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Keratinocytes Derived from Patient-Specific Induced
Pluripotent Stem Cells Recapitulate the Genetic

Signature of Psoriasis Disease

Gowher Ali,1,* Ahmed K. Elsayed,1,* Manjula Nandakumar,1 Mohammed Bashir,2 Ihab Younis,3

Yasmin Abu Aqel,1,4 Bushra Memon,1,4 Ramzi Temanni,5 Fadhil Abubaker,6

Shahrad Taheri,7 and Essam M. Abdelalim1,4

Psoriasis is characterized by hyperproliferation and defective differentiation of keratinocytes (KCs). Patients with
psoriasis are at a high risk of developing diabetes and cardiovascular diseases. The debate on the genetic origin of
psoriasis pathogenesis remains unresolved due to lack of suitable in vitro human models mimicking the disease
phenotypes. In this study, we provide the first human induced pluripotent stem cell (iPSC) model for psoriasis
carrying the genetic signature of the patients. iPSCs were generated from patients with psoriasis (PsO-iPSCs) and
healthy donors (Ctr-iPSCs) and were efficiently differentiated into mature KCs. RNA sequencing of KCs derived
from Ctr-iPSCs and PsO-iPSCs identified 361 commonly upregulated and 412 commonly downregulated genes.
KCs derived from PsO-iPSCs showed dysregulated transcripts associated with psoriasis and KC differentiation, such
as HLA-C, KLF4, chemokines, type I interferon-inducible genes, solute carrier family, IVL, DSG1, and HLA-DQA1,
as well as transcripts associated with insulin resistance, such as IRS2, GDF15, GLUT10, and GLUT14. Our data
suggest that the KC abnormalities are the main driver triggering psoriasis pathology and highlights the substantial
contribution of genetic predisposition in the development of psoriasis and insulin resistance.

Keywords: induced pluripotent stem cells, genetic predisposition, keratinocytes, insulin resistance, skin dis-
order, transcriptome profiling

Introduction

Psoriasis is an immune-mediated chronic inflammatory
skin disorder, characterized by hyperproliferation and

defective differentiation of epidermal keratinocytes (KCs).
Psoriasis affects multiple organs beyond the skin and has
been associated with metabolic dysfunction (eg, insulin re-
sistance) and cardiovascular diseases. It has been hypothe-
sized that psoriasis arises due to environmental assaults on a
background of genetic predisposition. Psoriasis can aggre-
gate in families with estimated heritability of up to 80% [1,2].
Previous genome-wide association studies (GWAS) have
identified more than 60 psoriasis susceptibility regions, in-

cluding loci associated with regulation of T cell function,
macrophage activation, nuclear factor-kB signaling, and in-
terferon (IFN)-mediated antiviral responses [3–9]. Sub-
stantial work has been done to identify genes and pathways
altered in psoriatic lesions compared with normal skin using
different molecular and genomic approaches [4,9–17]. Ge-
netic alterations in the signaling pathways that activate in-
flammatory immune responses in KCs can change skin
homeostasis and induce psoriasis.

Although several hereditary and environmental factors
are known to be involved in the development of psoriasis,
the distinction between genetic and acquired factors impli-
cated in the KC abnormalities during psoriasis development
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and its progression remain unknown. Mouse models have been
used to understand psoriasis pathogenesis [18,19]; however,
human psoriasis phenotypes are difficult to reproduce in animal
models. Therefore, there is a need to establish a human model
that can recapitulate the patient KC-specific genetic signature.
Induced pluripotent stem cells (iPSCs) have allowed for the
generation of in vitro models of human diseases. Patient-specific
iPSCs can provide genetically relevant cells, recapitulating the
disease phenotype in vitro to understand genetic alterations as-
sociated with psoriasis. To our knowledge, there are no reports
studying KC abnormalities in psoriasis using human iPSC-based
model. Therefore, in this study, we have established the first in
vitro iPSC-based model to study genetic alterations in KCs de-
rived from patient-specific iPSCs.

Materials and Methods

Patient samples

The study has been approved by the appropriate Institu-
tional Research Ethics Committee and has been performed
in accordance with the ethical standards as laid down in the
1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. Blood samples were obtained
from two subjects with psoriasis and two healthy individuals
from Hamad Medical Corporation (HMC) hospital with full
informed consent. The protocol was approved by the In-
stitutional Review Board (IRB) of HMC (no. 16260/16) and
Qatar Biomedical Research Institute (QBRI) (no. 2016-003),
Qatar. Both patients were insulin resistant and had a family
history of psoriasis. Patient 1 (PsO1) was a 32 years old
female; prediabetes (HBA1c of 6.4%) confirmed the pres-
ence of insulin resistance. Patient 2 (PsO2) was a 45 years
old male; insulin resistance was confirmed based on a
measured HOMA-IR of 2.55. Both patients with psoriasis do
not smoke and both of them have family history of psoriasis.
Both of them are on topical treatment for psoriasis. Both
healthy controls had no family history of psoriasis or dia-
betes. Control 1 (Ctr1) was a 27 years old male and control 2
(Ctr2) was a 28 years old female.

Generation of human iPSCs

The peripheral blood mononuclear cells (PBMCs) were
isolated from the blood samples using Ficoll-Paque Premium
according to the manufacturer’s instructions (Sigma-Aldrich).
The PBMCs were cultured in StemPro-34 SFM Complete
Medium (Gibco) for at least 4 days before reprogramming.
The cells were transduced with the CytoTune-iPS 2.0 Sendai
reprogramming kit (Thermo Fisher Scientific). At day 3 after
reprogramming, the cells were seeded on Matrigel-coated
plates and cultured in StemPro medium without cytokines. At
day 7, half of the medium was replaced with ReproTeSR
medium (Stem Cell Technologies) and the medium was
completely changed to ReproTeSR at day 8. The iPSCs
colonies generated between days 15 and 30 were manually
picked, expanded, and maintained in mTESR-1 medium
(Stem Cell Technologies) (Fig. 1A). The established hiPSC
lines were registered in (https://hpscreg.eu) website and were
assigned unique stem cell line names as follows: QBRIi001-
A (Ctr1-iPSCs-C1), QBRIi001-B (Ctr1-iPSCs-C2),
QBRIi001-C (Ctr1-iPSCs-C3), QBRIi002-A (Ctr2-iPSCs-
C1), QBRIi002-B (Ctr2-iPSCs-C2), QBRIi002-C (Ctr2-

iPSCs-C3), QBRIi005-A (PsO1-iPSCs-C1), QBRIi005-B
(PsO1-iPSCs-C2), QBRIi005-C (PsO1-iPSCs-C3), QBRIi006-
A (PsO2-iPSCs-C1), QBRIi006-B (PsO2-iPSCs-C2), and
QBRIi006-C (PsO2-iPSCs-C3).

