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Abstract

Parmeliaceae is the largest family of lichen-forming fungi with a worldwide distribution. We used a target
enrichment data set and a qualitative selection method for 250 out of 350 genes to infer the phylogeny of the
major clades in this family including 81 taxa, with both subfamilies and all seven major clades previously
recognized in the subfamily Parmelioideae. The reduced genome-scale data set was analyzed using concatenated-
based Bayesian inference and two different Maximum Likelihood analyses, and a coalescent-based species tree
method. The resulting topology was strongly supported with the majority of nodes being fully supported in all
three concatenated-based analyses. The two subfamilies and each of the seven major clades in Parmelioideae were
strongly supported as monophyletic. In addition, most backbone relationships in the topology were recovered with
high nodal support. The genus Parmotrema was found to be polyphyletic and consequently, it is suggested to
accept the genus Crespoa to accommodate the species previously placed in Parmotrema subgen. Crespoa. This
study demonstrates the power of reduced genome-scale data sets to resolve phylogenetic relationships with high
support. Due to lower costs, target enrichment methods provide a promising avenue for phylogenetic studies
including larger taxonomic/specimen sampling than whole genome data would allow.
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INTRODUCTION
Our understanding of evolutionary relationships of fungi
at all phylogenetic levels has dramatically improved with
the availability of genetic data from entire genomes fol-
lowing remarkable progress in sequencing technologies
(Ametrano et al. 2019; Ebersberger et al. 2012; Robbertse
et al. 2006; Spatafora et al. 2017). In addition to sequen-
cing complete genomes, a number of more cost-efficient

methods have been developed to sample subsets of
genome-scale data. These include several direct sequen-
cing approaches, such as restriction site associated DNA
sequencing (RADseq) (Andrews et al. 2016), or capture
sequencing approaches using baits, such as target en-
richment of specific genes (Bragg et al. 2016) or ultra-
conserved elements (Faircloth et al. 2012). These
methods significantly reduce costs in comparison to se-
quencing entire genomes and thus will enable larger
taxonomic or specimen sampling in comparative studies
(Jones and Good 2016). RADseq has been used to ad-
dress issues of delimitation and relationships of closely
related Ascomycete species (Bracewell et al. 2018; Grewe
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et al. 2017; Grewe et al. 2018; Salas-Lizana and Oono
2018) and population biology (Talas and McDonald 2015).
However, studies have shown that this approach is most ap-
propriate for shallow systematics due to issues with hom-
ology at deeper evolutionary scales when genome sequences
are more diverged (Harvey et al. 2016; Rubin et al. 2012).
Target enrichment sequencing particularly enhances gen-

omic regions of interest within a heterogeneous mixture of
DNA samples (i.e. metagenomes). For target enrichment
sequencing, pre-designed RNA probes are added to the
metagenomic DNA extracts and capture their complemen-
tary DNA sequences through hybridization. Hybridization
concentrates the DNA of the targeted genomic regions and
allows for selective next generation sequencing of these re-
gions (Bragg et al. 2016; Mamanova et al. 2010). Therefore,
target enrichment sequencing is a cost-effective sequencing
approach compared to whole genome sequencing, which
can be used for large taxonomic sampling (Dapprich et al.
2016). So far, target enrichment sequencing has not been
widely used in Ascomycota, with notable exceptions includ-
ing a study screening for pathogenicity genes (Alshuwaili
et al. 2018) and another study understanding the impact of
ancient hybridization in the diversification of a clade of
lichenized fungi (Widhelm et al. 2019).
Parmeliaceae is the most diverse group of lichenized

fungi with about 2800 currently accepted species (Jaklitsch
et al. 2016) that underwent an increased diversification as-
sociated with the aridification during the Oligocene-
Miocene transition (Kraichak et al. 2015). Within the family
Parmeliaceae, two subfamilies are distinguished, Parmelioi-
deae and Protoparmelioideae (Divakar et al. 2017), with the
vast majority of species diversity occurring in Parmelioideae
(Divakar et al. 2017). The family currently includes 69 ac-
cepted genera (Divakar et al. 2017). Previous studies suggest
that the family originated during the Cretaceous and subse-
quently diversified after the Cretaceous-Paleogene (K-Pg)
boundary (Huang et al. 2019). Speciation within genera
mostly happened during the Miocene (Lumbsch 2016). The
species of the family occur worldwide on all kinds of sub-
strate and in all terrestrial ecosystems but have their centres
of diversity in the tropics and temperate, winter rain areas
(Crespo et al. 2010; Thell et al. 2012).
Parmelioideae includes the bulk of species in Parmelia-

