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MozobilVR (Plerixafor, AMD3100),
10 years after its approval by the
US Food and Drug Administration

Erik De Clercq

Abstract

AMD3100 (plerixafor, MozobilV
R
) was first identified as an anti-HIV agent specifically active against the T4-lymphotropic

HIV strains, as it selectively blocked the CXCR4 receptor. Through interference with the interaction of CXCR4 with its

natural ligand, SDF-1 (also named CXCL12), it also mobilized the CD34þ stem cells from the bone marrow into the

peripheral blood stream. In December 2008, AMD3100 was formally approved by the US FDA for autologous trans-

plantation in patients with Non-Hodgkin’s Lymphoma or multiple myeloma. It may be beneficially used in various other

malignant diseases as well as hereditary immunological disorders such as WHIM syndrome, and physiopathological

processes such as hepatopulmonary syndrome.

Keywords

CXCR4, MozobilV
R
, AMD3100, stem cells, NHL, MM, WHIM

Date received: 18 October 2018; accepted: 2 January 2019

Introduction

Just a decade ago, MozobilVR (also known as plerixafor,

and AMD3100) was approved by the US Food and

Drug Administration (FDA) for the autologous trans-

plantation of bone marrow (BM) cells in patients with

Non-Hodgkin’s lymphoma (NHL) or multiple myelo-

ma (MM). The bicyclam AMD3100 was originally

tailored after a predecessor called JM1657 that had

been identified as an impurity in a commercial

(mono)cyclam preparation, intended to design a new

lead compound for anti-HIV agents. The synthesis of

JM1657 (JM standing for Johnson Matthey company),

whereby the two cyclam rings are directly linked

together, could not be repeated, but JM2763, whereby

the cyclam moieties are tethered by a propyl bridge,

proved to be a potent and selective inhibitor of both

HIV-1 and HIV-2 replication.1

When the propyl bridge tethering the two cyclam

rings was replaced by an aromatic bridge, as in

JM3100, later renamed AMD3100 (AMD standing

for AnorMED that had been created as a spin-off of

Johnson Matthey), a dramatic increase in anti-HIV

potency was noted.2 In the subsequent years,

AMD3100 was discovered to be a specific inhibitor of

CXCR4, the co-receptor of T-lymphotropic HIV
strains, to enter the target cells.3,4

As a prerequisite to the clinical development of
AMD3100 as an anti-HIV drug, Craig Hendrix and
his colleagues at Johns Hopkins University with the
collaboration of the AnorMED investigators examined
the safety profile of AMD3100 in human volunteers,5

and found an increase in the white blood cell (WBC)
counts peaking at about 8–10 h after (subcutaneous)
injection of AMD3100. At closer inspection, these
WBCs were primarily hematopoietic stem cells
(HSCs) carrying the CD34 marker.6 The first proof-
of-principle that AMD3100 could mobilize hematopoi-
etic stem cells was provided by Broxmeyer et al.,7 and
so was born the concept that AMD3100 (now also
called plerixafor or MozobilVR could function as a
mobilizer of HSCs. The history of the bicyclam
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AMD3100 story has been told in previous review
articles.8–11 How this story evolved in the past few
years, until 2018, will be the subject of the pre-
sent review.

Mobilization

The minimum threshold for autologous transplantation
of peripheral blood stem cells is � 2� 106 CD34/kg,
which may not always be achieved using optimal doses
of granulocyte-colony stimulating factor (G-CSF).12

Mobilization failures may range from 8% (MM) to
25% (NHL). However, addition of plerixafor to G-
CSF was found to dramatically reduce the mobilization
failure rates, from 75% to 27%.13,14

Plerixafor mobilizes hematopoietic stem cells to the
peripheral blood by antagonizing the CXCR4 recep-
tor,15 thus interfering with the CXCR4/SDF-1
(CXCL12) axis,16–18 tethering stem cells to the BM.