Differentiation of iPSCs toward KCs

KC differentiation protocol was performed based on previ-
ously published protocols [20,21] with minor modifications. The
commercially available H1-human embryonic stem cell (hESC)
line was obtained from WiCell Research Institute (Madison, WI)
and was used as a control. In brief, H1-hESCs, Ctr-iPSCs (Ctr1-
iPSCs and Ctr2-iPSCs), and PsO-iPSCs (PsO1-iPSCs and PsO2-
iPSCs) were seeded as small clumps on Geltrex (1:100; Thermo
Fisher Scientific)-coated plates in mTeSR medium. Differ-
entiation was started using unconditioned medium (UCM)
composed of Knockout Dulbecco’s modified Eagle’s medium-
F12 (DMEM/F12) (Thermo Fisher Scientific), 20% knockout
serum replacement medium, 1 mM l-glutamine, 1% nonessen-
tial amino acids (NEAA), and 0.1 mM beta mercaptoethanol
supplemented with 1mM retinoic acid (RA) (Sigma-Aldrich)
and 20 ng/mL bone morphogenic protein 4 (BMP4) (Thermo
Fisher Scientific) for 1 week. At day 5 of differentiation, the cells
were replated using ReLeSR (Stem Cell Technologies) and the
medium was switched stepwise from UCM to N2 medium (1:1)
containing knockout DMEM/F12, 1% N2-supplement (Thermo
Fisher Scientific), 1% l-glutamine, and 1% NEAA supple-
mented with RA and BMP4. At day 7 of differentiation, the
cultured medium was switched completely to N2 medium con-
taining 10 ng/mL EGF and the cells were grown until day 14 of
differentiation. At day 14 of differentiation, the cells were de-
tached using Tryple E express (Thermo Fisher Scientific) and
plated at high density in N2 medium containing 10 ng/mL EGF
until day 30 of differentiation. The cells were treated for the last
8 days with high calcium (1.2 mM) to induce KC maturation
(Fig. 3A).

Immunostaining

Immunostaining was performed as previously reported
[22,23]. The antibody details are described and listed in
Supplementary Table S1.

Western blotting

Total protein was extracted from the undifferentiated iPSCs
or differentiated KCs using RIPA (Thermo Fisher Scientific).
The protein concentration was measured using Pierce� BCA
Protein Concentration Assay Kit (Thermo Fisher Scientific).
The proteins were dissolved in sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) buffer and
transferred to polyvinylidene fluoride membranes. The mem-
branes were incubated overnight at 4�C with primary anti-
bodies and with secondary antibodies for 1 h (see
Supplementary Table S1 for the antibody list). Membranes
were developed using SuperSignal West Pico Chemilumi-
nescent substrate (Pierce, Loughborough, UK) and visualized
using iBright� CL 1000 Imaging System (Invitrogen).

Alkaline phosphatase assay

For alkaline phosphatase assay, the iPSCs colonies were
washed once with phosphate-buffered saline (PBS) and then
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fixed with 4% paraformaldehyde for 2 min. The colonies were
stained using Alkaline Phosphatase Kit SCR004, Merck Mil-
lipore) according to the the manufacturer’s instructions.

In vitro spontaneous differentiation

Spontaneous differentiation was induced by embryoid bodies
(EBs) formation. Undifferentiated iPSCs of the generated
clones were dissociated using TrypLE� (12604013; Gibco)
and cultured in low-attachment six-well plates in mTeSR media
with 10mM Rock inhibitor Y27632 (04001201; Stemgent) for
the first 24 h followed by transition to EB differentiation me-
dium (DMEM/F12, 20% KOSR, 1% pen–strep, 1 mM
l-glutamine, 1% NEAA, and 0.1 mM b-mercaptoethanol).
After 4 days in suspension culture, the formed EBs were
transferred on Matrigel-coated plates in the same media with
changing the media every day. After 10–15 days, the differ-
entiated EBs were examined using immunostaining and reverse
transcription polymerase chain reaction (RT-PCR) for the ex-
pression of the markers of the three germ layers (ectoderm,
mesoderm, and endoderm).

Direct differentiation of the generated hiPSCs
into the three germ layers

For ectodermal differentiation, the iPSCs were differentiated
using EB formation method. In brief, the dissociated cells were
cultured in suspension using the differentiation media consist-
ing of DMEM/F12 with 20% KOSR, 1 mM l-glutamine, 1%
NEAA, 1% pen–strep, 0.1 mM b-mercaptoethanol) supple-
mented with 1mM of RA (R2626; Sigma-Aldrich) and 0.25 mM
vitamin C (A4544; Sigma-Aldrich) for successive 2 to 3 days.
For mesodermal differentiation, the cells were cultured for
2 days in MCDB media (Thermo Fisher Scientific) supple-
mented with 50 ng/mL activin A (338-AC; R&D Systems),
5mM CHIR99021 (04-0004; Stemgent), and 0.25 mM vitamin
C (A4544; Sigma-Aldrich). For endodermal differentiation, the
cells were cultured for 1 day in MCDB media (Thermo Fisher
Scientific) supplemented with 100 ng/mL activin A (338-AC;
R&D Systems), 2mM CHIR99021 (04-0004; Stemgent), and
0.25 mM vitamin C (A4544; Sigma-Aldrich) then followed by
2 days culture with 100 ng/mL activin A (338-AC; R&D Sys-
tems) and 5 ng/mL of bFGF (Stem Cell Technologies).

hPSC ScoreCard assay

EBs were formed as discussed previously, and 1mg of
RNA was used to prepare the template cDNA using the High
Capacity cDNA Reverse Transcription kit (4374966; Applied
Biosystems, CA). TaqMan� hPSC Scorecard� Kit 96w fast
assays (A15876; Life Technologies) was run on a Quant-
Studio7 Flex Real-Time PCR system (Applied Biosystems)
using the ‘‘hpsc-ScoreCard-template-QuantStudio7-96-well’’
template according to manufacturer’s instructions. Data
analysis was performed through the cloud-based TaqMan
hPSC Scorecard analysis software, which is available online
at www.lifetechnologies.com/scorecarddata.

