utilization to ensure 
sufficient entropy through the method proposed in this paper. Moreover, we demonstrate that the estimator is 
effective enough to support online estimation.

Results
Entropy source.  The chaotic oscillation phenomenon of SSL can be used to generate random bits at high 
speed and enough entropy, which has attracted considerable interest recently33–35. Under specific offset volt-
age, the SSL is an ideal non-linear dynamic system with one-dimensional multi-degree-freedom. Its non-linear 
characteristic comes from the negative differential conductance phenomenon is caused by electrons forming 
cascade resonance tunneling through quantum wells31,32. Since quantum mechanics is extremely sensitive to 
specific nanostructures in SSL, random fluctuations affect the atomic level during the growth process result in 
the unique and unpredictable nanostructures of SSL devices. When the static field domain is subject to external 
interference, the SSL exhibits a transient chaos phenomenon37, sensitive to slight differences in input signals. At 
the same time, it has a memory effect38 due to the charge storage of the quantum well. Under continuous input 
signal excitation, experimental observations show that at the specific moment, the output of a superlattice device 
is not only related to the current excitation but also related to the dynamic system state caused by the accumula-
tion of historical inputs. Besides, the output bandwidth of the SSL can reach 500 MHz due to the high-frequency 
chaos oscillation.

As it turned out, the SSL combines with high-throughput and high-security as the entropy source to generate 
random numbers has the following application advantages: (1) The random number is generated and derived 
internally by the physical structure and cannot be cloned mathematically and physically. (2) The SSL devices can 
mass-production parallelly in standard semiconductor manufacturing processes. (3) The SSL can operate above 
room temperature and resist environmental fluctuations and human interference. (4) The SSL devices are low 
in cost and simple in application mechanism, which can easily implement electronically.

SSL‑TRNG principle.  Figure 1 shows the architecture of the SSL-TRNG. The SSL device exhibits excellent 
performance as an entropy source to generate a random sequence. The TRNG system generally is composed 
of the three fundamental components: entropy source, entropy harvester, and entropy extraction39. Entropy 
estimation, adding to the components of SSL-TRNG, and providing security guarantee and anomaly detection 
to applications.

The entropy harvester is a generalized mechanism that samples the original waveform output from the entropy 
source and converts it into a binary sequence. Its implementation efficiency depends on the efficiency of the 
selected entropy source. At first, the output of the SSL device will be digitized since it is an analog waveform. 
Then, through the analog-to-digital converter (ADC) digitization process, the chaotic current signal can be 
sampled and quantized into the original random sequence.

The entropy estimation gives how much entropy is contained in the original number sequence and provides 
parameters for entropy extraction. Moreover, the online entropy estimation mechanism finds out the running 
defects of the system in time and ensures robustness.

The entropy extraction, also known as randomness extractor, aims to convert the original random sequence 
from harvester into shorter and almost uniformly distributed random sequences. Numerous extraction methods 
such as the XOR method, Von Neumann extractor, and least significant bit (LSB) function are used widely40,41. 
Although these schemes are simple to implement, they may fail to correct the deviation and cause high entropy 
loss42. In the following narrative, universal hash functions will be our scheme to provide information-theoretic 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2948  | https://doi.org/10.1038/s41598-022-06815-2

www.nature.com/scientificreports/

security43. The entropy extraction stage is compressive, and the full entropy random sequence will be obtained 
through this process.

Time complexity and space complexity.  In the entropy estimation algorithm proposed in this paper, 
the most time-consuming is to obtain the P matrix from the original sequence. The process of calculating the 
P matrix requires a double “for” loop, where the length of the original sequence determines the number of the 
outer “for” loops and the inner is the quantized state space size. Obviously, in this experiment, the quantized state 
space size is 2. Then, get the T(n) = O(n).

In the program operation, the temporarily stored data includes the original data sequence and the transition 
matrix. The size of the matrix will calculate by bit quantization of the data. In this experiment, 1-bit quantization 
is 4, and then get the S(n) = O(n).