The BM is a reservoir of progenitor cells, i.e. hema-
topoietic progenitor cells (HPCs), fibrocytes, mesen-
chymal stem cells (MSCs) and endothelial progenitor
cells (EPCs).19 Plerixafor would specifically mobilize
the CD34þ HPCs, when used alone or as an adjunct
to G-CSF.20 The doses used would be 160 mg/kg� 1 on
day 5 for plerixafor, and 10 mg/kg on days 0, 1, 2, 3 and
4 for G-CSF, or 240 mg/kg for plerixafor if used alone.
A single dose of plerixafor at 240 mg/kg (subcutaneous-
ly) may provide a more rapid and possibly less toxic
and cumbersome alternative to traditional G-CSF-
based mobilization.21 Yet, the combination of G-CSF
(10 mg/kg subcutaneously daily for up to eight days,
together with plerixafor, beginning on the evening of
day 4 and continuing daily for up to four days, subcu-
taneously at a (daily) dose of 240 mg/kg, has been rec-
ommended for autologous stem cell mobilization and
transplantation for patients with NHL.22

On 15 December 2008, the US FDA approved pler-
ixafor for use in combination with G-CSF to mobilize
HSCs to the peripheral blood for collection and subse-
quent autologous transplantation in patients with
NHL or MM23: 59% of NHL patients mobilized
with G-CSF and plerixafor had peripheral blood
HSC collections of � 5� 106 CD34þ cells/kg in 4 or
fewer apheresis sessions, compared with 20% of NHL
patients mobilized with G-CSF without plerixafor; in
MM patients, the corresponding data were 72% and
34%, respectively.23 That plerixafor seemed to be more
effective in MM patients than in NHL patients was
also suggested by Bilgin and de Greef.24 While 25%
of patients treated with G-CSF alone still failed mobi-
lization, upon the addition of plerixafor, the failure
rate would drop to 4%.25

The conventional dose of plerixafor is 240 mg/kg,
but this dose could be safely increased (in healthy

donors) to 480 mg/kg.26 Figure 1 illustrates the

CD34þ cell counts obtained over time following (sub-

cutaneous) injection of plerixafor at doses of 480 mg/kg
and 240 mg/kg. Increasing the dosage of plerixafor may

obviously adjust the recommendations formulated by

Giralt et al.27 and D’Souza et al.28 However, a major

breakthrough in stem cell mobilization was recently

reported by Hoggatt et al.29 They announced that a

single injection of both the CXCR2 agonist, GROß,

and plerixafor, in mice resulted in stem cell mobiliza-

tion peaking within 15 min that was equivalent in mag-

nitude to a standard multi-day regimen of G-CSF.29

This observation, illustrated in Figure 2, may obviously

revolutionize the future of stem cell mobilization.

Martin et al.30 had previously shown that both

CXCR2 and CXCR4 control the release of neutrophils

from the BM, and as neutrophils age, they upregulate

expression of CXCR4 and acquire the ability to

migrate toward SDF-1a. These senescent neutrophils

preferentially home to the BM in a CXCR4-

dependent manner.30

Antitumor activity

AMD3100 has been specifically approved for autolo-

gous transplantation in patients with NHL and MM.

Yet, it offers attractive potential for the treatment of

various other cancers.
SDF-1/CXCR4 is a critical regulator of homing of

MM cells, and AMD3100 (plerixafor) inhibits the

homing of MM cells to the BM niches.31 This makes

the MM cells also more sensitive to therapy with cyto-

toxic agents such as doxorubicin.32 This sensitization to

cytotoxic chemotherapy has also been noted with pler-

ixafor in acute myeloid leukemia.33

CXCR4 could be a promising therapeutic target for

hilar cholangiocarcinoma (CCA),34 thus necessitating

Figure 1. CD34þ cell counts in the blood over time following
(subcutaneous) injection of plerixafor at doses of 240 and
480 mg/kg.26
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the evaluation of plerixafor. The rate of hilar CCA has

significantly risen over the past several decades.35

Nowadays, it is becoming the most common reason
for hepatic tumor-induced death.36