ceae and consists of a number of strongly supported
monophyletic clades (Crespo et al. 2010; Crespo et al.
2007; Divakar et al. 2015). Currently, this includes seven
strongly supported major clades, all of which are in-
cluded in this study. The clades are 1) alectorioid, 2)
anzioid, 3) cetrarioid, 4) hypogymnioid, 5) parmelioid, 6)
psiloparmelioid, and 7) usneoid. While previous multi-
gene studies have shown the monophyly of these clades,
the relationships among those remained largely unsup-
ported. Recently, we have used 2556 genes sampled from
whole genome sequences of 44 in-group taxa to study

the evolutionary relationships among major clades in the
subfamily Parmelioideae of Parmeliaceae (Pizarro et al.
2018). However, this study included a limited number of
species due to the high costs of sequencing entire ge-
nomes and the computational burden of analysing thou-
sands of genes (Pizarro et al. 2018). The smaller
subfamily Protoparmelioideae currently includes three
genera: the monotypic Australian Maronina Hafellner &
R.W. Rogers, the pantropical Neoprotoparmelia Garima
Singh, Lumbsch & I. Schmitt (dos Santos et al. 2019;
Singh et al. 2018), which includes the majority of species
previously included in Maronina s. lat., and the temper-
ate Protoparmelia M. Choisy (Poelt and Grube 1992).
The main focus of this study was to assess the phylo-

genetic potential of cost-effective target enrichment se-
quencing approach using the hyper-diverse family
Parmeliaceae as a model system. Our specific objectives
were: 1) test our recent phylogenetic hypotheses based
on multi-gene and whole genome data sets, 2) address
phylogenetic relationships of major clades in Parmelioi-
deae, and 3) test the power of target enrichment data
sets to resolve phylogenetic relationships in ascomycetes,
using Parmeliaceae as an example. We have augmented
this taxon sampling to include a total of 81 in-group
taxa including samples from both Parmelioideae and the
other subfamily of Parmeliaceae, Protoparmelioideae
(Divakar et al. 2017). We compare results from a target
enrichment dataset with gene extraction methods from
whole genome assemblies. Ultimately, we selected the
best results of all gene extraction methods to produce a
robust phylogenetic tree of all taxa.

MATERIALS AND METHODS
Taxon sampling
We included 81 representatives of lichen-forming fungal
species from Parmeliaceae and five outgroup species in
this phylogenomic study (Supplementary Table 1).
Seventy-eight samples were selected to represent the
seven major clades in subfamily Parmelioideae and three
samples represented the subfamily Protoparmelioideae
(Divakar et al. 2017; Divakar et al. 2015). Sequences from
five additional species (Arthonia rubrocincta G. Merr. ex
Lendemer & Grube, Cladonia uncialis (L.) Weber ex F.H.
Wigg., Lobaria pulmonaria (L.) Hoffm., Rhizoplaca mela-
nophthalma (DC.) Leuckert, and Umbilicaria pustulata
(L.) Hoffm.) were selected as outgroups.

Target enrichment and sequencing
Baits design and target enrichment protocols were
adopted from an earlier study (Widhelm et al. 2019). In
short, 400 gene sequences were selected from the gen-
ome of Lobaria pulmonaria (available at JGI) and from a
transcriptome assembly of Evernia prunastri [transcrip-
tome sequence data published in (Meiser et al. 2017)].
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The introns of the selected gene sequences were masked
by aligning them with transcriptome assemblies of Pseu-
devernia furfuracea and Lasallia pustulata (Meiser et al.
2017), then all masked gene sequences were sent to
Arbor Biosciences (Ann Arbor, MI, USA) for the RNA
baits production.
The DNA of Parmeliaceae species was isolated with the