From the above discussion, the algorithm has linear time and space complexity. It has obvious advantages 
for realizing online entropy estimation.

Estimation results.  Using the method of estimating the min-entropy proposed in this paper, we conducted 
multiple sampling tests on the original data sequence generated by SSL-TRNG, and each sample contained 
1,000,000 samples. The obtained min-entropy results are shown in Table  1. Table  1 also lists the calculation 
results of the transition matrix in estimating the min-entropy and the matrix boundary when the confidence 
level is 95%. Similarly, using the Markov Model of NIST to estimate the min-entropy of original output sequence, 
the results are listed in the right column of this work.

According to the results of entropy estimation in Table 1, the min-entropy (per 1 bit) of the original output 
sequence of the superlattice device is 0.2487 bit (this work) and 0.3641 bit (Markov model). This work finds 
the lower bound of the min-entropy based on the Markov method, so the entropy estimation results are more 
accurate, which can also reflect in the Table 1. The results also indicate the upper limit of the compression rate 
of the entropy extractor. In addition, it can find that the result of min-entropy has less fluctuation, which can 
reflect the stability of the random number system of the superlattice device to a certain extent.

Statistical test.  There is a recognized and accepted standard for statistical testing randomness, which is the 
statistical test suite 800-22 from the National Institute of Standards and Technology (NIST)44 contains 15 sub-
test items.The NIST standard requires that the length of the sequence to be tested should be at least 1Mbit, and 
their uniformity judge by checking the distribution of the P-values. The judgment result gives by the P-value PT 
and the proportion σ . In this experiment, 1000 bitstreams with a length of 1Mbit used for the NIST statistical 
test under the significance level 0.01. Then, the P-value PT should be greater than 0.0001, and the proportion σ 
should be greater than 0.98. Table 2 shows the NIST SP 800-22 statistical test results for SSL-TRNG. We conclude 
that the random numbers generated by SSL-TRNG can pass the evaluation of NIST 800-22, where the param-
eters of the extractor are determined by the entropy estimation results in this paper.

Figure 1.   Core architecture of SSL-TRNG.
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Discussion and conclusions
Entropy is an important metric in secure systems. There are many methods of entropy estimation. In addition 
to min-entropy, there is Shannon entropy, Rényi entropy, collision entropy, etc. In this paper, the conservative 
method is used to estimate the min-entropy of sequences generated by semiconductor superlattice to ensure 
that the SSL-TRNG outputs full entropy random numbers. According to the entropy estimation results and the 
property of the SSL entropy source, SSL-TRNG can generate full entropy sequences at high speed, which can 
satisfy the application of one-time pad cipher. At the same time, it can provide random bits for the cryptographic 
primitive such as symmetric ciphers, public-key cryptography, certificates, signatures, which play a significant 
role in the blockchain and the Internet of Things to protect core applications and defend against invasion45–47.

We collect TRNGs with ADC sampling Oscillate, Optical vacuum fluctuation, Stokes field phase fluctuations, 
and quantum as entropy sources and show the min-entropy (per sample) and full-entropy throughput (Mb/s) 
of SSL-TRNG in comparison with that of other TRNGs in Table 3. In terms of security and performance, our 

Table 1.   The results in this paper and compare with the Markov model in NIST SP 800-90B.

Data P-matrix M-matrix

Entropy (per 1 bit)

This work Markov

1
[

0.90899 0.09101

0.14542 0.85458

] [

0.91009 0.09210

0.14678 0.85583

]

0.24871468 0.39214177

2
[

0.91396 0.08604

0.15002 0.84998

] [

0.91503 0.08712

0.15141 0.85127

]

0.24388940 0.36306248

3
[

0.92223 0.07777

0.16478 0.83522

] [

0.92323 0.07880

0.16628 0.83666

]

0.24874552 0.30524206

4
[

0.90053 0.09947

0.13527 0.86473

] [

0.90161 0.10059

0.13657 0.86599

]

0.25406888 0.45089208

5
[

0.90071 0.09929

0.15131 0.84869

] [

0.90177 0.10038

0.15265 0.84999

]

