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Abstract: Contamination of soils with heavy metals, particularly cadmium (Cd), is an increasingly
alarming environmental issue around the world. Application of organic and inorganic immobilizing
amendments such as biochar and gravel sand in combination with metal-tolerant microbes has the
potential to minimize the bioavailability of Cd to plants. The present study was designed to identify
the possible additive effects of the application of Enterobacter sp. MN17 as well as biochar and gravel
sand on the reduction of Cd stress in plants and improvement of growth and nutritional quality of
pea (Pisum sativum) plants through the reduction of Cd uptake. Pea seeds were surface sterilized then
non-inoculated seeds and seeds inoculated with Enterobacter sp. MN17 were planted in artificially
Cd-polluted soil, amended with the immobilizing agents biochar and gravel sand. Application of
biochar and gravel sand alone and in combination not only improved the growth and nutritional
quality of pea plants by in situ immobilization but also reduced the uptake of Cd by plant roots and
its transport to shoots. However, microbial inoculation further enhanced the overall plant health as
well as alleviated the toxic effects of Cd on the pea plants. These soil treatments also improved rates
of photosynthesis and transpiration. The combined use of biochar and gravel sand with bacterial
inoculation resulted in an increase in plant height (47%), shoot dry weight (42%), root dry weight
(57%), and 100 seeds weight (49%) as compared to control plants in Cd contaminated soil. Likewise,
biochemical constituents of pea seeds (protein, fat, fiber, and ash) were significantly increased up
to 41%, 74%, 32%, and 72%, respectively, with the combined use of these immobilizing agents and
bacterium. Overall, this study demonstrated that the combined application of biochar and gravel
sand, particularly in combination with Enterobacter sp. MN17, could be an efficient strategy for
the remediation of Cd contaminated soil. It could support better growth and nutritional quality of
pea plants.
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1. Introduction

Soil contamination is a global problem with risks associated with human health and the environment.
Heavy metals such as lead (Pb), cadmium (Cd), zinc (Zn), mercury (Hg), arsenic (As), silver (Ag),
chromium (Cr), copper (Cu), and iron (Fe) are the most challenging, emergent soil contaminants being
toxic to plants and dangerous to humans when consumed in agricultural produce [1–4]. Anthropogenic
activities such as manufacturing industries, mining, and uncontrolled use of materials containing
heavy metals in agriculture (including but not limited to fertilizers, pesticides, industrial effluents, and
sewage sludge) are the most common sources of heavy metals in soil [5]. Control of these elements is
considered a target for achieving sustainable environmental goals.

Cadmium, one of the target metals, is a nondegradable, toxic, and nonessential element for plants.
It enters the environment naturally through volcanic eruptions, rock weathering, and forest fires and
anthropogenically through various activities such as ceramic waste materials, ore mining, processing of
Ni–Cd batteries, plastic manufacturing, pigments, cement, and electroplating operations [6]. However,
the most common human activities causing contamination of soil with Cd are the use of sewage
sludges, fertilizers, atmospheric depositions, and metallurgical industries. By virtue of its highly
mobile nature in soil, it readily accumulates in plant roots and other edible plant parts [7] causing
metabolic, physiological, and biochemical disorders through reduced production of chlorophyll, uptake
of nutrients, and photosynthesis, which results in stunted plant growth and greatly reduced crop
production [8–15]. Moreover, long-term exposure and intake of food contaminated with Cd is a severe
threat to human health [16,17]. Therefore, it is imperative to remediate Cd-polluted soils to restore the
ecological functioning of such soils.

Various approaches ranging from physical excavation to chemical extraction and biological
remediation had been employed, but all these approaches have shortcomings in terms of high cost,
negative environmental impacts, and loss of major nutrients required for normal plant growth [18–22].
On the other hand, in situ immobilization measures have been found to be a promising means of
remediating Cd-polluted soils and of decreasing its bioavailability to plants, to be low cost, and to be
environmentally appropriate [23]. A number of metal immobilizing agents including biochar, inorganic
zeolite, metal oxides and phosphates, and composts have been studied to ameliorate Cd phytotoxicity
in soils contaminated with heavy metals [13–15,24–27].

Biochar produced under air-limited thermal degradation of C-rich biomass [28] has been proven to
effectively remove toxic metals from polluted environments, through adsorption and metal-stabilization
mechanisms, a result of its large surface area, ion complexation, exchange, and precipitation
properties [12,29–32]. However, success is highly determined by soil type, biochar surface properties,
feedstock, pyrolytic temperature, and rate of application [33,34]. Combining biochar with other
treatments such as metal-tolerant microbes has resulted in increased efficacy, cost-effectiveness,
and environmental conservation.

