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NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics™*
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Abstract: Mining the genome of the food-spoiling bacterium
Burkholderia gladioli pv. cocovenenans revealed five non-
ribosomal peptide synthetase (NRPS) gene clusters, including
an orphan gene locus (bol). Gene inactivation and metabolic
profiling linked the bol gene cluster to novel bolaamphiphilic
lipopeptides with antimycobacterial activity. A combination of
chemical analysis and bioinformatics elucidated the structures
of bolagladin A and B, lipocyclopeptides featuring an unusual
dehydro-p-alanine enamide linker fused to an unprecedented
tricarboxylic fatty acid tail. Through a series of targeted gene
deletions, we proved the involvement of a designated citrate
synthase (CS), priming ketosynthases III (KS III), a type Il
NRPS, including a novel desaturase for enamide formation,
and a multimodular NRPS in generating the cyclopeptide.
Network analyses revealed the evolutionary origin of the CS
and identified cryptic CS/NRPS gene loci in various bacterial
genomes.

Among the many food-spoiling bacteria, one species stands
out, as it is responsible for the governmental ban of a national
dish: Burkholderia gladioli pv. cocovenenans (literally mean-
ing making coconut poisonous). These bacteria poison the
Indonesian specialty tempeh bongkrek, a coconut press cake
produced by fermentation using a harmless mold fungus
(Rhizopus). Yet, frequent contaminations of the Rhizopus
cultures with bacterial toxin producers have been responsible
for the deaths of thousands that have consumed the delicacy.!!
The causative agent of these intoxications has been identified
to be the respiratory toxin bongkrekic acid.l'! To gain insight
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into its biosynthesis, we have sequenced the genome of B.
gladioli pv. cocovenenans. In addition to the molecular basis
of bongkrekic acid biosynthesis, we discovered various other
biosynthesis gene clusters.”! Yet, surprisingly little is known
about the biosynthesis potential of the food-poisoning
bacteria, in particular with respect to peptidic natural
products. Here, we deduce orphan nonribosomal peptide
synthetase (NRPS)F! gene clusters of B. gladioli pv. cocove-
nenans, and report the surprising discovery of a new family of
antibiotics, noncanonical lipopeptides equipped with an
unprecedented tricarboxylic acid tail that results from the
recruitment of a citrate synthase.

Genome mining of B. gladioli pv. cocovenenans revealed
the presence of five orphan NRPS gene clusters. Bioinfor-
matics predictions and BLAST homology search indicated
that four of these gene clusters code for the biosynthesis of
characterized lipopeptides, namely haereogladins (promoting
biofilm formation), burriogladins (facilitating swarming), and
icosalides (surfactant and swarming inhibitor) (Figure 1 A).”!
Furthermore, one NRPS gene cluster codes for the rare
diazeniumdiolate siderophore gladiobactin.!”! We verified the
predicted functions by HPLC-HR-MS of culture extracts and
MS/MS fragmentation.l”! The fifth cryptic biosynthetic gene
cluster (named bol) consists of a central 13 kb NRPS gene
(bolH) that is flanked by a number of putative accessory
genes (bolB-U) (Figure 1B and Table S7 and S8). By means
of database searches we noted that genomes of numerous
other B. gladioli isolates from highly diverse niches harbor
orthologous, yet cryptic, gene clusters (Supporting Informa-
tion).”

To correlate the bol gene cluster with metabolites we
deduced the core peptide structure from in silico analyses and
performed comparative metabolic profiling of the wild type
and a targeted null mutant. First, we gleaned the architecture
of the cryptic peptide from bioinformatics analysis of the bol
assembly line. In brief, the encoded type I NRPS (BolH)
consists of four modules each composed of condensation (C),
adenylation (A) and thiolation (T) domains. Furthermore,
genes for a type II NRPS®! comprising freestanding adeny-
lation (A, BolO) and peptidyl carrier protein (PCP, BolC)
domains, and a fatty acid ligase (FAL, BolB) suggest that an
activated N-acyl amino acid would be merged with a tetra-
peptide, likely yielding a lipopeptide with five amino acid
residues. The detailed analysis of the A and C domain
specificities,””! where possible, predicted that an N-acyl-L-Ala-
derived building block would be linked to an L-Ser-p-Val-L-
X-L-Ser chain (X, prediction of the amino acid specificity not
possible) (Figure 1C).
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Figure 1. Genome mining of the bacterial contaminant of tempeh bongkrek. A) Biosynthetic potential
encoded in the chromosome. Gene loci for known compounds: ena, enacyloxin; bon, bongkrekic
acid; cay, caryoynencin; tox, toxoflavin; NRPS: bgd, burriogladin; hgd, haereogladin; glb, gladiobactin;
ico, icosalide; bol, cryptic NRPS gene locus, marked in red. B) Organization of the bol gene cluster.
C) Encoded assembly line and predicted peptide backbone. FAL, fatty acid ligase; A, adenylation
domain; T, thiolation domain or peptide carrier protein; Cs, starter condensation domain; C,,