0.26065681 0.40865878

6
[

0.91822 0.08178

0.17373 0.82627

] [

0.91922 0.08281

0.17523 0.82770

]

0.24377304 0.30452169

7
[

0.91792 0.08208

0.17631 0.82369

] [

0.91892 0.08311

0.17781 0.82514

]

0.24473328 0.30150534

8
[

0.90824 0.09176

0.15874 0.84126

] [

0.90927 0.09283

0.16014 0.84261

]

0.25407353 0.36572432

9
[

0.91396 0.08604

0.17018 0.82982

] [

0.91497 0.08709

0.17165 0.83122

]

0.24932592 0.32468331

10
[

0.90376 0.09624

0.14035 0.85965

] [

0.90483 0.09734

0.14168 0.86093

]

0.25284791 0.42455133

Table 2.   The results of NIST statistical test when the significance level is 0.01.

Statistical test

P-value Proportion

ResultsPT > 10
−4

σ > 0.980

Frequency 0.7301 0.983 Success

Block frequency 0.6329 0.995 Success

Cumulative sums 0.8898 0.986 Success

Runs 0.5781 0.994 Success

Longest run 0.2564 0.988 Success

Rank 0.4239 0.993 Success

FFT 0.9061 0.987 Success

Non-overlapping template 0.7575 0.992 Success

Overlapping template 0.9726 0.998 Success

Universal 0.3990 0.991 Success

Approximate entropy 0.4735 0.987 Success

Random excursions 0.1748 0.990 Success

Random excursions Variant 0.5718 0.981 Success

Serial 0.3798 0.997 Success

Linear complexity 0.2659 0.984 Success
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work achieves significantly higher entropy bit rates for a given confidence level than the TRNG of ADC sampling 
Oscillate (33 Mb/s in Ref.13), the TRNG of Stokes field phase fluctuations (145 Mb/s in Ref.48). The only directly 
comparable work which offers a min-entropy (Per 1 bit) is Ref.13, whose full-entropy throughput is less 46 times 
than ours. Our total entropy throughput rate is slightly lower than that of quantum TRNG (1770 Mb/s in Ref.49), 
and TRNG, whose entropy source is optical vacuum fluctuation, is (6000 Mb/s in Ref.50) four times that of ours.

SSL-TRNG performs well in cryptographic applications with high-security and high speed requirements. 
Compared with true random number generators, which use other physical entropy sources, SSL-TRNG fully 
adapts in terms of throughput, frequency, area, etc. Though, SSL-TRNG is easy to implement lightweight and 
miniaturized hardware. In addition, SSL devices can be mass-produced and are resistant to environmental 
fluctuations and human interference. They are implemented electronically without the high cost and complex 
application mechanisms. It achieves the best balance between speed and ease of use.

SSL-TRNG uses semiconductor superlattices as physical entropy source to generate truly random numbers. 
And entropy estimation provides a crucial evaluation for the security of SSL-TRNG. In this work, we propose a 
min-entropy estimation method for the SSL-TRNG and verify its feasibility for the first time. In particular, the 
stochastic model established using the Markov model as a template heuristically. By looking for the boundary 
of the Markov transition matrix, get the lower bound of min-entropy under a high confidence level. Through 
experiments, the average result of min-entropy is 0.2487 per sample (1 bit). In addition, the results also prove 
that the estimator is accurate enough to dynamically adjust the compression ratio in post-processing to achieve 
the required security level, estimating entropy instantly instead of offline.

The work of this paper not only provides a security guarantee for SSL-TRNG, but also a new clew for the 
research of quantifying the SSL physical entropy source. Our future work will be extended by adding experi-
mental samples, expanding the entropy estimation model and in-depth analysis entropy source to this research, 
further enhancing model selection and parameter optimization for similar entropy estimation problems.

Methods
Preliminaries.  Min-entropy is the most conservative method to measure the unpredictability of a set of 
sequences.