Karyotyping

The karyotyping status and chromosome spread in the
generated iPSC clones was investigated using the Giemsa
banding technique. In brief, the 60%–70% confluent cells were

cultured for 2 h in KaryoMAX colcemid solution (Thermo
Fisher Scientific) with a final concentration of 100 ng/mL to
obtain a large number of metaphase spreads. Cells were dis-
sociated with trypsin, followed by treatment with hypotonic
solution; KaryoMAX 75 mM potassium chloride solution
(Thermo Fisher Scientific) for 20 min at 37�C, then fixed with
solution composed of methanol/glacial acetic acid (3:1). Ice-
cold cell suspension was dropped onto cleaned slides and aged
for 1 h at 90�C. Slides were stained with Giemsa after trypsin
treatment. Twenty metaphases each were analyzed with a
mean resolution of 200–300 bands per haploid chromosome
set. The karyotype formula is given according to ISCN 2016
[24] and indicated as composite karyotype [cp20] reflecting
the sum of 20 metaphases analyzed.

Short tandem repeat profiling

DNA were extracted from all the generated iPSC clones
using DNA purification kit (NORGEN, BIOTEK). The ge-
netic signature of the samples was detected using AmpFlSTR�

Identifiler� Plus PCR Amplification Kit (Applied Biosynthesis
Life Technologies) based on the multiplex assay of 15 tetra-
nucleotide repeat loci and the Amelogenin gender-determining
marker. PCR was amplified following the manufacture’s in-
struction. The polymerase chain reaction (PCR) products were
run in the 3,500/3,500 · L genetic analyzer (Applied Biosys-
tems, Life Technologies) and analyzed using the GeneMapper�

ID Software (Applied Biosystems, Life Technologies) following
the manufacturer’s recommendations.

RNA extraction, reverse transcription polymerase
chain reaction, and real-time PCR

The total RNA was extracted from iPSCs and H1-hESCs
using RNeasy Plus Mini Kit (QIAGEN) or Direct-zol RNA
Extraction Kit (Zymo Research) following the manufacturer’s
instructions. cDNAs were synthesized from 1mg of RNA using
superscript IV, First-Strand Synthesis System (Thermo Fisher
Scientific). PCR-Master mix (Thermo Fisher Scientific) used
for amplification of the specified genes by conventional PCR.
Real-time RT-PCR was performed using GoTaq qPCR Master
Mix (Promega) and amplification was detected using Quant
Studio 7 system (Applied Biosystems). The primer details
were listed in Supplementary Table S2.

RNA sequencing and data analysis

RNA was purified from at least two biological replicates for
each sample of mature KCs using Direct-zol RNA Extraction
Kit (Zymo Research). One micrograms of total RNA was used
to capture mRNA using NEBNext (Poly A) mRNA Magnetic
Isolation Kit (NEB, E7490) according to manufacturer’s in-
structions. RNA-sequencing (RNA-seq) libraries were gener-
ated using NEBNext Ultra Directional RNA Library Prep Kit
(NEB, E7420L) and sequenced on an Illumina Hiseq 4000
system. Basic trimming and quality control were performed
during the conversion of raw data to fastq using Illumina
BCL2Fastq Conversion Software v2.20. The STAR aligner
used in the following steps performs local as opposed to end-to-
end alignment and thus automatically trims adaptor sequences.
The FASTQ files of the RNA-seq reads were aligned to the
UCSC hg38 reference genome using the STAR aligner with
default parameters [25]. STAR produced uniquely mapped
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FIG. 1. Generation and characterization of iPSC lines. (A) Schematic diagram of the protocol used for iPSCs generation.
PBMCs were reprogrammed using cytotune 2.0 Sendai reprogramming kit. (B) Representative images showing the character-
ization of iPSCs generated from healthy controls (Ctr-iPSCs) and patients (PsO-iPSCs). The generated iPSCs showed hESC-like
morphology, strong alkaline phosphatase activity (ALP), and expressed the pluripotency markers (OCT4, SOX2, NANOG,
SSEA4, TRA-60, and TRA-81). (C) Western blotting showing the expression of pluripotency markers OCT4, NANOG, KLF4,
and SOX2. (D) RT-PCR analysis of the generated iPSCs showing the expression of the pluripotency markers, OCT4, SOX2,
NANOG, KLF4, REX1, TERT, DPPA4, and c-MYC. H1-hESCs were used as control. (E) Representative iPSC lines (Ctr1-
iPSCs, Ctr2-iPSCs, PsO1-iPSCs, and PsO2-iPSCs) showed normal karyotype by G-banding analysis. (F) Genetic profiling of the
generated iPSCs from healthy and psoriatic patients through the STR analysis showed that the iPSCs from each individual are
typically identical. Scale bars = 100mm. hESCs, human embryonic stem cells; iPSC, induced pluripotent stem cell; PBMCs,
peripheral blood mononuclear cells; RT-PCR, reverse transcription polymerase chain reaction; STR, short tandem repeat.
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reads into a BAM file, which was then passed to Regtools to
extract exon–exon junctions. The average length of mapped
reads for the samples was between 289 and 292 nucleotides.
The deep coverage of the sequencing experiment per sample
are summarized in Supplementary Table S3.

Cuffdiff was then used with default settings for differ-
ential expression analysis of genes [26]. Cuffdiff allows for

comparing samples with varying replicate numbers and
compute significance of the observed change between
samples, and outputs a P value for uncorrected test statistics
and q value for false discovery rate (FDR)-adjusted P value
using Benjamini-Hochberg correction for multiple testing.
For normalization purposes, Cuffdiff computes fragment per
kilobase per million mapped reads (FPKM), which takes

FIG. 2. Characterization of the generated iPSC lines. Phase contrast of the spontaneously generated EBs from repre-
sentative Ctr-iPSCs and PsO-iPSCs. Immunostaining showed the expression of the three germ layer markers, NESTIN,
BRACHYURY (T), and SOX17 after spontaneous differentiation (A) and direct differentiaiton (B). (C) RT-PCR analysis of
the three germ layer markers as indicated. The undifferentiated iPSCs of each sample used as a control. (D) Scorecard
analysis of the EBs derived from iPSCs showing a represetnative heatmap of the indicated genes (self-renewal, ectodermal,
mesodermal, and endodermal genes). Note that the expression of pluripotency markers were significantly downregulated
and the trilineage markers were significantly upregulated in the representative images of Ctr1-iPSCs and PsO2-iPSCs. Scale
bars = 100mm. DW, distal water; EBs, embryoid bodies.
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into account local and global differences in the distribution
of mapped read. For identifying differentially expressed
genes (DEGs), we only considered genes with FPKM >0.5
and P value <0.05. For visualization purposes (Venn dia-
grams and Heatmaps), the replicates were combined.

Gene ontology analysis was performed using the Mole-
cular Signature Data Base (MSigDB 6.2) software.