C domain fusing two L-amino acids; Cp,,, C domain also promoting epimerization; TE, thioesterase
domain. D) Mutant construction using homologous recombination, and PCR-based verification of
AbolH mutant. E) Production of 1 and 2 in B. gladioli pv. cocovenenans (WT), and metabolic profile of
deletion mutant AbolH.
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parison of the metabolic profiles of
wild type and AbolH mutant grown
under various conditions we
detected two metabolites (1 and 2)
in the wild-type culture that are
absent in the mutant strain. HPLC-
HRMS elucidated two major con-
geners with m/z 822.4168 [M—H]~
(1) and m/z 836.4322 [M—H]™ (2)
(Figure 1D). The deduced molecu-
lar formulas and the MS/MS frag-
mentation patterns suggested that
1 and 2 represent the predicted
lipopentapeptides.

To determine their structures,
we optimized culture conditions
and subjected the upscaled fermen-
tation broth (3L) to chromato-
graphic separation by size-exclu-
sion chromatography and prepara-
tive HPLC, yielding pure 1 (0.8 mg)
and 2 (1.6 mg). The structures of
1 and 2 were fully elucidated by
ESI-HR-MS, MS/MS, and 1D and
2D NMR experiments (Figure 2 A).
For 2 the molecular formula of
C,HgiNsO,, was deduced from
ESI-HR-MS, and the number of
carbon atoms was corroborated by
“C and HMBCNMR data. The
presence of a fatty acid residue
was confirmed by analysis of
'HNMR and DEPT-135 NMR
data. From 'H,'H-COSY couplings
the spin systems of five amino acids
were deduced (Figure 2A). 'H,”C
HMBC couplings of the NH pro-
tons of each amino acid with the
corresponding carbonyl carbon
atoms and the respective Ca
atoms of the neighboring amino
acid allowed the assignment of the
peptide chain. A coupling constant
of /=14 Hz between the a and f§
protons of the dehydro-f3-alanine
residue indicates the E-configura-
tion of the double bond. An 'H,"*C-
HMBC coupling of the B-proton of
the dehydro-B-alanine unit with C1
of the fatty acid revealed the N-acyl

To create a null producer, we improved the current
protocol for the genetic manipulation of B. gladioli pv.
cocovenenans. We noted that this strain is naturally compe-
tent to take up DNA and achieved the targeted gene
knockout of the NRPS gene by means of homologous
recombination and integration of a kanamycin resistance
cassette into bolH, using a double-selection plasmid contain-
ing the pheS gene.l'”) By antibiotic selection and PCR analysis
the desired mutation was confirmed (Figure 1D). By com-
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connection. Comparison of the deduced molecular composi-
tion (C;HgNsO,,) and the MS/MS fragmentation of 1 with
the ones determined for 2 indicated an Ile to Val replacement
in 1. 1D and 2D NMR analyses confirmed this assignment.
The absolute configuration of the amino acids in 1 and 2 was
unambiguously determined by Marfey’s analysis™! (Support-
ing Information).

The structure of the fatty acid moiety proved to be more
complex than anticipated. MS/MS analyses revealed a frag-
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Figure 2. Structures and bioactivities of bolagladins. A) Structure elucidation by 2D NMR couplings
and with Marfey and Sanger reagents. B) Schematic representation of canonical lipopeptides (LPs)
versus bolagladin. C) Droplet-collapse assay showing no tensioactive property of 1; NC, negative

control: water; PC, positive control, tenside producer; WT, wild type; AbolH, mutant. D) Swarming

areas of WT mutant on semisolid agar.

ment ion with m/z 450.2480, indicating an identical, yet highly
substituted fatty acid residue (C,;H3NO;) in 1 and 2. 'H, 'H-
COSY couplings of the protons H-2 to H-4 and H-9 to H-14
and 1D NMR signals for additional methylene functions
established the fatty acid chain. Coupling constants of J=
11 Hz (between H-2 and H-3) and J=10 Hz (between H-11
and H-12) indicated the Z-configuration of the double bonds.
'"H,*C-HMBC couplings (Figure 2A) finally unveiled the
presence of an unusual methoxy dicarboxylic acid terminus.