ZR Fungal/Bacterial DNA MiniPrep according to the
manufacturer’s protocol (Zymo Research, Irvine, CA,
USA). The isolated DNA was converted into libraries with
the KAPA Hyper Prep Kit (KAPA Biosciences, Wilming-
ton, MA, USA) using the Adapterama dual-indexing sys-
tem to uniquely barcode all samples (Widhelm et al.
2019). A pool of all libraries was enriched for the 400 tar-
geted genes by hybridization with the RNA baits. Enriched
libraries were then paired-end sequenced with the Illu-
mina MiSeq sequencer at the Field Museum’s Pritzker La-
boratory using the MiSeq 600-cycle sequencing kit
version 3 (Illumina, San Diego, CA, USA).
In addition to target enrichment, we used sequences

from nine Parmeliaceae species for which we had the
whole genome sequenced: Everniopsis trulla (Ach.) Nyl.,
Psiloparmelia denotata Elix & T.H. Nash, Usnea auran-
tiacoatra (Jacq.) Bory, and six Xanthoparmelia species.
For all species, DNA was isolated using the ZR Fungal/
Bacterial DNA MiniPrep according to the manufacturer’s
protocol (Zymo Research, Irvine, CA, USA) – the same kit
that was used to isolate DNA for target enrichment. Li-
brary construction and sequencing were done at the DNA
services facility of the University of Illinois at Urbana-
Champaign as described previously (Pizarro et al. 2018).

Gene extraction from target enrichment, whole genome
sequencing data, and de novo assemblies
We used a combination of newly sequenced target enrich-
ment data, newly sequenced whole genome data, and
existing whole genome data for the target gene assembly
and extraction. The Illumina MiSeq target enrichment se-
quencing result and Illumina whole genome sequencing
results were demultiplexed in BaseSpace (Illumina) before
being downloaded as raw reads to a local server. In
addition, we downloaded all available whole genome se-
quencing data of earlier phylogenomic analyses (Abdel-
Hameed et al. 2016; Greshake et al. 2016; Grewe et al.
2017; Grewe et al. 2018; Leavitt et al. 2016; McDonald
et al. 2013; Meiser et al. 2017; Pizarro et al. 2018). All raw
reads were trimmed with Trimmomatic v0.33 (Bolger
et al. 2014), setting a quality threshold of 10 (LEADING:
10 TRAILING:10) and a minimum read length of 25 bp
(MINLEN:25). The surviving paired-end reads were used
in HybPiper (Johnson et al. 2016) for gene assembly and
extraction based on a target gene file. We generated this
target gene file for HybPiper from the genome assembly
of the Parmeliaceae species P. furfuracea (Meiser et al.

2017). We used BLASTn to search all gene models of the
P. furfuracea genome with the bait sequence file as a
query and identified 355 full-length genes. We extracted
the complete exons of the identified P. furfuracea genes
and used these sequences as a target gene file for all fur-
ther gene extractions in this study. We translated the ex-
tracted nucleotide sequences into amino acid sequences
since HybPiper did perform better using the BLASTx op-
tion, which uses an amino acid target gene file, instead of
the BWA option, which uses a nucleotide target gene file.
We then used the translated target gene file with the Hyb-
Piper wrapper script ‘reads_first.py’ on all trimmed Illu-
mina sequence reads. HybPiper created one file folder for
each species containing all assembly data and gene se-
quences, which we stored for further evaluation. All files
that were derived from target enrichment data were
tagged with “_target”. Depending on the type of input se-
quence data, we named both methods as either “target en-
richment method” or “whole genome method”.
In exploratory analyses where samples prepared with the