Plant growth-promoting bacteria are frequently used to improve crop production and are
applicable to diverse agricultural settings [35]. The rhizosphere as well as endophytic bacteria can
be used, and it is possible that the latter may be the more effective in promoting plant growth due
to their intimate relationship with plant tissues [36]. Apart from growth promotion, these bacteria
may improve the resistance of plants against pathogens, drought, and heavy metals stresses [37].
Such bacteria colonize plant roots and enhance their growth by multiple mechanisms. These microbes,
when applied to contaminated soils, ameliorate stress by reducing heavy metal uptake via decreased
availability in the rhizosphere [38,39]. The low availability of these metals in rhizospheric soils, in turn,
favors root elongation and enhances plant growth [15]. The metal-resistant microbes may immobilize
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heavy metals through the production of exopolysaccharides, siderophores, and metal phosphates or
through enhanced rhizosphere acidification [40,41].

In Pakistan, vegetables are mainly grown in areas irrigated with sewage water contaminated with
heavy metals [42,43]. Consequently, there is an urgent need to explore techniques for minimizing
the bioavailability of heavy metals to plants, especially vegetables. There is limited work on the
impact of biochar and gravel sand in combination with metal-tolerant microbes to mitigate the adverse
effects of heavy metals on plants. In addition, the effect of the combined use of endophytic bacteria
and organic amendments such as biochar on the growth, physiochemical attributes, and nutrient
concentrations in plants needs further study. Therefore, the present research was designed to investigate
the potential roles of biochar and gravel sand with and without the inoculation of the endophytic
plant growth-promoting bacterium Enterobacter sp. MN17 on the growth, gaseous exchange attributes,
biochemical constituents, and nutrient content of pea plants grown in Cd-spiked sandy clay loam soil.

2. Results

2.1. Plant Biomass Production

The application of biochar and gravel sand with and without bacterial inoculation considerably
improved plant height as compared to the control in soil containing Cd (Figure 1A). The effect of these
immobilizing agents was more pronounced when combined with bacterial inoculation as compared to
their single application. The increase in growth (plant height) compared with the control following the
application of biochar was 16%, of gravel sand was 5%, and of biochar as well as gravel sand was 16%.
Inoculation with Enterobacter sp. MN17 alone showed an 11% increase in plant height as compared to
the control, while when inoculation was combined with biochar, the increase was 40%; with gravel
sand, was 32%; and with both, was 47%. Shoot and root dry weights were increased when biochar,
gravel sand, and their combination were used without inoculation (Figure 1B,C). Shoot and root dry
weights were further enhanced when biochar, gravel sand, and their combination were used together
with inoculation. The effect was greatest for root dry weight; inoculated plants with biochar and gravel
sand showed 57% higher root dry weight than the controls with no treatments (Figure 1B,C). The use
of biochar, gravel sand, and combination without bacterial inoculation also resulted in an increase in
100-seed weight as compared to the control, with a further increase (49%) observed when plants with
these additives were inoculated (Figure 1D).
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Figure 1. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation of 
Enterobacter sp. MN17 on growth parameters of pea plant under Cd-contaminated soil conditions. Bars 
sharing the same letters in each graph do not differ significantly at p < 0.05. The values are mean ± S.D. (n = 
3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17: Enterobacter sp. MN17. 

2.2. Physiological Gaseous Exchange Attributes  

Application of biochar but not gravel sand improved assimilation rate, while the combined use of 
biochar, gravel sand, and inoculation resulted in the greatest increase of assimilation rate (98%) (Figure 2A). 
The responses to the various treatments were similar for evapotranspiration rates with, again, the combined 
use of biochar, gravel sand, and inoculation giving the highest increase (87%) as compared to the control 
(Figure 2B). In the case of internal CO2 concentration, individual treatments without inoculation showed an 
increase while those treatments with the addition of inoculation showed a further small increase (Figure 
2C). Data for the soil and plant analysis development (SPAD) index also showed that increases in the index 
were greater when the biochar and gravel sand treatments were accompanied by bacterial inoculation 
(Figure 2D). 

Figure 1. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation of
Enterobacter sp. MN17 on growth parameters of pea plant under Cd-contaminated soil conditions. Bars
sharing the same letters in each graph do not differ significantly at p < 0.05. The values are mean ± S.D.
(n = 3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17: Enterobacter sp. MN17.

2.2. Physiological Gaseous Exchange Attributes

Application of biochar but not gravel sand improved assimilation rate, while the combined use
of biochar, gravel sand, and inoculation resulted in the greatest increase of assimilation rate (98%)
(Figure 2A). The responses to the various treatments were similar for evapotranspiration rates with,
again, the combined use of biochar, gravel sand, and inoculation giving the highest increase (87%) as
compared to the control (Figure 2B). In the case of internal CO2 concentration, individual treatments
without inoculation showed an increase while those treatments with the addition of inoculation showed
a further small increase (Figure 2C). Data for the soil and plant analysis development (SPAD) index
also showed that increases in the index were greater when the biochar and gravel sand treatments
were accompanied by bacterial inoculation (Figure 2D).
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Figure 2. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation of 
Enterobacter sp. MN17 on physiological parameters of pea plants under Cd-contaminated soil conditions. 
Bars sharing the same letters in each graph do not differ significantly at p < 0.05. The values are mean ± S.D. 
(n = 3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17: Enterobacter sp. MN17; An; net 
assimilation rate, ET; evapotranspiration rate, Ci; internal carbon dioxide concentration, and Soil Plant 
Analysis Development (SPAD) index. 