Glucose uptake assay

The differentiated KC progenitors at day 14 were disso-
ciated and plated on 96-well plates at 1–2 · 104 cells/well and
glucose uptake by these cells was monitored at day 30 using
the fluorescent D-glucose analog (2-NBDG) according to the
glucose uptake cell-based assay (Cat. no. 600470; Cayman,
Ann Arbor, MI). The cells were glucose-starved with Krebs
buffer for 4 h. Then one group of cells was treated with final
concentration of 200mg/mL of 2-NBDG and the other group
was treated with 100 nM insulin along with 200mg/mL of 2-
NBDG for 3 h. After washing twice with the buffer, the re-
tained fluorescence was measured with FLUOstar Omega
microplate reader (BMG Labtech, Ortenberg, Germany) at
excitation/emission wavelengths of 485 and 535 nm. Fold
increase in glucose uptake in response to insulin was com-
pared to its basal uptake in nontreated cells.

Proliferation assay

The proliferation assay was performed as previously re-
ported [22]. In brief, the KC progneitors (at day 14) and the
mature KCs (at day 30) of differentiation were treated with
BrdU (1:100; Thermo Fisher Scientific) for 6 h and then
were dissociated using TrypLE before fixation with 70%
ethanol overnight. The fixed cells were denatured with 2 M
HCl containing 0.5% Triton X-100 and neutralized by 0.1 M
sodium borate for 10 min. Cells were incubated for 2 h at
room temperature with anti-BrdU antibody, Alexa Fluor 488
(1:100, Cat. no. B35130; Thermo Fisher Scientific) in 2%
bovine serum albumin in PBS. The results were acquired on
BD Accuri� C6 flow cytometer (BD Biosciences) and the
data were analyzed using FlowJo software.

Statistical analysis

The results are expressed as mean – standard deviation, as
indicated in the figure legends. Statistical significance was
examined by two-tailed Student’s t-tests. Values of P < 0.05
were considered significant.

Data availability

The RNA-seq datasets generated and used in the present
study are available on the Zenodo repository at https://
doi.org/10.5281/zenodo.3484611.

Results

Generation and characterization of iPSCs
from patients with psoriasis

iPSCs were generated from PBMCs isolated from two
healthy donor controls (Ctr1-iPSCs and Ctr2-iPSCs) and two
patients with psoriasis who also had insulin resistance and
family history of psoriasis (PsO1-iPSCs and PsO2-iPSCs)
(Fig. 1A). From each sample, several iPSC lines were gener-
ated, and only three fully reprogrammed iPSC lines were
maintained from each sample. In the current study, we used six
hiPSC lines from patients with psoriasis (PsO1 and PsO2) and
six hiPSC lines from healthy controls (Ctr1 and Ctr2). Mor-
phologically, the iPSC clones showed similar characteristics to
hESCs (Fig. 1B). All iPSC lines were positive for alkaline
phosphatase (ALP) activity and expressed pluripotency mark-
ers, including OCT4, SOX2, NANOG, SSEA4, TRA1-60,
TRA1-81, KLF4, DPPA4, REX-1, and TERT, as examined
using immunostaining, western blotting, and RT-PCR (Fig. 1B–
D, Supplementary Figs. S1 and S2). The iPSC clones showed a
normal karyotype using the G-banding technique (Fig. 1E) and
lost the expression of transduced pluripotency markers and
Sendai virus backbone at passage 10–15 (Supplementary
Figs. S1 and S2). Short tandem repeat (STR) analysis showed
that the genetic profiling of all the three hiPSC lines established
from the same subject were identical (Fig. 1F).

To further confirm the ability of the generated iPSCs to
differentiate into the three germ layers, spontaneous and
direct differentiation were performed, using the EB tech-
nique (Fig. 2A) and direct differentiation protocols
(Fig. 2B), respectively. Immunostaining results showed the
expression of ectodermal (NESTIN), mesodermal (BRA-
CHYURY), and endodermal (SOX17) markers (Fig. 2A, B,
Supplementary Figs. S1 and S2). RT-PCR analysis showed
the expression of MAP2 and PAX6 (ectoderm), BRA-
CHYURY and VIMENTIN (mesoderm), and SOX17 and
GATA6 (endoderm) (Fig. 2C).

The pluripotent ability of the generated iPSCs was con-
firmed through a comprehensive real-time PCR TaqMan
hPSC Scorecard Panel, consisting of 94 individual q-PCR
assay including a combination of lineage-specific, self-
renewal, control, and housekeeping genes. The scorecard
results showed that the iPSCs were able to differentiate
spontaneously into the three germ layers with loss of plur-
ipotency marker expression (Fig. 2D).

Differentiation of patient-specific iPSCs into KCs

To identify the genetic defects in KCs associated with
psoriasis, we sought to differentiate Ctr-iPSCs and PsO-
iPSCs into KCs (Fig. 3A). H1-hESCs, Ctr-iPSCs, and PsO-
iPSCs were differentiated into KC progenitors (Fig. 3B, C)

‰

FIG. 3. Differentiation of patient-specific iPSCs into KCs. (A) A schematic overview of iPSC differentiation into KCs. At
day 14 of differentiation, the KC progenitor markers (KRT18 and p63) and pluripotency markers (OCT4 and NANOG) were
examined using immunostaining (B) and qRT-PCR (C). (D) Immunostaining images showing the coexpression of mature KC
markers, KRT14 and LOR, KRT1 and IVL, and p63 and LAM in KCs derived from H1-ESCs, Ctr-iPSCs and PsO-iPSCs at
day 30 of differentiation. The nuclei were stained with Hoechst staining. (E) Western blotting showing the expression of
mature KC markers, KRT19, KRT14, and IVL in mature KCs at day 30 of differentiation. *P < 0.05, ***P < 0.001. Scale
bars = 100mm. BMP4, bone morphogenetic protein 4; H, Hoechst; EGF, epidermal growth factor; IVL, involucrin; KCs,
keratinocytes; LAM, laminin; LOR, loricrin; qRT-PCR, quantitative reverse transcription-PCR; RA, retinoic acid.
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and mature KCs (Fig. 3D, E). At day 14 of differentiation
(KC progenitors), the cells were examined using im-
munostaining, real-time PCR (Fig. 3B, C), and RT-PCR
(Supplementary Fig. S3). The results showed robust down-
regulation in the expression of the pluripotency markers in
KC progenitors in comparison to the undifferentiated Ctr-
iPSCs (Fig. 3C), confirming the loss of pluripotency. In
contrast, all the differentiated cells showed significant in-
creased expression of epithelial marker keratin 18 (KRT18)
and KC marker p63 as confirmed by immunostaining and
real-time PCR (Fig. 3B, C), indicating the generation of cell
populations committed to ectodermal lineage resembling
KC progenitors. Interestingly, we noticed a significant up-
regulation in the expression of p63 mRNA in KC progeni-
tors derived from both PsO-iPSCs (KCs-PsO) in comparison
to those derived from Ctr-iPSCs (KCs-Ctr) (Fig. 3C).