“whole genome method” recovered relatively fewer loci
with the HybPiper pipeline, we subsequently assembled the
whole genome sequence reads into de novo draft genomes
prior to a target gene identification with Exonerate (Slater
and Birney 2005) – we named this approach “de novo as-
sembly method”. De novo assemblies of the trimmed
paired-end Illumina reads were constructed with SPAdes
v3.5 or v3.11 (Bankevich et al. 2012). All assemblies were
processed by the HybPiper script ‘exonerate_hits.py’ (part
of the HybPiper wrapper) and the amino acid target gene
file. All extracted target gene regions were transformed into
the HybPiper wrapper output format with one file folder
for each species and the different gene sequences separated
in subfolders. The file names that resulted from the “de
novo assembly method” were tagged with “_spades.”
The combined output from “target enrichment,” “whole

genome,” and “de novo assembly methods” was evaluated
and visualized with the HybPiper scripts ‘get_seq_length-
s.py’ and ‘gene_recovery_heatmap.py.’ The scripts pro-
vided an overview about sequencing and assembly success
and allowed a direct comparison of the results of the
“whole genome method” and the “de novo assembly
method,” which were both based on the same input data.
We evaluated the sequencing success of each method by
comparing the total number of recovered amino acids and
the average length of recovered gene sequences. For com-
parative purposes, we visualized the results of the three
methods in a heatmap using the script ‘gene_recovery_
heatmap.py.’ We then used the script ‘retrieve_sequence-
s.py’ to save the nucleotide and amino acid sequences of
the best performing method for each species in a fasta file.
We removed five fasta files of genes which contained only
sequences of 50% or less of all taxa (i.e. less than 43 se-
quences), leaving 350 gene files for further analyses.
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Selection of most informative gene sequences
We first aligned all 350 gene files with Mafft v7.450
(Katoh and Standley 2013) and removed ambiguously
aligned regions from each alignment using Gblocks v0.91
(Castresana 2000; Talavera and Castresana 2007) using re-
laxed parameter settings (b2 = half + 1, b4 = 5, b5 = half).
We calculated the substitution rate for each gene with
baseml implemented in PAML v4.9e (Yang 1997). To infer
comparable substitution rates for all genes, we used the
same constrained tree for each gene analysis. For the con-
strained tree, we concatenated all gene alignments with
FASconCAT-G (Kueck and Longo 2014) and inferred the
Maximum Likelihood tree with RAxML v8.2.11 (Stamata-
kis 2014) using the GTR +G model. We rooted the result-
ing tree with Arthonia rubrocinta and pruned it using the
Python library DendroPy (Sukumaran and Holder 2010)
to match the taxa of each gene alignment. The con-
strained tree was marked at 108Ma for the origin of Par-
meliaceae (Amo de Paz et al. 2011) prior to its use with
each gene alignment for branch length and absolute sub-
stitution rate calculation in baseml (clock = 1; model = 7).
Two genes showed extraordinarily high rates and hence
were excluded. All other genes were sorted based on their
substitution rate estimates from the slowest to the fastest
evolving genes (Supplementary Table 2). We then built a
concatenated alignment of the ten slowest evolving genes,
then progressively increased the alignment stepwise with
the next 10 faster evolving genes until 340 genes were in-
cluded. We used all resulting 34 multigene alignments to
calculate a Maximum Likelihood tree with RAxML
v8.2.11 using the GTR +G model and the fast bootstrap
option. We then calculated the average bootstrap value for
each tree to identify the gene set that produced the best-
supported phylogeny. The genes of this phylogeny were
selected for all subsequent phylogenomic analyses. In
addition, the remaining fast-evolving genes were used for
separate phylogenomic analyses to identify potential con-
flicting phylogenetic signals.

Phylogenomic analyses
Evolutionary relationships were estimated from the
concatenated alignment of 250 selected genes using
Maximum Likelihood (ML) and Bayesian interference
(BI). ML trees were estimated with the programs
RAxML and IQ-TREE (Nguyen et al. 2015) using the
GTR +G model for the nucleotide data set, which was
partitioned by genes. For each RAxML analysis 100
bootstrap replicates and for each IQ-TREE analysis 1000
bootstrap replicates were calculated using the fast boot-
strapping option implemented in RAxML and IQ-TREE,
respectively. BI trees were calculated with MrBayes
v3.2.6 (Huelsenbeck and Ronquist 2001; Ronquist et al.
2012) using the GTR +G model for the nucleotide data
set, which was partitioned by genes. For this analysis,