2.3. Biochemical Analysis 

The protein content, fat, fiber, and ash of seeds were markedly affected by Cd treatment. However, the 
application of biochar and gravel sand alone and in combination significantly reduced the Cd-induced 
disturbances in these parameters specifically when combined with bacterial inoculation (Table 1). A 41% 
increase in protein over the control resulted from the combined use of biochar, gravel sand, and bacterial 
inoculation. These combined treatments also gave a 74% increase in fat, a 32% increase in fiber, and a 72% 
increase in ash content (Table 1).

Figure 2. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation
of Enterobacter sp. MN17 on physiological parameters of pea plants under Cd-contaminated soil
conditions. Bars sharing the same letters in each graph do not differ significantly at p < 0.05. The
values are mean ± S.D. (n = 3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17:
Enterobacter sp. MN17; An; net assimilation rate, ET; evapotranspiration rate, Ci; internal carbon dioxide
concentration, and Soil Plant Analysis Development (SPAD) index.

2.3. Biochemical Analysis

The protein content, fat, fiber, and ash of seeds were markedly affected by Cd treatment. However,
the application of biochar and gravel sand alone and in combination significantly reduced the
Cd-induced disturbances in these parameters specifically when combined with bacterial inoculation
(Table 1). A 41% increase in protein over the control resulted from the combined use of biochar, gravel
sand, and bacterial inoculation. These combined treatments also gave a 74% increase in fat, a 32%
increase in fiber, and a 72% increase in ash content (Table 1).
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Table 1. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation of bacterial strain MN17 on biochemical and nutritional parameters
of pea plants.

Treatments Protein (%) Fat (%) Fiber (%) Ash (%) Fe in Seeds (mg kg−1) Zn in Seeds (mg kg−1)

Control 11.60 ± 0.81 d † 0.82 ± 0.02 c 3.93 ± 0.26 d 2.20 ± 0.15 d 33.77 ± 1.96 f 15.67 ± 1.31 e
BC 12.80 ± 1.15 cd 0.94 ± 0.01 bc 4.33 ± 0.20 bcd 2.43 ± 0.30 c 40.53 ± 1.42 e 18.30 ± 1.36 bcd
GS 12.40 ± 1.10 cd 0.91 ± 0.02 c 4.10 ± 0.2 cd 2.40 ± 0.2 cd 39.50 ± 0.85 e 17.70 ± 1.17 cd

BC + GS 13.67 ± 1.05 c 1.03 ± 0.05 bc 4.50 ± 0.2 bcd 3.09 ± 0.20 b 49.63 ± 1.30 c 19.71 ± 1.65 bc
MN17 13.43 ± 1.09 cd 1.01 ± 0.08 bc 4.30 ± 0.3 bcd 2.43 ± 0.15 c 42.53 ± 1.1 de 17.50 ± 0.7 cd

BC + MN17 15.50 ± 1.57 ab 1.33 ± 0.02 a 4.86 ± 0.05 ab 3.35 ± 0.25 ab 54.40 ± 1.62 b 21.07 ± 1.51 ab
GS + MN17 14.63 ± 1.20 abc 1.23 ± 0.03 ab 4.68 ± 0.2 abc 2.96 ± 0.15 b 47.80 ± 0.65 cd 19.98 ± 0.83 bc

BC + GS + MN17 16.40 ± 1.03 a 1.43 ± 0.02 a 5.17 ± 0.2 a 3.79 ± 0.26 a 62.23 ± 0.45 a 22.97 ± 1.74 a

†Means sharing the same letters in a column do not differ significantly at p < 0.05. The values are mean ± S.D. (n = 3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17:
Enterobacter sp. MN17.
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2.4. Contents of Fe and Zn in Pea Seeds

The application of biochar and gravel sand with and without bacterial application also significantly
increased the seed content of Fe and Zn from the plants grown in Cd-spiked soil (Table 1), while the
combined application of biochar, gravel sand, and bacterial inoculation resulted in an 84% increase in
Fe content and a 47% increase in Zn content of the seeds (Table 1). The bacterial inoculation alone
showed an increase of 26% and 12% in Fe and Zn of peas seeds as compared to control.