At day 30 of differentiation, the cells were examined for
the expression of mature KC markers. The immunostaining
results showed that the differentiated cells expressed
markers of mature KCs, including keratin 14 (KRT14),
loricrin (LOR), keratin 1 (KRT1), involucrin (IVL), laminin,
and p63 (Fig. 3D, Supplementary Figs. S4–S6). Further-
more, western blot analysis showed the expression of
E-Cadherin (E-Cad), KRT19, KRT14, and KRT1 (Fig. 3E).
These results confirm the efficient differentiation of differ-
ent iPSC lines into mature KCs. We noticed that E-Cad and
KRT14 were upregulated in KCs-PsO1 and KCs-PsO2 in
comparison to KCs-Ctr and KCs-H1 (Fig. 3E). Furthermore,
the KCs successfully constructed three-dimensional (3D)
skin equivalents and expressed markers of epidermal KCs
(Supplementary Data and Supplementary Fig. S7). These
results suggested that 3D skin equivalents can be generated
from the KCs derived from iPSCs.

Transcriptomic analysis of iPSC-derived KCs

To investigate the differences in the gene expression
profiles of KCs-PsO and KCs-Ctr, we performed tran-
scriptomic analysis using RNA-seq. The RNA-seq analysis
identified DEGs based on two comparisons (KCs-Ctrl vs.
KCs-PsO1 and KCs-Ctrl vs. KCs-PsO2). Comparison of
KCs-Ctrl with KCs-PsO1 identified 1,904 DEGs with P
value <0.05, of which 857 gene were upregulated [fold
change (FC) >1.5] and 1,047 genes were downregulated (FC
<0.5) (Fig. 4A, B). In KCs-PsO2, 1,457 genes were differ-
entially expressed with P value <0.05, of which 723 genes
were upregulated (FC >1.5), while 734 genes were down-
regulated (FC <0.5) (Fig. 4A, B).

Next, we performed pathway analysis to identify bio-
logical functions/pathways enriched among DEGs that are
common in KCs derived from both patients; KCs-PsO1 and
KCs-PsO2. Among these, 361 genes were commonly up-

regulated (FC >1.5), while 412 genes were commonly
downregulated in both KCs-PsO1 and KCs-PsO2 (FC <0.5)
(Fig. 4B). The GO terms for these commonly upregulated
genes showed their role in immune response, type I IFN
signaling pathway, response to IFN-gamma, and cytokine-
mediated signaling pathway, while the commonly down-
regulated genes were involved with GO terms epidermis
development, response to external stimulus, KC differenti-
ation, cell–cell adhesion, and glucose transport (Fig. 4D–I)
(Table 1). Although we have identified large number of
common DEGs in both PsO-iPSCs, the results showed that
the phenotypes were more severe in KCs-PsO1 in com-
parision to KCs-PsO2 (Fig. 4D–I).

We observed significant upregulation in several antiviral
(type I IFN-indcible) genes, including IFITM1, IFIT3,
IFIT2, IFI44, IFI44L, IFIT1, IFI6, IFITM2, IFITM3, IFIT3,
IFIT5, IFI16, IFIH1, IRF9, IRF2BPL, BST2, OAS3, OAS1,
MX1, ISG15, IFIH1, DDX60, TRIM21, CXCL14, and
CXCL10, in the differentiated KCs derived from both PsO-
iPSCs (Fig. 4H) (Table 1). In addition to the antiviral genes,
several immune response and chemokine genes were sig-
nificantly upregulated, including CD55, CD274, SERP-
ING1, TRIM21, IRF9, FOXC1, DUSP10, NOTCH1,
IRF2BPL, CXCL10, and CXCL14 (Fig. 4G) (Table 1).

Among the signifcantly upregulated genes, there are
genes reported by previous studies to be associated with
psoriasis, such as immune response genes, HLA-C, KLF4,
SERPING1, TNFAIP2, S100 calcium-binding proteins
(S100P and S100A14) , CD274, NOTCH1, SOCS1, FOXC1,
SLC20A1, SLC19A2, SLC25A25, SLC6A8, SLC20A1, and
KRTAP19-1, while the downregulated genes, such as solute
carrier genes (SLC38A11, SLC22A3, SLC12A8, SLC2A14,
and SLC6A1), PRR9, and HLA-DQA1 (Fig. 4F) (Table 1).
We also found several downregulated genes associated with
KC differentiation, such as IVL, DSG1, KRT3, KRT16, KLK7,
STRA6, PCDHB13, PCDHGC5, and PROM2 (Fig. 4I). In-
terestingly, some DEGs associated with insulin resistance and
type 2 diabetes (T2D) were observed to be upregulated, such
as IRS2 and GDF15, or downregulated, such as SLC2A14 and
SLC2A10 (Table 1) (Supplementary Table S4).

To confirm the RNA-seq data, we validated selected
genes dysregulated in KCs-PsO of both subjects using
quantitative reverse transcription-PCR (qRT-PCR) and
western blotting (Fig. 5A, B), which were consistent with
the RNA-seq data. Our qRT-PCR confirmed the significant
upregulation of HLA-C, BST2, OAS1, OAS3, IFI44, IFI44L,
IFIT3, IFITM1, IFITM3, PARP12, PARP14, KRTAP19-1,
TNFAIP2, SRR1A, IRS2, p63, and PSORS1C1. In contrast,
SLC39A4 and FLG were significantly downregulated
(Fig. 5A)), as observed by RNA-seq. At the protein level,
western blotting confirmed the upregulation of HLA-C,
KLF4 and p63 and the downregulation of FLG (Fig. 5B).