Medullary thyroid carcinoma (MTC) is a rare endo-

crine malignancy which accounts for about 5% of all
thyroid carcinomas; it is derived from the calcitonin-

secreting parafollicular C-cells of the thyroid gland.37

As the CXCR4/CXCR7/CXCR12 axis plays an impor-

tant role in MTC, the CXCR4 receptor may be a

potential therapeutic target for CXCR4 receptor antag-
onists such as plerixafor in the treatment of

advanced MTC.38

As the CXCR4/SDF-1 pathway is also involved in
the local invasiveness of malignant pleural mesothelio-

ma (MPM), co-administration of photon irradiation

and AMD3100 (plerixafor) has been advocated as a
possible strategy to reduce the risk of local recurrence

of MPM.39 Likewise, AMD3100 has been suggested as

a novel approach to offset the effects of obesity on
prostate cancer progression (in mice).40

Ovarian cancer is the fifth most common cause of

cancer deaths in women in western countries, more
than 90% of the malignant ovarian tumors being of

epithelial origin.41,42 As CXCR4 and CXCL12 are

overexpressed in several cancers, including ovarian
tumors,43 it is logical that AMD3100 has been recom-

mended as a possible (complimentary) treatment of

advanced disseminated epithelial high-grade serous
ovarian cancer patients.44 Also, Mao et al.45 recom-

mended targeting the CXCR4/CXCL12 axis in using

AMD3100 for treating epithelial ovarian cancer.
To this end, AMD3100 could be combined with (low-
dose) Taxol to limit ovarian cancer cell growth.46

As to breast cancer, poor prognosis has been noted
for the so-called triple-negative breast cancer (TNBC).47

In TNBC, the tumors do not express estrogen receptor,
progesterone receptor or human epidermal growth
factor receptor 2; TNBC has remained a major thera-
peutic challenge, currently limited to surgery, chemo-
therapy and radiotherapy. Yet, AMD3100 has been
reported to significantly enhance the response of
TNBC cells to ionizing radiation.48 Similarly, locally
advanced cervical cancer may profit from the combina-
tion of radiation and AMD3100 treatment.49

Among the chemokine receptors, CXCR4 is the
most involved in cancer, as it is expressed in at least
23 different types of cancers.50 Inhibition of CXCR4,
i.e. with plerixafor, will impair the development of lung
metastases.51 In fact, the CXCR4/SDF-1 axis has
become the hallmark of several metastatic cancers,
thus justifying attempts, i.e. by CXCR4 antagonists,
to stop metastases.52

CXCR4 and CXCR7 mediate osteosarcoma growth
and metastasis towards the lungs.53–55 AMD3100
blocks this process via the JNK and Akt pathways.56

AMD3100 was also found to inhibit brain-specific
metastasis in lung cancer via suppressing the CXCR4/
SDF-1 axis.57 And, likewise, blocking the CXCR4
receptor by AMD3100 may be a successful approach
to reduce the metastatic spread of colorectal cancer to
the liver.58

Pleiotropic effects

Wherever the CXCR4/SDF-1 axis is involved, the
antagonistic effects of AMD3100 towards CXCR4
may be exploited in a wide spectrum of pathophysio-
logical processes, varying from treating cancer, to pre-
serving cardiac function and combating arthritis.8,59

And what happened with the original purpose for the
clinical development of AMD3100, that is therapeutic
use for the treatment of HIV infections? It was imme-
diately realized that to this end, the compound had to
be orally bioavailable, and this aim was achieved with
AMD11070. In clinical trials in healthy volunteers, this
compound (Figure 3) was found to be well tolerated
and orally bioavailable.60 In a proof-of-concept clinical
trial in HIV-infected patients harboring X4 virus, 4/9
patients had a greater than 1 log10 reduction in X4 viral
level.61 AMD11070 was well tolerated, with no serious
safety concerns, but the compound was put on clinical
hold because of histologic changes of the liver observed
in long-term animal studies.61 AMD11070 could be
credited as the first orally available small molecule
antagonist of CXCR4 to enter the clinic.62