2.5. Cd Concentration in Soil and Plant Tissues

Initially, 60 mg Cd was added per kg of soil. Extractable Cd concentration in soil was reduced
with the application of gravel sand but not with biochar applied alone. However bacterial inoculation
alone resulted in a significant decrease in soil Cd. Biochar, gravel sand, and bacteria in combination
resulted in the maximum decrease of 42% (28 mg Cd kg−1 soil). Bacterial inoculation alone showed
a 22% decrease in soil Cd concentration over control (Figure 3A). The sole application of biochar or
gravel sand resulted in a significant decrease in Cd content of seeds and roots, and gravel sand but not
biochar had this effect also in shoots (Figure 3B–D). The greatest decreases (58%, 54%, and 52%) in
plant tissues (seeds, root, and shoot) contents of Cd were seen when the biochar and gravel sand were
combined with bacterial inoculation of seeds as compared to control.

Plants 2020, 9, x FOR PEER REVIEW 7 of 20 

2.4. Contents of Fe and Zn in Pea Seeds 

The application of biochar and gravel sand with and without bacterial application also significantly 
increased the seed content of Fe and Zn from the plants grown in Cd-spiked soil (Table 1), while the 
combined application of biochar, gravel sand, and bacterial inoculation resulted in an 84% increase in Fe 
content and a 47% increase in Zn content of the seeds (Table 1). The bacterial inoculation alone showed an 
increase of 26% and 12% in Fe and Zn of peas seeds as compared to control. 

2.5. Cd Concentration in Soil and Plant Tissues 

Initially, 60 mg Cd was added per kg of soil. Extractable Cd concentration in soil was reduced with the 
application of gravel sand but not with biochar applied alone. However bacterial inoculation alone resulted 
in a significant decrease in soil Cd. Biochar, gravel sand, and bacteria in combination resulted in the 
maximum decrease of 42% (28 mg Cd kg−1 soil). Bacterial inoculation alone showed a 22% decrease in soil 
Cd concentration over control (Figure 3A). The sole application of biochar or gravel sand resulted in a 
significant decrease in Cd content of seeds and roots, and gravel sand but not biochar had this effect also in 
shoots (Figure 3B–D). The greatest decreases (58%, 54%, and 52%) in plant tissues (seeds, root, and shoot) 
contents of Cd were seen when the biochar and gravel sand were combined with bacterial inoculation of 
seeds as compared to control. 

 
Figure 3. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation of 
MN17 on Cd concentration in soil, seeds, root, and shoot tissues of peas grown in Cd-contaminated soil. Bars 
sharing the same letters in each graph do not differ significantly at p < 0.05. The values are mean ± S.D. (n = 
3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17: Enterobacter sp. MN17 

Figure 3. Effects of immobilizing agents (biochar and gravel sand) with and without seed inoculation
of MN17 on Cd concentration in soil, seeds, root, and shoot tissues of peas grown in Cd-contaminated
soil. Bars sharing the same letters in each graph do not differ significantly at p < 0.05. The values are
mean ± S.D. (n = 3). BC: biochar; GS: gravel sand; BC + GS: biochar + gravel sand; MN17: Enterobacter
sp. MN17
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2.6. Persistence of Inoculant Strain MN17 in the Rhizosphere, Pea Roots, and Shoots

The inoculant strain MN17 efficiently colonized the rhizosphere and was endophytic in the roots
and shoots of pea plants grown in the Cd-contaminated soil (Figure 4). Bacterial colonization of the
rhizosphere was increased by the application of biochar or by biochar and gravel sand but not by
gravel sand alone (Figure 4). Similarly, the endophyte populations estimated from root extracts was
improved in all three treatments but highest when biochar was present. Bacterial populations in shoots
were not improved unless both biochar and gravel sand were applied. Inoculant strain CFU g−1 dry
weight was recovered from the rhizosphere (3.35 × 105), root interior (1.10 × 105), and shoot interior
(5.47 × 104) where a combination of biochar, gravel sand, and MN17 was applied.
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Figure 4. Persistence of the endophytic bacterial strain MN17 in the rhizosphere and presence in roots
and shoots extracts of P. sativum grown in Cd-contaminated soil. Bars sharing the same letters do
not differ significantly at p < 0.05. The values are mean ± S.D. (n = 3). BC: biochar; GS: gravel sand;
BC + GS: biochar + gravel sand; MN17: Enterobacter sp. MN17.

2.7. Pearson Correlation and Principal Component Analysis (PCA)

Significant positive and negative correlations were observed among plant growth (plant height,
shoot dry weight, root dry weight, and grains weight) and physiological (internal carbon dioxide
concentration, net assimilation rate, evapotranspiration rate, and SPAD index) and biochemical
parameters (protein, fat, fiber, and ash) along with Fe and Zn contents of pea grains and Cd
concentrations in soil and plant tissues under Cd-contaminated soil conditions (Table 2). The score and
loading plots of principal component analysis (PCA) are presented in Figure 5. Within the dataset,
the first two components of PCA revealed maximum (96%) variation among all the studied parameters,
of which PC1 explained 90.34% variation whereas PC2 explained 5.66% variation. Moreover, all of the
applied treatments were successfully displaced with the first two components. This displacement of
treatments provided a clear indication that the application of biochar and gravel sand alone and in
combination had a significant ameliorative effect on all the studied attributes of pea plants relative
to the control (Figure 5A). Here, PC1 was positively influenced by variables PCA (Figure 5B) having
parameters pH, SDW, RDW, GW, Pro, Fat, Fib, Ash, G-Fe, G-Zn, Ci, An, ET, and SPAD), whereas
PC2 was positively influenced by observations PCA containing (Cd-Soil, Cd-S, Cd-R, and Cd-G).
Furthermore, a significantly negative correlation was found between the parameters of PC1 and PC2.
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Table 2. Pearson correlation among the plant growth, physiological and biochemical parameters, and Cd concentration in soil and plant tissues.