‰

FIG. 4. Transcriptomics alterations in KCs derived from PsO-iPSCs. Graphs (A) and Venn diagram (B) showing the
number of significantly upregulated and downregulated genes in KCs-PsO1 and KCs-PsO2 in comparison to KCs-Ctr. (C)
Volcano plot ploting the log2 fold change and the adjusted P value for all the detected transcripts. (D) A heatmap showing
DEGs in KCs-PsO1 and KCs-PsO2 compared to KCs-Ctr. Heatmaps showing upregulated (E) and downregulated (F) genes
assoiciated with psoriasis. Heatmaps showing important significantly upregulated genes related to immune response (G) and
type I IFN-induced genes (H). (I) A heatmap of genes involved in the differentiation and proliferation of KCs. The relative
value for each gene is depicted by color intensity, with blue indicating upregulated and red indicating downregulated genes.
DEG, differentially expressed gene; IFN, interferon.
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Table 1. Top Upregulated and Downregulated Genes in KC-PsO1-iPSCs and KC-PsO2-iPSCs

Compared with KCs Derived from Ctr-iPSCs (P < 0.05>

Upregulated genes

Gene symbol Gene title

PsO1 vs. Ctr PsO2 vs. Ctr

Log2 FC P Log2 FC P

IFITM1 IFN-induced transmembrane protein 1 6.82 5.00E-05 3.95 5.00E-05
IFIT3 IFN-induced protein with tetratricopeptide repeats 3 6.73 5.00E-05 3.39 5.00E-05
BST2 Bone marrow stromal cell antigen 2 6.02 5.00E-05 2.02 5.00E-05
IFIT2 IFN-induced protein 44 5.92 5.00E-05 2.32 5.00E-05
IFI44 IFN-induced protein 44 like 5.85 5.00E-05 2.67 5.00E-05
IFIT1 IFN-induced protein with tetratricopeptide repeats 1 5.81 5.00E-05 2.03 5.00E-05
IFI44L IFN-induced protein 44 like 5.64 5.00E-05 2.92 5.00E-05
OAS3 2¢-5¢-oligoadenylate synthetase 5.44 5.00E-05 3.01 5.00E-05
MX1 MX dynamin like GTPase 1 5.28 5.00E-05 2.11 5.00E-05
OAS1 2¢-5¢-oligoadenylate synthetase 1 5.11 5.00E-05 2.17 5.00E-05
IFI6 IFN alpha inducible protein 6 4.72 5.00E-05 1.73 5.00E-05
IFITM2 IFN-induced transmembrane protein 2 4.45 5.00E-05 2.67 5.00E-05
IFITM3 IFN-induced transmembrane protein 3 4.42 5.00E-05 3.46 5.00E-05
ISG15 ISG15 ubiquitin-like modifier 4.20 5.00E-05 1.62 5.00E-05
IFI16 IFN gamma inducible protein 16 2.19 5.00E-05 1.09 5.00E-05
IFIH1 IFN-induced with helicase C domain 1 1.91 5.00E-05 0.77 5.00E-05
IRF9 IFN regulatory factor 9 1.48 5.00E-05 0.55 0.0036
IFIT5 IFN-induced protein with tetratricopeptide repeats 5 2.69 5.00E-05 1.42 5.00E-05
CXCL14 C-X-C motif chemokine ligand 14 2.54 5.00E-05 1.44 5.00E-05
CXCL10 C-X-C motif chemokine ligand 10 2.32 0.00035 1.41 0.00345
SERPING1 Serpin family G member 1 4.37 5.00E-05 1.44 5.00E-05
SH2D5 SH2 domain containing 5 3.93 5.00E-05 2.77 5.00E-05
PARP12 Poly (ADP-ribose) polymerase family member 12 3.71 5.00E-05 1.99 5.00E-05
PARP14 Poly (ADP-ribose) polymerase family member 14 2.82 5.00E-05 1.35 5.00E-05
KRTAP19–1 Keratin-associated protein 19–1 3.27 5.00E-05 3.70 5.00E-05
GDF15 Growth differentiation factor 15 3.26 5.00E-05 2.80 5.00E-05
HSPA6 Heat shock protein family A (Hsp70) member 6 2.58 0.0001 4.37 5.00E-05
RPP25 Ribonuclease P and MRP subunit p25 2.32 5.00E-05 1.24 0.0003
HLA-C MHC, class I, C 1.10 0.0082 4.55 5.00E-05
CD274 CD274 molecule 2.13 5.00E-05 1.24 5.00E-05
CD55 CD55 molecule 1.65 5.00E-05 1.21 5.00E-05
TNFAIP2 TNF-alpha-induced protein 2 2.04 5.00E-05 1.53 5.00E-05
TRIM21 Tripartite motif containing 21 2.02 5.00E-05 0.81 0.00015
SLC6A8 Solute carrier family 6 member 8 1.74 5.00E-05 1.05 5.00E-05
SLC25A25 Solute carrier family 25 member 25 1.71 5.00E-05 1.18 5.00E-05
SLC20A1 Solute carrier family 20 member 1 1.33 5.00E-05 1.89 5.00E-05
SLC19A2 Solute carrier family 19 member 2 1.28 5.00E-05 1.27 5.00E-05
KLF4 Kruppel like factor 4 1.66 5.00E-05 0.88 5.00E-05
PRRT4 Proline rich transmembrane protein 4 1.50 5.00E-05 2.78 5.00E-05
FOXC1 Forkhead box C1 1.30 5.00E-05 3.87 5.00E-05
S100P S100 calcium-binding protein P 1.15 5.00E-05 2.88 5.00E-05
S100A14 S100 calcium-binding protein A14 0.73 0.00015 0.69 5.00E-05
DUSP10 Dual specificity phosphatase 10 1.07 5.00E-05 1.19 5.00E-05
SOCS1 Suppressor of Cytokine Signaling 1 1.01 0.00505 1.30 0.00005
NOTCH1 Notch receptor 1 0.99 5.00E-05 0.61 5.00E-05

Downregulated genes

PsO1 vs. Ctr PsO2 vs. Ctr

Gene symbol Gene title Log2 FC P Log2 FC P

SLC38A11 Solute carrier family 38 member 11 -6.15 5.00E-05 -2.93 5.00E-05
SLC22A3 Solute carrier family 22 member 3 -3.29 5.00E-05 -1.18 5.00E-05
SLC12A8 Solute carrier family 12 member 8 -3.16 5.00E-05 -2.45 5.00E-05
SLC2A14 Solute carrier family 2 member 14 -1.94 5.00E-05 -2.55 5.00E-05
SLC6A1 Solute carrier family 6 member 1 -2.06 5.00E-05 -2.12 5.00E-05

(continued)
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Alterations in the proliferation and glucose uptake
of KCs derived from PsO-iPSCs

Psoriaisis is associated with hyperproliferation; therefore,
we examined the proliferation capacity of the differentiated
KCs derived from PsO-iPSCs in comparision to those of
Ctr-iPSCs. As expected, the number of BrdU-positive cells
increased significantly in KC progenitors (day 14) and ma-

ture KCs (day 30) derived from PsO-iPSCs compared to
those derived from Ctr-iPSCs reflecting an increase in cell
proliferation (Fig. 6A–D). These results indicate a genetic
cause for the hyperproliferation of psoriatic KCs.