Figure 2. Mobilization of hematopoietic stem cells in mice,
measured CFU-GM/mL blood at 15 min post GROß, 60 min
post-AMD3100 and 15 min post GROß plus AMD3100, com-
pared to mice treated with G-CSF twice daily (bid) for four
days.29 #p< 0.05 compared to control. *p< 0.001 compared to
control. †p< 0.001 compared to AMD3100. §p< 0.001 com-
pared to GROß. Ns: not significant versus GROß or G-CSF.
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After AnorMed was acquired by Genzyme they chose

not to pursue the HIV indication.
Endothelial progenitor cells (EPCs) are quietly

retained within their niche in the BM, as secured by

the SDF-1/CXCR4 axis, but disruption of the SDF-

1/CXCR4 axis, i.e. by P2G, a mutant protein of

SDF-1ß results in the enhancement of ischemic angio-

genesis and blood perfusion.63 AMD3100 can also rap-

idly mobilize EPCs,64 but long-term administration of

AMD3100 may exacerbate cardiac dysfunction and

remodeling after myocardial infarction.65 Danshensu

[3–(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid],

through the SDF-1a/CXCR4 axis, accelerates angio-

genesis after myocardial infarction in rats, and this

effect is counteracted by AMD3100.66

Autologous CD34þ stem cells (as mobilized by

G-CSF and/or AMD3100) can be safely delivered

intra-arterially into the infarct territory in patients

with acute ischemic stroke67 and future studies should

further address the eligibility criteria, dosage and

timing before undertaking larger clinical trials.
AMD3100 may accelerate re-endothelialization of

neointima in rabbit saccular aneurysm after FD (flow

diverter) treatment.68 This procedure may ultimately

promote the repair of saccular aneurysms.
AMD3100 may also elicit analgesic effects and

restore the GlyRa3 expression against neuropathic

pain, in rats.69

The SDF-1/CXCR4 axis plays an important role in

alveolar bone metabolism during orthodontic tooth

movement (OTM) and here, again, AMD3100 may

acquire a therapeutic application in bone remodeling

and bone fracture healing.70

Antibody-secreting cells (ASCs) including short-

lived plasmablasts and long-lived memory plasma

cells (LLPCs) contribute to autoimmune pathology.

AMD3100 efficiently depleted ASCs, including

LLPCs. Combination with the proteasome inhibitor

bortezomib significantly enhanced the depletion effect

of AMD3100. This combination holds great promise in

the treatment of lupus as indicated by its efficacy in the

NZB/W murine preclinical lupus model.71

Finally, AMD3100 has been shown to attenuate pul-

monary angiogenesis, by reducing the C-kit (þ- cells

and its pro-angiogenic activity in CBDL (common

bile duct ligation) rat lungs, an experimental model

for hepatopulmonary syndrome (HPS).72 HPS is a seri-

ous complication of chronic liver disease characterized

by arterial hypoxemia and an abnormal alveolar-

arterial oxygen gradient.73 The prevalence of HPS in

cirrhotic patients ranges from 5% to 32% according to

various threshold values for arterial deoxygenation,74

and no effective medical treatment for HPS exists

beyond liver transplantation.75

WHIM syndrome

WHIM stands for warts, hypogammaglobulinemia,

infections and myelokathexis.76 Myelokathexis refers

to retention of mature neutrophils in the BM, resulting

in neutropenia (granulocytopenia). It was first

described by Zuelzer et al.77 and Krill et al.78 and
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Figure 3. CXCR4 antagonists: AMD31008; AMD1107062; KRH-163694; and CX071495.

4 Antiviral Chemistry and Chemotherapy



identified as an immunological disorder by Wetzler
et al.79 That the myelokathexis was part of an autoso-
mal dominant disorder, WHIM syndrome, was charac-
terized by Gorlin et al.76 The cause of almost all cases
of WHIM syndrome is the inheritance of carboxyter-
minal truncation mutations that remove 10–19 amino
acids from the chemokine receptor CXCR4.80 When
expressed in cell lines lacking endogenous CXCR4,
the mutated CXCR4R343X exhibits about two-fold
enhanced signaling on exposure to its ligand CXCL12
(also known as stromal cell-derived factor-1.81