Variables PH SDW RDW GW Pro Fat Fib Ash G-Fe G-Zn Cd-So Cd-Sh Cd-R Cd-G Ci An ET SPAD

PH 1
SDW 0.987 1
RDW 0.989 0.97 1
GW 0.958 0.973 0.941 1
Pro 0.975 0.988 0.968 0.982 1
Fat 0.988 0.994 0.983 0.977 0.989 1
Fib 0.949 0.965 0.924 0.919 0.939 0.953 1
Ash 0.933 0.948 0.92 0.897 0.906 0.942 0.979 1
G-Fe 0.93 0.959 0.926 0.989 0.971 0.966 0.9 0.896 1
G-Zn 0.946 0.959 0.929 0.888 0.914 0.944 0.976 0.989 0.879 1
Cd-So −0.909 −0.941 −0.898 −0.961 −0.927 −0.94 −0.876 −0.904 −0.978 −0.891 1
Cd-Sh −0.83 −0.841 −0.818 −0.782 −0.766 −0.838 −0.866 −0.946 −0.796 −0.928 0.865 1
Cd-R −0.781 −0.807 −0.77 −0.725 −0.725 −0.788 −0.839 −0.923 −0.75 −0.92 0.831 0.98 1
Cd-G −0.812 −0.83 −0.802 −0.739 −0.749 −0.809 −0.857 −0.932 −0.755 −0.939 0.83 0.974 0.996 1

Ci 0.849 0.87 0.837 0.749 0.809 0.835 0.899 0.919 0.749 0.957 −0.777 −0.87 −0.915 −0.941 1
An 0.966 0.979 0.948 0.952 0.971 0.978 0.988 0.957 0.932 0.952 −0.89 −0.825 −0.78 −0.799 0.849 1
ET 0.955 0.955 0.944 0.917 0.935 0.951 0.989 0.977 0.9 0.968 −0.873 −0.865 −0.834 −0.856 0.89 0.976 1

SPAD 0.818 0.84 0.791 0.781 0.793 0.828 0.95 0.95 0.771 0.922 −0.759 −0.872 −0.854 −0.857 0.863 0.905 0.939 1

Values in bold shows significant correlation (p = 0.05) among corresponding plant growth, physiological and biochemical parameters, and pea tissues Cd contents under Cd-contaminated
soil conditions. PH: plant height; SDW: shoot dry weight; RDW: root dry weight; GW: grains weight; Pro: protein; Fat: fat; Fib: fiber; Ash: ash; G-Fe: Fe concentration in grains; G-Zn:
Zn concentration in grains; Cd-So: Cd concentration in soil; Cd-Sh: Cd concentration in shoot; Cd-R: Cd concentration in roots; Cd-G: Cd concentration in grains; Ci: internal carbon
dioxide concentration; An: net assimilation rate; ET: evapotranspiration rate; and SPAD: chlorophyll (SPAD) contents.
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3. Discussion

This research demonstrated how the application of biochar and gravel sand, particularly in
combination with inoculation with an endophytic Enterobacter sp. MN17, provides a cost-effective,
environmentally friendly way of increasing yield and of reducing the Cd content of pea plants growing
in Cd-contaminated soil. These results support published studies on other species showing that organic
and inorganic soil amendments and microbial inoculation can improve plant growth on heavy metal
contaminated soil [12,15,33,44–46]. Amongst the properties of biochar and gravel sand are that they
adsorb Cd onto their surfaces and make it less available to plant roots [47,48]. The Enterobacter sp. might
also have decreased plant-available Cd by reducing rhizospheric pH through the production of metal
phosphates [15,41], through metal-chelating proteins, and/or by intracellular uptake of Cd [49,50].