To confirm our RNA-seq results showing defects in genes
involved in insulin resistance, and to correlate the insulin-
resistant phenotype observed in these psoriatic patients, we
sought to test the insulin sensitivity in the generated KCs. A

Table 1. (Continued)

Downregulated genes

Gene symbol Gene title

PsO1 vs. Ctr PsO2 vs. Ctr

Log2 FC P Log2 FC P

SLC9A3R1 SLC9A3 regulator 1 -1.10 5.00E-05 -0.64 5.00E-05
UCN2 Urocortin 2 -5.02 0.00465 -1.41 5.00E-05
ABCA4 ATP-binding cassette subfamily A member 4 -4.75 5.00E-05 -1.78 5.00E-05
PAEP Progestagen-associated endometrial protein -4.74 0.00015 -0.93 5.00E-05
GFI1 Growth factor-independent 1 transcriptional repressor -4.66 5.00E-05 -1.21 5.00E-05
KLK7 Kallikrein-related peptidase 7 -4.54 5.00E-05 -1.94 5.00E-05
CYP26A1 Cytochrome P450 family 26 subfamily A member 1 -4.29 0.0043 -2.33 5.00E-05
CFTR Cystic fibrosis transmembrane conductance regulator -7.95 5.00E-05 -0.60 0.0001
ICOS Inducible T cell costimulator -4.25 5.00E-05 -2.71 5.00E-05
PRR9 Proline rich 9 -3.67 0.0012 -2.28 5.00E-05
PITX2 Paired-like homeodomain 2 -3.56 5.00E-05 -0.91 5.00E-05
COL7A1 Collagen type VII alpha 1 chain -3.51 5.00E-05 -1.50 5.00E-05
IL2RB Interleukin 2 receptor subunit beta -3.46 5.00E-05 -0.91 5.00E-05
HLA-DQA1 MHC, class II, DQ alpha 1 -3.39 5.00E-05 -1.83 5.00E-05
KCNF1 Potassium voltage-gated channel modifier subfamily

F member 1
-3.37 5.00E-05 -2.41 5.00E-05

CYP24A1 Cytochrome P450 family 24 subfamily A member 1 -3.28 5.00E-05 -2.26 5.00E-05
S100A9 S100 calcium-binding protein A9 -3.14 5.00E-05 -1.29 5.00E-05
CGB8 Chorionic gonadotropin subunit beta 8 -3.07 0.0041 -2.22 0.00045
ANXA8 Annexin A8 -3.04 5.00E-05 -0.73 5.00E-05
STRA6 Stimulated by retinoic acid 6 -3.03 5.00E-05 -1.24 5.00E-05
IVL Involucrin -3.01 5.00E-05 -1.54 5.00E-05
SERPINA1 Serpin family A member 1 -2.97 5.00E-05 -1.53 5.00E-05
NEFL Neurofilament ligh -2.91 0.0002 -0.68 0.0197
PGLYRP4 Peptidoglycan recognition protein 4 -2.85 5.00E-05 -1.99 5.00E-05
KRT3 Keratin 3 -2.80 0.0003 -2.05 5.00E-05
KRT16 Keratin 16 -1.69 5.00E-05 -1.56 5.00E-05
CD52 CD52 molecule -2.72 0.046 -1.59 0.00165
NR0B1 Nuclear receptor subfamily 0 group B member 1 -2.70 5.00E-05 -1.16 0.0002
EBI3 Epstein-Barr virus induced 3 -2.58 5.00E-05 -0.88 5.00E-05
PCDHB13 Protocadherin beta 13 -2.53 5.00E-05 -1.67 5.00E-05
PCDHGC5 Protocadherin gamma subfamily C, 5 -1.21437 0.03365 -1.0337 0.03975
EDN1 Endothelin 1 -2.51 5.00E-05 -0.70 0.00025
SPRR3 Small proline rich protein 3 -2.48 5.00E-05 -1.29 5.00E-05
PLA2G2F Phospholipase A2 group IIF -2.39 5.00E-05 -0.89 0.0002
GJB4 Gap junction protein beta 4 -2.35 5.00E-05 -2.08 5.00E-05
BST1 Bone marrow stromal cell antigen 1 -2.32 5.00E-05 -1.96 5.00E-05
C2orf54 Mab-21 like 4 -2.14 5.00E-05 -1.99 5.00E-05
CRCT1 Cysteine rich C-terminal 1 -2.13 5.00E-05 -2.19 5.00E-05
UCP2 Uncoupling protein 2 -1.81 5.00E-05 -1.54 5.00E-05
UCHL1 Ubiquitin C-terminal hydrolase L1 -1.75 5.00E-05 -1.90 5.00E-05
RWDD2B RWD domain containing 2B -1.72 5.00E-05 -1.95 5.00E-05
GPR78 G protein-coupled receptor 78 -1.67 0.0002 -1.96 5.00E-05
DSG1 Desmoglein 1 -1.63 5.00E-05 -1.56 5.00E-05
PROM2 Prominin 2 -1.57 5.00E-05 -1.50 5.00E-05
CYSRT1 Cysteine rich tail 1 -1.35 0.00105 -1.90 5.00E-05
PAMR1 Peptidase domain containing associated with

muscle regeneration 1
-1.29 5.00E-05 -1.96 5.00E-05

FC, fold change; IFN, interferon; iPSC, induced pluripotent stem cell; KC, keratinocyte; MHC, major histocompatibility complex.
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FIG. 5. Validation of RNA-seq data using real-time PCR (qRT-PCR) and western blot. (A) qRT-PCR for the main genes
deregulated in the RNA-seq results. Graphs show mean with SEM of three independent replicates and data were statistically
analyzed using unpaired t-test. (B) Validation of gene expression using western blotting. *P < 0.05, **P < 0.01,
***P < 0.001. RNA-seq, RNA-sequencing.
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FIG. 6. Alterations in the
proliferation and glucose
uptake of KCs derived from
PsO-iPSCs. Flow cytometry
analysis of BrdU incorpora-
tion showing increased cell
proliferation (BrdU+cells) in
KC progenitors (A, B) and
mature KCs (C, D) derived
from PsO-iPSCs in compari-
sion to those derived from
Ctr-iPSCs (n = 2). (E) Glu-
cose uptake assay showing
no change in glucose upta-
ken by the mature KCs-PsO
in response to insulin treat-
ment; however, KCs-Ctr
showed a significant increase
in insulin-induced glucose
uptake at day 30 of differenti-
ation (n = 2). Fluorescence
units for glucose uptake for
each sample induced with in-
sulin was normalized to the
basal. *P < 0.05, **P < 0.01,
***P < 0.001. Color images
are available online.