two runs (four chains) with 1,500,000 iterations each
were performed in parallel. Trees were sampled every
500 generations from the posterior distribution, and the
first 25% of all sampled trees were discarded as the
burn-in. We ensured convergence by a resulting ‘average
standard deviation of split frequencies’ lower than
0.0000001 and ‘Effective Sample Size’ values higher than
200 in TRACER (Rambaut and Drummond 2007).
In addition to the concatenated-based phylogenies, we

used coalescent-based methods to estimate a species tree
given the individual gene trees of the 250 selected genes.
All selected gene sequences were aligned with Mafft
v7.450 (Katoh and Standley 2013) and trimmed with
Gblocks v0.91 using relaxed parameter settings (b2 = half
+ 1, b4 = 5, b5 = half). ML trees of each gene were calcu-
lated with IQ-TREE using the GTR + G model. For each
analysis 1000 bootstrap replicates were calculated using
the fast bootstrapping option implemented in IQ-TREE.
We contracted low support branches (bootstrap < 20) of
all individual trees using Newick Utilities (Junier and
Zdobnov 2010) before using all trees as input for a
coalescent-based species tree estimation with ASTRAL-
III (Zhang et al. 2018).
In addition to the selected 250 slow-evolving genes, we

concatenated all remaining fast-evolving gene sequences
to estimate their phylogenetic relationship. The
concatenated matrix was partitioned by genes and used
for ML analyses with the programs RAxML and IQ-Tree
using the GTR +G model. For each RAxML analysis 100
bootstrap replicates and for each IQ-TREE analysis 1000
bootstrap replicates were calculated using the fast boot-
strapping option implemented in RAxML and IQ-TREE,
respectively. All resulting phylogenetic trees were drawn
with the program FigTree v1.4.2 (Rambaut 2009).

Availability of data and material
The sequences produced in this paper have been deposited
in the NCBI Sequence Read Archive (SRA) with the acces-
sion numbers SRR13125477, SRR1315498, SRR13125762,
SRR13167197, SRR13125985, SRR13126647, SRR13126796,
SRR13126828, SRR13126859. Target enrichment gene set
and multiple sequence alignments are available at Fig-
Share DOI:https://doi.org/10.6084/m9.figshare.13238453.

RESULTS AND DISCUSSION
Phylogenomic data
The three different methods that were used to recover
the targeted genes in Parmeliaceae executed with differ-
ent success. While the “target enrichment method” used
RNA baits for target capturing prior to sequencing, the
“whole genome method” and “de novo assembly
method” used the same whole genome sequence data ei-
ther as raw data input or assembled into draft genomes
to capture the targeted genes. The average length of all
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recovered target genes was 82,196 (SD = 53,643) amino
acids for the “whole genome method” compared to 138,
069 (SD = 10,845) amino acids for the “de novo assembly
method” (Supplementary Table 3). Therefore, the recov-
ery of the target genes was comparatively improved with
the “de novo assembly method,” in particular for species
with low sequence coverage. The “target enrichment
method” recovered a total of 123,788 (SD = 9578) amino
acids, which performed better than the “whole genome
method”, but the “de novo assembly method” recovered
on average slightly more amino acids. The strength of
each method is also visible in the heatmap showing the
recovery of all genes for each species (Supplementary
Figure 1). The “de novo assembly method” was more suc-
cessful than the “whole genome method,” which per-
formed weakly for many species and even completely
failed for some species. The heatmap further indicated
that the “target enrichment method” failed for some gene
sequences (30 genes were recovered by only half of their
length or less). Since many of these genes were success-
fully recovered with the other two methods using whole
genome sequencing data, it might be a consequence of the
target enrichment procedure and indicate that some baits
failed to capture the Parmeliaceae gene sequences.
The most informative subset of genes for phyloge-

nomic analyses was identified by the maximum number
of slowest evolving genes that reconstructed the best
supported phylogenetic tree. We created 34 multigene
matrices that included concatenated alignments from 10
to 340 genes. All resulting phylogenetic trees had aver-
age bootstrap values above 91 (Fig. 1). Including faster
evolving genes in the multigene matrix had an overall
positive effect on the phylogenetic tree reconstruction
until we reached 250 genes, with a maximum average
bootstrap value at 99.1. Remarkably, after 250 genes, the
addition of more (faster evolving) genes to the multigene
matrix decreased the average bootstrap of the trees.
Therefore, we selected the 250 genes that achieved the
maximum average bootstrap value for all subsequent
phylogenetic inferences. The final nucleotide multigene
matrix had a dimension of 86 taxa and 270,160 charac-
ters and 178,588 distinct alignment patterns with 3.37%
of undetermined characters or gaps.