The CXCR4 antagonist plerixafor (AMD3100) has
been approved by the US FDA for mobilizing hema-
topoietic stem cells (HSCs) from BM for use in autol-
ogous transplantation in patients with NHL or
MM.22,82 McDermott et al.83 and Dale et al.84 found
plerixafor to be of potential value to correct the
panleukopenia (myelokathexis) in WHIM syndrome.
Long-term treatment with plerixafor (for six
months, subcutaneously twice daily at a dose of 0.01
to 0.02 mg/kg (4% to 8% of the FDA-approved dose)
was then found efficacious and safe in the mechanism-
based therapy of WHIM syndrome.85

McDermott et al.86 also reported the spontaneous
cure of WHIM syndrome by chromothripsis, whereby
the chromosomes undergo massive deletion and rear-
rangement. The significance and impact of this curious
observation remains to be assessed. Also, a mouse
model for WHIM syndrome has been developed.87

Plerixafor clearly holds great promise for the therapy
of WHIM syndrome.88 If CXCR4-specific nanobodies
hold potential as possible therapeutics for CXCR4-
associated diseases such as WHIM syndrome,89 it
would seem imperative to evaluate their efficacy in com-
parison and/or conjunction with plerixafor.

CXCR4 antagonists

The crystal structure of CXC4 in complex with UMIP-
II, a CC chemokine encoded by Kaposi’s sarcoma-
associated herpesvirus, has been elucidated by Qin
et al.90 CXCR4 is remarkable in its ability to recognize
multiple unrelated small molecules, peptides and pro-
teins. The ligands thereby occupy different regions of
the binding pocket due to the receptor conformational
plasticity.90

Engineering of an efficacy switch mutation in
CXCR4, F292A in the middle of the transmembrane
helix 7, can convert the antagonists AMD3100 and
AMD11070 into partial agonists. As agonists on
F292A CXCR4, AMD3100 and AMD11070 were less
disruptive to CXCR4 signaling while remaining effi-
cient inhibitors of HIV entry.91

X4 Pharmaceuticals is developing CXCR4 antago-
nists (i.e. X4P-001) for the treatment of WHIM

syndrome and renal cell carcinoma (RCC), the latter
in combination with InlytaVR (personal communication
from X4 Pharmaceuticals).

Various agonists and antagonists of the CXCR4
receptor have been identified,92 and the therapeutic
implications of these agonists, that could be blocked
by the CXCR4-selective antagonist AMD3100, can
only be guessed upon.

Meanwhile, AMD3100 has served as the model for
the exploration of novel stem cell mobilizers that target
the CXCR4 receptor,93 and that could be considered as
potential drug candidates, i.e. KRH-163694 (Figure 3),
and CX071495 (Figure 3), which may be useful as stem
cell-mobilizing agents for the same indications that
have so far been considered for AMD3100.

Conclusion

The AMD3100 story that has led in 2008, now 10 years
ago, to the approval of a stem cell mobilizer, MozobilVR

(plerixafor) for the autologous transplantation in
patients with NHL or MM, can be viewed as a chain
of serendipitous events: first, the identification of an
impurity as an anti-HIV agent; second, the recognition
of the CXCR4 receptor as the target for the anti-HIV
activity of AMD3100; and third, the therapeutic use of
AMD3100 as a stem cell mobilizer. As the role of the
CXCR4 receptor and its ligand, SDF-1 (or CXCL12)
in a multitude of physiopathological processes contin-
uously evolves, so do the potential therapeutic applica-
tions of AMD3100. This activity spectrum is not
limited to the various forms of cancer, but extends to
far beyond, such as WHIM syndrome (retention of
mature neutrophils in the BM) and hepatopulmonary
syndrome (HPS). Meanwhile, new CXCR4 antagonists
have been described which, while not structurally relat-
ed to AMD3100 (for example KRH 1636, and
CX0714), may behave in a similar fashion. This keeps
the mobilization of stem cells in a continuous flux, not
only in terms of therapeutic implications, but also with
regard to the diversity of drug candidates. All of
this exploration of CXCR4 antagonism for varying
indications started with an adventitious impurity in a
commercial cyclam preparation evaluated for anti-
HIV activity.
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