The physiology of the pea plants was shown to be adversely affected by the concentration of Cd in
the soil, and this resulted in plant growth parameters (plant height, root dry weight, shoot dry weight,
and seed weight) showing a negative correlation with the available Cd in the soil. Application of
biochar, gravel sand, or both and these treatments with the addition of bacterial inoculation resulted in
a reduction of Cd-induced phytotoxic disturbances and improved growth. The reduction in the growth
of crops might be because one of the toxic impacts of Cd is that it stunts plant roots, particularly the
formation of the lateral roots, and this ultimately affects nutrient uptake and plant growth [14,15,51–54].
Further, Cd can occupy exchange sites and thus interfere with the plant nutrient uptake [55,56],
or it can affect the soil microbial activity necessary for nutrient cycling [57,58]. In the present study,
while improved plant growth parameters were observed with the application of biochar, gravel sand,
or both, the maximum increase in growth was recorded with microbial inoculation along with these
immobilizing agents. This might be in part due to the ability of Enterobacter sp. MN17 to grow
on high Cd levels [15], but this endophytic bacterial strain has been shown to have several other
beneficial plant-growth-promoting characteristics: phosphate solubilization, siderophore production,
1-aminocyclopropane-1-carboxylate-deaminase activity, indole-3-acetic acid, and exopolysaccharides
production under both normal and stress conditions [36,59]. These properties may explain the
improvement of plant growth in pots with inoculated seeds but no soil amendments (Figure 1).

An excess of heavy metals including Cd in soil or the plant body causes significant reductions
in gaseous exchange parameters of plants [15,26,60–64]. We observed improvement in gaseous
exchange parameters such as internal CO2 concentration, net assimilation rate, evapotranspiration
rate, and SPAD index of pea plants growing in Cd-contaminated soil when soil additives and bacterial
inoculation reduced the rhizosphere and plant concentrations of Cd (Figures 2 and 3). The reduction
in gaseous exchange parameters caused by Cd might be due to impaired stomatal physiology [65],
resulting in lowered internal CO2 concentrations, net assimilation of photosynthates, and transpiration.
Replacement of central Mg2+ of the chlorophyll molecule by Cd may also be deleterious and decreases
the net assimilation rate.

The negative effects of Cd concentration on nutritional quality (Table 2) may be because of the
interruption of absorption of essential plant nutrients through reduced root proliferation [66,67].
Bacterial inoculation may enhance nutrient uptake (Fe and Zn) through the production of various
metabolites, e.g., organic acids which release fixed nutrients so they are available for plant
utilization [68,69]. The Enterobacter sp. MN17 has the potential to chelate Fe through siderophore
production and to solubilize Zn, thus enhancing the uptake of both nutrients, as shown in the present
study. Cadmium uptake and allocation are also associated with divalent metal cations (including Fe
and Zn) transporters; the higher uptake of these nutrients might be a result of direct competition with
Cd. Further, biochar is also a source of macro- and micronutrients and can play a role in nutrients
uptake through different mechanisms. Applied biochar, gravel sand, and bacterial strain MN17 might
have evoked plant physiological adaptation to a stressed environment which subsequently enhanced
the nutritional quality of the pea seeds [70].

Improved nutrient uptake results in higher nutritional qualities [71,72], and this was the case
in our experiments as higher uptake of Zn and Fe, following application of biochar, gravel sand,
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and bacterial inoculation, provided for improved values of pea seeds quality parameters (protein, fat,
fiber, and ash) in the Cd-spiked soil.

In the control treatment, a higher concentration of Cd in plants was observed with Cd spiking
in the soil (Figure 3). The application of biochar and gravel sand alone and in combination resulted
in decreased Cd uptake by pea plant roots and shoots. However, their combined application along
with bacterial strain MN17 resulted in a maximum decrease in Cd uptake by pea plants. These results
suggested a mutually bipartite relationship between the applied amendments and endophytic bacterium
MN17. The decreased uptake of Cd in microbial inoculated plants under immobilizing agents might
be due to the enhanced Cd immobilization in soil [13–15,47,73]. These results are substantiated by
the findings of other researchers as well [74–76]. Enterobacter sp. MN17 probably had reduced the
available fractions of Cd in soil by the formation of metal-chelating proteins and/or by intracellular
uptake of Cd [15,49,50]. Lower availability of Cd may also be due to the aging effect of the applied
treatments, which results in a decline in exchangeable/soluble fractions of metals over time caused by
surface adsorption, precipitation, or complex formation.

World population growth means that, increasingly, crops will need to be grown on problematic
soils. Cost-effective solutions are needed to avoid detrimental effects on plant growth and human
health. Our results on the use of soil amendments and bacterial inoculation of peas add to the body of
evidence that such treatments ameliorate the impact of excess soil Cd.

4. Materials and Methods

4.1. Soil Preparation, Seed Source, and Inoculation with Enterobacter sp. MN17

Soil samples were collected from the local Research Farm of Institute of Soil and Environmental
Sciences (ISES), University of Agriculture, Faisalabad (UAF), Pakistan. It was air-dried and then ground
to pass through a 2.0-mm sieve. Soil samples were analyzed for the physicochemical characteristics
listed in Table 3. Soil particle size was analyzed following the method of Gee and Bauder [77].
The textural class analysis revealed that the texture was sandy clay loam. Saturation percentage,
soluble carbonates (CO3

2−), and bicarbonates (HCO3−) were measured according to the method
given by Richards [78]. Organic matter (%) and total nitrogen in the soil were measured according to
Moodie et al. [79], available phosphorous was measured using the Watanabe and Olsen [80] method,
and available potassium was measured using the method of Simard [81] by Flame photometer (Jenway
PFP7, UK). For Diethylenetriamine pentaacetic acid (DTPA) extractable Cd, 0.05 mol L−1 DTPA at pH
7.3 was used to measure Cd directly by atomic absorption spectrophotometery (AAS) (Perkin Elmer
Aanalyst-100, USA).