Phylogenetic relationships
Phylogenies inferred from the concatenated target en-
richment dataset under Maximum Likelihood and
Bayesian inference recovered identical topologies and
hence only the IQ-TREE tree is shown here (Fig. 2). The
coalescent-based ASTRAL-III tree conflicted in one
node altering the placement of the Coelopogon/Menegaz-
zia clade (Fig. 2, Supplementary Figure 2). All nodes in
the Bayesian analysis received a posterior probability of
1.0, whereas five nodes in the IQ-TREE analysis and

nine nodes in the RaxML analysis received bootstrap
support of less than 100% (Fig. 2, Supplementary Figure
2). However, with the exception of the low supported
sister-group relationships of Arctoparmelia and Pseude-
vernia (86% in the IQ-TREE and 75% in the RAxML
analyses), of a clade consisting of the genera Notoparme-
lia + Parmelia and a clade including the genera Bulbor-
rhizina, Bulbothrix, Parmelinella, and Parmelina (89%
in the RAxML tree), and of Nephromopsis chlorophylla
and N. cucullata (67% in the RAxML analysis), the boot-
strap support for those was above 95% and is considered
here to be strong. The monophyly of the two subfamilies
Protoparmelioideae and Parmelioideae was strongly sup-
ported. The phylogenetic tree of all remaining fast-
evolving genes resulted in a similar topology as the tree of
the 250 slow-evolving genes, with the exception of a
strongly supported cluster of Omphalora arizonica, Ever-
niopsis trulla, Psiloparmelia denotata, Oropogon secaloni-
cus, and Platismatia glauca (Supplementary Figure 2).
Therefore, some of the fast-evolving genes may reflect a
different evolutionary history of these taxa than the 250
selected genes. In addition, many relationships in the
phylogenetic inference of the fast-evolving genes were ei-
ther unresolved or less supported indicated by poor boot-
strap support. The different evolutionary history and the
lack of phylogenetic signal of some fast-evolving genes
may have caused the decrease of the average bootstrap
support when more fast-evolving genes were included to
the 250-gene phylogeny (Fig. 1).
The overall phylogeny of the 250 selected genes was

similar to topologies inferred from a multi-gene data set
with a larger taxon sampling (274 ingroup taxa) (Divakar
et al. 2015) and a genomic data set with a smaller taxon
sampling (44 ingroup taxa) (Pizarro et al. 2018). Here we
focus on describing the phylogenetic relationships of
major clades and differences to either of these previous
studies. The phylogenetic position of the Coelopogon/
Menegazzia clade was unresolved in previous studies,
being either sister to the usneoid clade without support
(Divakar et al. 2015), sister to the alectorioid clade, or
sister to all remaining Parmelioideae – again without
support (Pizarro et al. 2018). In our concatenated-based
analyses, the predominantly southern Hemisphere Coelo-
pogon/Menegazzia clade was an early divergent lineage
within the subfamily Parmelioideae, as it formed a strongly
supported sister-group relationship with all remaining
Parmelioideae (Fig. 2, Supplementary Figure 2). However,
in the coalescent-based analysis, the Coelopogon/Menegaz-
zia clade was sister to the alectorioid clade (Fig. 2, Supple-
mentary Figure 2). An inconsistent placement of
Menegazzia depending on the use of concatenated or
coalescent-based analyses was also documented in an earl-
ier study on Parmeliaceae (Pizarro et al. 2018). In our
study, we added Coelopogon as a sister taxon to
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Menegazzia to resolve the placement of Coelopogon/
Menegazzia; however, the phylogenetic position of the
two taxa remained conflicting between the two analyses.
Concatenation-based analyses have been shown to over-
estimate phylogenetic relationships in large datasets (Ed-
wards et al. 2007). Furthermore, coalescent-based analyses
can be inconsistent under gene flow and incomplete
lineage sorting (Solis-Lemus and Ane 2016; Solis-Lemus
et al. 2016) and when individual gene trees are erroneous
due to evolutionary rate heterogeneity (Koch et al. 2018).
In this study, we particularly selected slow-evolving genes,
which reduces the evolutionary rate heterogeneity of the
used genes. However, the position of Coelopogon/