The structures of 1 and 2 are highly unusual. The rare
dehydro-f-Ala linker is known from the Streptomyces-
derived enamidonins, yet their biosynthesis has remained
enigmatic.”? Furthermore, owing to the unprecedented
tricarboxylic fatty acid tail, 1 and 2 constitute a novel family
of lipopeptides. Regular lipopeptides consist of a hydrophilic
head moiety (linear or cyclic peptide) and a hydrophobic fatty
acid tail.'"”l The resulting amphiphilic nature of lipopeptides is
usually reflected in their bioactivities, which encompass
surfactant properties that may influence biofilm formation
and swarming of the producer, and may disintegrate mem-
branes of recipients (Figure 2B).[**'*l Compounds 1 and 2
clearly deviate from the canonical lipopeptide architecture
and polarity as they have two hydrophilic groups at both ends
of a hydrophobic chain and thus are natural bolaamphi-
philes."”! Therefore, we named them bolagladin A (1) and B

Q).
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ing properties of 2, since bolU could
code for a TonB-like receptor that is
typically associated with sidero-
phores. However, strong metallo-
phore activities were not observed
in a CAS agar assay. Furthermore,
stable iron adducts of 2 were not
detected by mass spectrometry.
Finally, we subjected 2 to antimi-
crobial assays using a panel of
bacterial and fungal strains. We
observed moderate  antifungal
activities of 2 against Candida albi-
cans and Penicillium notatum, mod-
erate activities against Staphylococcus aureus (MRSA) and
Enterococcus faecalis (VRE), and more pronounced activity
against Mycobacterium vaccae (Supporting Information).

As to the most unusual feature of the bolagladins, their
branched tricarboxylic fatty acid tail, we predicted that an
encoded citrate synthase (BolR), an acyl-CoA ligase (BolB),
an O-methyl transferase (BolS), and two encoded priming
ketosynthases 111 (KS III, BolM, BolP) play key roles in its
formation. A phylogenetic analysis of BolR and a selection of
citrate synthases (CS) and related biocatalysts showed that
BolR falls into the group of CSs and related enzymes that
promote an aldol reaction at the Si-face of 2-oxoglutarate
(Figure 3 A).['%! Close relatives of BolR include the CSs from
B. gladioli primary metabolism (CS I and CS II) and CSs from
the biosynthetic pathways of squalestatins!”! and malei-
drides.'¥

To verify the role of BolR, we created a null mutant by
double crossover. Metabolic profiling of the resulting AbolR
mutant culture by HPLC-HRMS revealed that the produc-
tion of 1 and 2 was fully abrogated. Instead, we detected two
new metabolites with m/z 748.4157 [M—H]~ (3) and 764.4120
[M—H]™ (4) that are absent in the wild-type metabolome
(Figure 3B). Their deduced molecular formulas (3:
Cy;HsgNsOy;, 4: C3;HygNsO;,), MS/MS analyses and NMR
data of 3 revealed that, in comparison to 2, both compounds
are devoid of the terminal carboxymethyl moiety. In addition,
3 lacks the methoxy group (Figure 3E). A plausible explan-

WT AbolH
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Figure 3. Phylogenetic and mutational analysis of key pathway enzymes. A) Cladogram of Si- and Re-
face-specific citrate synthases (Si/Re CS, CS I/CS Il) from primary metabolism, squalestatin CS,
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synthase (MS). B-D) Metabolic profiling of targeted mutants. *1 and *2, isotopes of 1 and 2.

E) Structures of 3 and 4 formed in AbolR mutant, most likely resulting from incorporation of
succinate and malate in lieu of citrate, and structures of 5 and 6 formed in AbolQ mutant.
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and BolP), and the ligases (BolO)
are essential for the bolagladin
biosynthesis, too  (Figure 3C).
Since none of the congeners could
be detected in these mutants, we
propose that the function of the
ligases and KSIII is the activation
and elongation of citrate and the
fatty acid, respectively. At this
stage, however, it cannot be ruled
out that oxaloacetate is first acti-
vated and elongated before it is
modified by the CS.