Definition 1  Suppose that the independent discrete random variable X takes a value from the finite set 
A = x1, x2, . . . , xn when i = 1, . . . , n , the min-entropy with probability Pr(X = xi) = pi is

From the previous discussion, the output sequence from the SSL-TRNG entropy source has memory effects. 
The current output is not only related to the current excitation but also the historical input. The dependency 
between the output sequence is the most complex complication to address54. It should think whether it is feasible 
to solve this difficulty by accepting a simple output-dependent model and analyzing the model, but in fact, it is 
impractical or impossible to obtain an accurate stochastic model of the output sequences.

The Markov model55 is a typical example of data dependence: the next output state of the N-order Markov 
process depends on the previous N output states. Heuristically, we use the Markov model as a template and 
establish a stochastic model for the output sequence of the SSL-TRNG entropy source. Therefore, the depend-
ence of the output sequence is limited to the Markov process.

Definition 2  The Markov process defines by three elements: 

(1)	 State space X. X is a set containing all states.
(2)	 Transition matrix P. The elements in P are defined as 

 which means the transition probability from the current state i to the next state j is Pij.
(3)	 Initial state distribution p(x(0)) . The meaning is that when t = 0 , x takes the corresponding probability of 

any possible state in the state space.

(1)H = min
1≤i≤k

(−log2pi) = −log2 max
1≤i≤k

pi .

(2)Pij = p

(

x(t+1) = j|x(t) = i

)

,

Table 3.   Comparison results with other TRNGs.

Work Entropy source Min-entropy (per sample) Full entropy throughput (Mb/s)

Reference13 ADC sampling oscillate 0.17 bit / 1 bit 33

Reference51 Optical vacuum fluctuation 6.53 bit / 12 bit 6000

Reference52 Stokes field phase fluctuations 4 bit / 16 bit 145

Reference53 quantum 1.5 bit / 8 bit 1770

This work SSL 0.2487 bit / 1 bit 1554
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A stochastic process {Xn}n∈Nthat takes values from a finite set A is called a first-order Markov chain56, if

for all n ∈ N and all x0, x1, · · · , xk ∈ A . The initial probability p(x(0)) of the chain are pi = Pr(X0 = i) , whereas 
the transition probabilities Pij are Pr(Xn+1 = j|Xn = i).

Definition 3  In a d-th order Markov chain, the transition probabilities satisfy

Definition 4  The min-entropy of a Markov chain with length L is defined as

Min‑entropy estimation of TRNG.  The entropy estimation method of TRNG includes two processes: 
establishing a stochastic model and estimating entropy51. First, assumptions are made about the entropy source 
of the TRNG based on the noise model, such as the noise source obeys independent normal distribution. Then, 
the process of converting noise sources into random bits describes in mathematical language according to the 
proposed hypothesis and the working principle of TRNG, which is to establish a stochastic model. Finally, the 
probability distribution of the output can be calculated and estimated the entropy of the TRNG according to the 
established random model.

As far as we know, lots of work has done to establish stochastic models and estimate entropy for various 
TRNGs. Generally, TRNGs have their corresponding stochastic models, though some stochastic models are 
generic and adapt to several generators25. Specifically, Refs.23,24 investigate models through the evolution of 
phase, and Refs.22,52,53,57 through the time for elementary oscillator-based TRNG (EO-TRNG). The chaos-based 
TRNGs use ADC to build chaotic circuits58 or sample chaotic signals to generate random sequences26,27. Under 
the absence of corresponding stochastic models, the theoretical entropy sufficiency cannot guarantee. The NIST 
Special Publication 800-90B55, whose latest version was published in January 2018, is a typical representative of 
entropy estimation. Its specific content includes estimating the entropy source’s min-entropy and providing a 
standard for designing and testing the entropy source. Reference59 proposes using neural network technology 
to solve the min-entropy estimation problem, which provides a new idea for entropy estimation. By extending 
an existing model and the multi-bit ADC output, Ref.13 obtain the lower bound of the entropy for the ADC 
sampling-based TRNG. Ref.42 presents a method for maximizing the conditional min-entropy of the random 
sequence generated by quantum-to-classical-noise ratio. To address the limitations about the entropy source 
outputs may be dependent and the distribution of random variables may change over time, Ref.56 proposes 
alternative methods for estimating the entropy in each output from an entropy source based on concepts from 
machine learning.