Menegazzia remained in conflict whether coalescent-
based or concatenated-based analyses were used (Fig. 2).
The alectorioid clade was resolved as monophyletic

and was sister to the remaining Parmelioideae, which
agreed with the placement in the ML tree of the gen-
omic analysis of Pizarro et al. (2018). In contrast to
Krog’s hypothesis (Krog 1982), Letharia and Lethariella
did not form a sister-group relationship in our study
(Fig. 2). The genus Letharia was only included in Diva-
kar et al. (2015) but its phylogenetic relationships
remained unresolved. In our study, the two Letharia
species formed a strongly supported sister-group to the
usneoid clade, which was also strongly supported as

Fig. 1 Correlation of the number of concatenated genes and the average bootstrap value of the resulting phylogenetic tree. The phylogenetic
tree of each data point was reconstructed with the concatenated alignment of the selected genes with RAxML using the GTR + G model.
Bootstrap values were calculated with the fast bootstrapping option in RAxML
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Fig. 2 (See legend on next page.)
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monophyletic. Our results are in accordance with the
phenotypic similarities of Letharia with usneoid lichens
(Crespo et al. 2007; Krog 1982). The anzioid clade
formed a strongly supported sister-group with Lethar-
iella intricata (Moris) Krog, the type species of the
genus. Previously, Lethariella clustered with Letharia
(Divakar et al. 2015) but in that study, two other species
of the genus, L. cashmeriana Krog and L. togashii (Asa-
hina) Krog were included and which could indicate that
the genus is not monophyletic. The anzioid clade+
Lethariella formed a strongly supported sister-group re-
lationship to a clade including the hypogymnioid and
cetrarioid clades and the genus Evernia. The relation-
ships of Evernia and the cetrarioid clade was also
strongly supported in a previous study (Pizarro et al.
2018) but lacked support in another (Divakar et al.
2015). Also, the strongly supported relationships of the
hypogymnioid clade with the cetrarioid clade+Evernia
has been found previously (Pizarro et al. 2018). The psi-
loparmelioid clade that was not included in Pizarro et al.
(2018) had an unsupported placement in Divakar et al.
(2015). In our study it formed a strongly supported
sister-group to a clade that includes the parmelioid clade
(including the early diverging clade consisting of
Imshaugia and Parmeliopsis), the monotypic genus
Omphalora, and a clade including Oropogon and Platis-
matia. This agrees with the tree topology in Pizarro
et al. (2018) but it lacked support in that analysis. All
genera for which more than one species was included
formed strongly supported, monophyletic groups with
the exception of the genus Parmotrema. Parmotrema
schelpei (Hale) D. Hawksw., which was placed in the
subgenus Crespoa by some authors (Hawksworth 2011;
Kirika et al. 2016) does not cluster with the two other
species of Parmotrema included in this study. This sup-
ports the segregation of the clade at the generic level
and the acceptance of the genus Crespoa (Lendemer and
Hodkinson 2012). In previous studies the relationship of
Pleurosticta was unresolved (Crespo et al. 2010; Divakar
et al. 2012) and it was grouped with species correspond-
ing to the genus Montanelia (Crespo et al. 2010; Divakar
et al. 2012; Leavitt et al. 2015) In our study, Pleurostictca
formed an independent lineage that was the strongly
supported as sister-group to Montanelia.