A culture of the endophytic bacterial strain was taken from Environ. Sci. Lab., Inst. Soil Environ.
Sci., University of Agriculture, Faisalabad. This strain was previously isolated from maize root tissues
and is known to tolerate heavy metals and to improve the growth and yield of various crops under
normal and abiotic stress conditions [15,36,59,82,83]. The culture of Enterobacter sp. MN17 used for
seed inocululation was prepared by placing a loopful of inoculum into 100-mL tryptic soy broth in a
200-mL Erlenmeyer flask. This was incubated on an orbital shaker (VWR International GmbH, Austria)
at 120 rpm for 24 hours at 28 + 2 ◦C. Harvesting of the culture and population establishment were
performed as described by Saeed et al. [15]. Healthy seeds of pea plants were surface sterilized by
following the method of Naveed et al. [82]. Seeds were then inoculated with the MN17 broth, peat, and
clay mixed with a 10% sugar solution. Seeds were shaken until a fine layer of inoculum appeared on
the seeds and were then dried in the laboratory overnight. Seeds of pea cultivar “Meteor Faisalabad”
were very kindly provided by Vegetable Research Institute, Ayub Agricultural Research Institute,
Faisalabad, Pakistan.
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Table 3. Physicochemical characteristics and nutritional composition of sugarcane bagasse biochar and
soil utilised in this study.

Physical/Chemical Properties Soil Biochar

Textural class Sandy clay loam -
Sand (%) 50 ± 1.2 -
Silt (%) 35 ± 0.05 -

Clay (%) 15 ± 1.70 -
pH 7.33 ± 0.04 6.50 ± 0.05

Electrical conductivity (dS m−1) 2.45 ± 0.01 1.61 ± 0.04
Cation exchange capacity (cmolc kg−1) 6.89 ± 1.46 88.40 ± 2.2

Moisture % 30 ±1.33 3.10 ± 0.11
Soluble carbonates (mmolc L−1) 0.88 ±0.42 -

Soluble bicarbonates (mmolc L−1) ND -
Organic matter (%) 0.77 ± 0.12 -
Organic carbon (%) - 60.51 ± 0.70

Nitrogen (%) 0.046 ± 0.47 1.59 ± 0.01
Available phosphorous (mg kg−1) 3.40 ± 1.12 -

Total phosphorus (g kg−1) - 3.21 ± 0.42
Extractable potassium (mg kg−1) 110 ± 2.10 -

Total potassium (g kg−1) - 2.01 ± 0.18
Zinc (mg kg−1) - 77.32 ± 3.21
Iron (mg kg−1) - 110.31 ± 5.31

Total cadmium (mg kg−1) 0.53 ± 0.10 ND

The values are mean ± S.E. (n = 3). ND: not detected; - parameters not measured.

4.2. Selection of Immobilizing Agents (Biochar and Gravel Sand) and Experimental Setup

Biochar derived from sugarcane bagasse was prepared in a laboratory muffle furnace at the
pyrolysis temperature of 300 ◦C, following Sanchez et al. [84]. Biochar produced at 300 ◦C effectively
immobilizes various heavy metals including Cd [85,86], while that produced at higher temperatures has
a reduced proportions of C-containing functional groups which are responsible for metal adsorption [87].
Briefly, after pyrolysis of feedstock, biochar was cooled to room temperature and passed through a
0.25-mm sieve. An analysis of its physicochemical properties is shown in Table 3. Electrical conductivity
(EC) and pH were examined by preparing a 1:20 (w/v) solution, and cation exchange capacity (CEC)
followed the NH4-acetate method described by Gaskin et al. [88]. Moisture content was measured
following Enders and Lehmann [89] using the following equation;

Moisture contents (%) = {(weight as received − weight 105 ◦C dried)/weight as received} × 100 (1)

Gravel sand (2 mm) used in this experiment was purchased from the Pakistan Minerals Company,
Karachi, Pakistan.