Stochastic model of SSL‑TRNG.  Suppose that X(t) = {x1, x2, . . . , xL} are the sampling output sequence 
of the SSL-TRNG entropy source and the length is L. Further, suppose that X(t) is a Markov process with the 
initial state distribution p(x(0)) and the transition matrix is P ∈ [0, 1]n×n,

where the X(t) determines the p(x(0)) and the matrix P. In X(t) = {x1, x2, . . . , xL} , we count the frequency of 
x(0) to estimate p(x(0)) and each state transitioning to other states to estimate Pij . Obviously, the size of the X(t) 
affects their accuracy directly because some infrequent transitions may not appear in the X(t) data set.

Therefore, the min-entropy of X(t) can be defined as

In the Markov process, accurately estimating the transition probability matrix is vital for estimating the 
entropy. In this case, if we overestimate the transition probability, the min-entropy will be underestimated. 
However, lots of tests will minimize the possibility.

(3)Pr

(

Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0

)

= Pr

(

Xn+1 = xn+1|Xn = xn

)

,

(4)

Pr

(

Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0

)

= Pr

(

Xn+1 = xn+1|Xn = xn, . . . ,Xn−d = xn−d

)

.

(5)H = −log2

(

max
i1,...,iL

pi1

L
∏

j=1

pijij+1

)

.

(6)P =







P11 · · · P1n
.
.
.

Pn1 . . . Pnn






,

(7)

H∞

(

P, p(x(0)), n

)

= min
i1,...,iL

−log2P

[

X1 = x1
⋂

. . .
⋂

XL = xL

]

= min
i1,...,iL

−log2

(

pi1

L
∏

j=1

Pijij+1

)

.
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According to the Eq. (7), Pij is the only variable. Then the minimum bound of the min-entropy H∞ by finding 
the maximum bound of the transition matrix P. Suppose there is a matrix M such that Mij ≥ Pij(i, j = 1, . . . , n) , 
then H∞(M, p(x(0)), n) ≤ H∞(P, p(x(0)), n) by the monotonic decline of the −log2 function54.

So how to get such a matrix M? Suppose the state i from X(t), and the transition probability Pij from state i to 
state j, where i, j = 1, . . . , n . We choose a value mij and define the confidence interval [0,mij] , so that our choice 
satisfies the confidence level α : P[Mij ≤ mij|pi , pij] ≥ α.

The interval with the confidence level α is obtained by calculating the probability that more transitions are 
expected to be observed than actual. Similarly, we can define mij in terms of the observed proportion:

where

Then, Hoeffding’s inequality limits the error of matrix M within the prescribed confidence.
In this way, the bound of the transition matrix M ∈ [0, 1]n×n the value of mij is calculated by Eq. (8):

With the probability αmin{n2,N} , the calculation of the min-entropy for the matrix M is the lower bound for 
t h e  m i n - e n t r o p y  o f  t h e  N  o u t p u t s  o f  t h e  s u p e r l a t t i c e  p h y s i c a l  e n t r o p y 

source: H∞(M, p(x(0)), n) ≤ H∞

(

P, p(x(0)), n

)

.

Example: Let X be (1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0). So that the initial state 

distribution p0 = 4/7 , p1 = 3/7 and the transition matrix P =

[

7/27 8/27

9/27 3/27

]

 . Calculate the min-entropy of X by 

Eq. (7), the value of H∞(P, p(x(0)), n) equal to 0.08 bit / 1 bit approximately. For the purpose of this example, 
suppose that α = 0.05 , then ǫ0 = 0.14 , ǫ1 = 0.16 . Calculate mij by Eq. (8), the bound of the transition matrix 

M =

[

0.5937 0.6585

0.9378 0.4192

]

 . Then the lower bound for the min-entropy H∞(M, p(x(0)), n) ≈ 0.03857 bit / 1 bit.

Received: 14 November 2021; Accepted: 7 February 2022
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