Utility of target capture data sets to resolve phylogenetic
relationships
The Parmeliaceae phylogenies include 35 taxa that were
sequenced by target enrichment, together with 46 other
ingroup taxa for these whole genomes were sequenced.
A comparison of target enrichment to whole-genome se-
quencing or multi-gene sequencing of earlier Parmelia-
ceae studies revealed the limits of both whole-genome
and multi-gene methods. Multi-gene phylogenies are af-
fordable and allow the inclusion of many taxa, but they
can be limited on the amount of phylogenetic informa-
tion (Crespo et al. 2007; Divakar et al. 2017; Divakar
et al. 2015). In comparison, whole genomes provide
thousands of gene sequences for phylogenetic analyses,
but the high sequencing cost and computational burden
can limit the number of taxa (Pizarro et al. 2018). Target
enrichment sequencing overcomes the limits of both
whole-genome and multi-gene sequencing methods,
since it allows for the affordable sequencing of hundreds
of genes of multiple taxa, all can be pooled together in
one sequencing run. This method specifically enriches
targeted gene sequences prior to next-generation sequen-
cing, which reduces sequencing costs and has the add-
itional benefit of sorting symbiotic metagenomes, such as
whole lichen DNA isolates. The enrichment of genes also
works well when only low amounts of DNA are available
and therefore qualifies as a method for rare species and
older herbarium specimens, for which traditional molecu-
lar methods would fail. As a reduced genome representa-
tion method, target enrichment usually recovers fewer
genes than whole genome sequencing, however a well-
chosen gene set might improve phylogenies and outper-
form large genomic datasets, as shown by the selection of
the most phylogenetically informative 250 genes out of
350 genes to reconstruct a remarkably well supported
phylogeny for Parmeliaceae (Fig. 1). In the only other phy-
logenomic study using target enrichment data in ascomy-
cetes so far, patterns consistent with ancient hybridization
could be detected (Widhelm et al. 2019). This demon-
strated that, in addition to reconstructing phylogenies,
these data sets are also powerful in identifying historical
processes shaping diversity of organisms.
The target enrichment method can reach its limits when

the baits sequences differ too much from the target

(See figure on previous page.)
Fig. 2 Phylogenetic relationships among major lineages of Parmeliaceae, represented by 81 specimens. The tree shown was generated by
Maximum Likelihood inference using IQ-TREE of a data set containing the 250 most phylogenetic informative genes of the target enrichment
gene set. Additional trees generated by Maximum Likelihood using RAxML and Bayesian interference using MrBayes resulted with the same
topology. All nodes of the three trees received 100% bootstrap support (BS) with IQ-TREE and RAxML or 1.0 posterior probability (PP) with
MrBayes unless highlighted by an open circle and the respective support values (IQ-TREE BS/RAxML BS/MrBayes PP). Major clades of Parmeliaceae
are highlighted by different colors. The dotted box highlights the conflict between the concatenated-based trees (IQ-TREE, RAxML, MrBayes) and
coalescent-based tree (ASTRAL-III). The unit of branch length is substitutions per site
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sequences, hence different baits sets are required for diverse
taxon samplings. To overcome this limitation, a universal
bait set of 353 conserved flowering plant genes was devel-
oped and is publicly available for phylogenomic analyses of
flowering plants (Brewer et al. 2019; Johnson et al. 2019). A
similar universal bait set could be optimized for fungal
groups and take over as the next generation of phylogenetic
marker genes. Hence, target enrichment sequencing pro-
vides a powerful novel avenue with great potential for the
future of fungal phylogenomic research.

CONCLUSION
For phylogenomic analyses, target enrichment sequencing
represents an effective and inexpensive alternative for se-
quencing hundreds of genes when compared to other
methods such as whole genome sequencing. We used target
enrichment sequencing to generate data for the phylogenetic
reconstruction of the largest family of lichen-forming fungi:
Parmeliaceae. All sequenced genes were filtered for the 250
most informative genes. These genes were implemented in
coalescent-based and concatenated-based phylogenetic appli-
cations, which estimated highly-supported phylogenetic
trees. The trees of both methods differed in the placement of
Menegazzia, potentially due to misleading effects of incom-
plete lineage sorting or evolutionary rate heterogeneity.
While future phylogenomic methods might help to address
these issues in phylogenetic reconstructions of large datasets,
this study highlights the advantages that target enrichment
has for fungal research. The inexpensive and straight-
forward target enrichment sequencing approach will open
new possibilities for fungal researchers to incorporate the
use of large genomic data sets into their research.
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