The soil was artificially spiked with Cd by adding cadmium chloride (CdCl2) salt at the rate of
60 mg kg−1 and by mixing continuously for two weeks for uniform distribution of the salt. Gravel
sand and biochar were added at the rate of 1% (w/w). Polythene lined pots were filled with 8 kg of
the prepared soil mixes. There were 24 pots representing inoculated v/s uninoculated pots under
each applied treatment. Five seeds were sown in each pot, and after germination, the three most
vigorous plants were maintained. The following four treatments, each with and without bacterial
inoculation, were arranged in a completely randomized design (factorial) with three replications as T1:
control; T2: biochar; T3: gravel sand; and T4: biochar and gravel sand. The pots were placed in the
rain protected wire-house of ISES, UAF with no control on natural light, humidity, and temperature
throughout the growth period.
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4.3. Biomass and Physiological Measurements

On day 45 after germination, the physiological parameters, net assimilation rate (An), internal
carbon dioxide concentration (Ci), and evapotranspiration rate (ET) were determined using a portable
infrared gas analyzer (IRGA model LCA-4, Germany). Soil Plant Analysis Development (SPAD) index
was estimated from the top 2nd and 3rd fully expanded youngest leaves of each plant using a portable
chlorophyll meter (SPAD-502-meter Minolta, Osaka, Japan). Five readings were taken for each leaf and
then averaged to assess the physiological gas exchange attributes and SPAD index.

On day 65 after germination, the plants were harvested. Plant growth was assessed from plant
height (cm), dry weight of shoots (total above ground biomass) and roots (g·pot−1), and seed weight.

4.4. Chemical and Biochemical Analyses of Pea Seeds

Determination of Fe and Zn in the pea seeds was carried out by digesting a known weight of
grains in a di-acid mixture having the ratio 2:1 (HNO3: HClO4) [90]. Biochemical parameters (protein,
ash, fiber, and fats) of pea seeds were measured according to the standard protocols. The concentration
of protein in seed samples was evaluated following the method of Bradford [91]. Pea seed samples
were analyzed for ash, fat, and fiber following the methods of AOAC [92].

Ash analysis of grain was done following below-mentioned equation:

Ash (%) =
Weight o f ash

Weight o f sample
× 100 (2)

The ether extract method was used for fat determination by using a Soxhlet apparatus and by
applying the following equation:

Fat (%) =
Weight o f ether extract

Weight o f sample
× 100 (3)

All devices utilized for chemical and biochemical examinations were soaked in diluted HNO3

(pro analysis quality, Merck) and washed with deionized water before use.

4.5. Persistence of Inoculant Strain MN17 in the Rhizosphere, Root, and Shoot Tissues

The inoculant strain was recovered from the rhizosphere, root, and shoot tissues of pea plants
following dilution and plate counting technique. Rhizosphere (5 g) and root/shoot (2 g) samples were
obtained and were homogenized by mixing with 15 mL of 0.9% (w/v) NaCl solution and agitation
(180 rpm) for 30 min at 28 ◦C. After settling suspensions, serial dilutions up to 10−6 were plated onto a
10% tryptic soya agar (TSA) medium. The plates were incubated at 28 ± 2 ◦C for 48 hours and colonies
were counted to determine the colonization value (CFU per g dry soil/tissues weight). Twenty colonies
from each treatment were randomly selected, and their identity as the inoculant strain was confirmed
by restriction fragment length polymorphism (RFLP) analysis of the 16S–23S rRNA intergenic spacer
(IGS) region [93].

4.6. Cd Concentration in Soil and Plant Tissues

For determination of Cd in soil, 10 g air-dried soil subsamples were placed in 20 mL of DTPA
solution (0.05 mol L−1 at pH 7.3) and shaken on a reciprocal shaker at 200 rpm for 15 min [94]. Cadmium
concentration in soil samples was then measured directly from soil extracts after filtration by AAS.
For determination of Cd concentration in plants tissues, samples were dried in an oven at 70 ◦C for
24 h and then ground, weighed, and digested with 2 mL nitric acid (HNO3) and 1 mL per chloric acid
(HClO4) (2:1 ratio v/v). Afterward, samples were heated on a hot plate at 350 ◦C until dense white
fumes appeared. The contents of these flasks were cooled, filtered, and stored in plastic bottles for
further determinations by AAS (Perkin Elmer Aanalyst-100, Waltham, USA) [95].
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4.7. Statistical Analysis

The data were subjected to variance analysis [96] by using software SPSS version 22. Significant
differences between treatment means were calculated by Duncan’s Multiple Range Test (DMRT) at
p ≤ 0.05. Graphs were drawn using computer-based software (Origin Pro 9.1), and principal component
analysis (PCA) was performed using XLSTAT software (version 2014).

5. Conclusions

This study clearly demonstrated that the detrimental effects of Cd in soil on pea plant growth
and biochemical and nutritional properties can be ameliorated by applying metal immobilizing
amendments such as biochar and gravel sand, either alone or in combination. These positive effects
are considerably enhanced by the coapplication of Enterobacter sp. MN17 as a seed inoculant. Both the
applied biochar and gravel sand efficiently immobilized Cd in soil by reducing its concentration in the
soil and its uptake by the plants. We conclude that the combined application of biochar, gravel sand,
and Enterobacter sp. MN17 inoculation is a valuable, environment-friendly solution to ameliorate soils
contaminated with Cd for safer production of crops, especially vegetables.
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