L-Asp-PCP (BolC), would be
generated by the freestanding A
domain BolO. L-Asp-PCP would
then be transformed into (-Ala-
PCP by means of a pyridoxal phos-
phate-dependent  decarboxylase,
BolN, in analogy to the destruxin
and fluvirucin biosynthetic path-
ways."” The activated tricarboxylic
fatty acid would then be transferred
onto the type II NRPS to form the
acyl-pf-Ala subunit by the second
KSIII. A similar cooperation of
two KS IIT and an ATP-dependent
ligase has been implicated in the
biosynthesis of unusual fatty acids
in mupirocin and thiomarinol bio-
synthesis.”” Finally, a desaturase
would introduce the enamide
double bond. We confirmed this
model by targeted gene inactivation
of bolC, boIN and bolB (Fig-
ure 3C). To pinpoint the desaturase
in charge of the unusual peptide
modification we generated and pro-
filed a range of candidate mutant
cultures (AbolL, AbolF, and
AbolQ). While the Aboll. mutant
showed the wild-type profile, in the
AbolF and AbolQ mutants produc-
tion of 1 and 2 was fully abrogated.
In the AbolQ mutant we identified
congeners with m/z 838.4484
[M—H]™ (5) and 824.4327 [M—H]~
(6) lacking the enamide double
bond (Figure 3E). Thus, BolQ
seems to be a novel trans-acting
desaturase that generates the
unusual enamide substructure
online. Finally, the rare tricarbox-
ylic-acyl-B-dh-Ala brick would be

ation for the production of 3 and 4 in the Abo/R mutant would  transferred onto the modular NRPS to assemble the full-
be the incorporation of succinate and malate building blocks  length peptide (Figure 4 A).

in lieu of citrate (Figure 3E). Apparently, the O-methyl To gain insight into the evolution and distribution of
transferase BolS does not recognize the alternative substrate. ~ similar biosynthetic pathways we created sequence similarity
Mutational analyses showed that both encoded KS IIT (BoIM  networks (SSNs) and genome neighborhood networks

www.angewandte.org © 2020 The Authors. Published by Wiley-VCH GmbH
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(GNNs) using CS T and BolR as the query sequences

(Figure 4B).”!I The CS I network forms a single cluster that  approaches.

places the CS gene exclusively among genes associated with

primary metabolism in Proteobacteria. The BolR-based

network, in contrast, shows several clusters and revealed ~Acknowledgements

a high synteny of orthologous genes for citrate synthase
(BolR), KS IIT (BolM and BolP), the A domain (BolO) and
PCP (BolC) all putatively involved in the biosynthesis,
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activation and transfer of a citrate
building block onto the assembly
line. Our BolR network analysis led
to the discovery of cryptic NRPS
gene clusters that could code for the
biosynthesis of related tricarboxylic
fatty acid-derived lipopeptides in
Burkholderia cepacia and Burkhol-
deria stabilis. Furthermore, we
found NRPS-independent biosyn-
thetic pathways in genomes of Bur-
kholderia, Pseudomonas, Collimo-
nas, and Chromobacterium species.

Beyond genome mining for
novel natural products, the SSNs
and GNNs shed light on the origin
of BolR. While regular CS and their
surrounding genes are highly con-
served in Proteobacteria, the bolR
ancestor gene likely emerged from
an ancient gene duplication event,
followed by diverging evolution.
Having been recruited by secon-
dary metabolism alongside with
accessory enzymes, it warrants met-
abolic fluxes that allow the incor-
poration of tricarboxylic fatty acids
into lipopeptides, thus increasing
structural diversity.

In conclusion, by genome
mining of infamous food-spoiling
bacteria we discovered a new family
of antibiotics that are an important
addition to the metabolic inventory
of diverse, ecology- and health-
relevant bacteria of the genus Bur-
kholderia.®™ The bolagladins fea-
ture an unprecedented lipopeptide
modification, a tricarboxylic fatty
acid that creates a natural bolaam-
phiphile. We unveiled the key role
of a citrate synthase in the bol
pathway and provide an evolution-
ary model for the recruitment of
a biocatalyst from the Krebs cycle.
Using this designated citrate syn-
thase as a bioinformatics handle
led to the discovery of related
cryptic pathways. Furthermore, the
unusual lipopeptide assembly line,
including the novel enamide-form-

ing desaturase, may provide novel tools for bioengineering
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