FIG. 7. Schematic over-
view of establishing iPSCs
carrying the genetic signature
of patient with psoriasis. Pa-
tient iPSCs were differenti-
ated into KCs and compared
to those of healthy controls to
identify psoriasis-associated
genetic defects in KCs. Color
images are available online.
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glucose uptake assay was performed at day 30 of differen-
tiation. Our results showed no change in glucose uptaken by
the mature KCs-PsO in response to insulin treatment;
however, KCs-Ctr showed a significant increase in insulin-
induced glucose uptake (Fig. 6E). These results indicate that
psoriatic KCs possess genetic defects that confer insulin
resistance.

Discussion

There has been an ongoing debate regarding the role of
KCs in psoriasis being a secondary event, triggered by im-
mune stimulation. Our iPSC model established here resolves
this by illustrating that the hallmarks of psoriasis disease,
hyperproliferation and abnormal differentiation of the KCs,
and inflammatory response, are primarily triggered due to
the genetic defects in the KCs. These findings suggest that
psoriasis is not purely a T cell-dependent disorder, but ge-
netic alterations of KCs are likely to play a major role in
psoriasis pathogenesis. Furthermore, our results also un-
cover a genetic link between insulin resistance and psoriasis.

Genetic defects in the KCs could disrupt epidermal ho-
meostasis in psoriasis. Our RNA-seq analysis revealed that
genes involved in appropriate epidermis stratification and
granular layer were dysregulated in the psoriatic KCs.
Specifically, p63, a major player in differentiation of the
ectodermal-specified cells to epidermal progenitors [27,28],
was significantly upregulated in the KCs-PsO, which is in
line with high expression of p63 in psoriatic skin as previ-
ously demonstrated [29,30]. In addition, we found that
NOTCH1, which is downstream of p63 [29], was also sig-
nificantly activated in KCs-PsO. Interestingly, Notch sig-
naling is activated in the epidermis by cilia for balancing
proliferation and differentiation of the epidermal cells [31],
and has been previously shown to be upregulated in the
psoriatic skin [32,33]. Another psoriasis susceptibility locus,
KLF4 [34], which is required for differentiation and speci-
fication of the skin epithelium [35], was found to be in-
creased in the KCs-PsO compared to KCs-Ctr, consistent
with previous reports detailing its increased expression in
psoriatic KCs [36,37]. In addition, the granualar layer was
shown to be dramatically affected in the psoriatic skin [38].
Our results indicate that this defect originates due to de-
creased expression of FLG, IVL, and DSG1, responsible for
granular layer differentiation, in KCs-PsO. Therefore, our
results demonstrate that signaling pathways affected in the
psoriatic skin according to previous reports are due to the
genetic defects in KCs. Nonetheless, these genetic defects in
KCs may be the cause of its hyperproliferation and inap-
propriate differentiation pathology in psoriasis. Nonetheless,
these genetic defects in KCs may be the cause of its hy-
perproliferation, as indicated by our results showing an in-
creased proliferation of KCs-PsO compared with KCs-Ctr
and inappropriate differentiation pathology in psoriasis.

While psoriasis is a multifactorial disease, it is notewor-
thy that multiple transcriptome studies on psoriatic lesional
and nonlesional skin biopsies have made it possible to
comprehensively study the pathogenesis of psoriasis [39–
41]. One of the limitations to prior transcriptome studies is
that the lesions analysed contain multiple types of cells
constituting and infiltrating the epidermis, such as fibro-
blasts and immune cells, which has hindered determination

of genes exclusively associated with KC dysfunction
[14,41–44]. Our study is uniquely different from these as
KCs from psoriatic iPSCs, unadulterated by other cell types,
were analysed to obtain DEGs. Indeed, analysis of pure
population of sorted epidermal cells in lesional and nonle-
sional psoriasis has shed light on cell type-specific gene
expression alterations [45]; however, it is still limited in
concluding if these changes are primary or if they are
cytokine-induced transcriptional responses. Our iPSC model
resolves this debate as any DEGs identified are due to ge-
netic inheritance and not a secondary transcriptional re-
sponse to immune system activation and KC hyperplasia.
Hence, our model distinguishes between genetic and ac-
quired factors involved in psoriasis development.

The sequence of the pathogenic events triggering psori-
asis development is not completely understood, however, it
is thought to be initiated by defects in the immune response.
It is debated that there occurs a defective T cell response
stimulating proliferation that further activates normal KCs
to hyperproliferate [46–49], and the resulting crosstalk be-
tween them sustains psoriasis progression [14,50–52]. It has
been thought that in psoriatic patients, the inflammation and
T cell activation occur before the hyperproliferation of the
epidermis [49]. Our study showed that the class I major
histocompatibility complex (MHC) allele HLA-C was sig-
nificantly upregulated in the KCs derived from subjects with
psoriasis. This finding is consistent with a previous study
that reported the upregulation of HLA-C in the epidermis of
patients with psoriasis [6,10,53]. HLA-C encodes a MHC
class I receptor that participates in immune responses via
antigens presentation to CD8+ T lymphocytes and has been
previously reported as the strongest susceptibility factor for
psoriasis [10,54]. Our results, therefore, suggest that ge-
netically defective KCs in psoriasis might lead to T cell
activation in the epidermis in contrast to the conventional
hypothesis that genetic defects in the immune cells stimulate
abnormal immune response.

Studies on profiling of psoriatic lesions have consistently
highlighted the detrimental role of upregulated antiviral and
chemokine genes in activating and attracting immune cells
to the epidermis [45,55–62]. We show here that the origin of
this inflammation in the psoriatic lesions is in the genetically
defected KCs; as KCs generated from PsO-iPSCs showed
significant upregulation of type I INF-inducible, immune
response, and chemokine genes. These results agree with the
accumulating evidences suggesting that KCs have a sub-
stantial influence on skin immunity, because they express
multiple proinflammatory cytokines and chemokines indi-
cating the existance of the immune system in the epidermal
KCs [63,64]. In addition, it is likely that targeting of these
genes could attenuate the progression of psoriasis as
blocking of INF-alpha pathway in a xenograft model of
psoriasis has suppressed the development of this disease
[65]. Therefore, our KC-PsO-iPSCs carrying the genetic
defects that cause the disease are an excellent model for
studies on drug screening for psoriasis treatment.

Interestingly, several association and clinical studies have
eluded to a potential link between altered gene transcription
in the psoriatic skin and comorbid conditions, such as in-
sulin resistance, T2D, and cardiovascular dieases [66]. In
KCs, insulin-signaling pathway regulate proliferation and
differentiation processes. KC differentiation is enhanced by
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insulin and is inhibited by IGF-1 [67]. The disruption in the
balance between these two pathways may result in insulin
resistance, leading to defects in the epidermal KCs. We
found that IRS2 was significantly upregulated in KCs-PsO1
and KCs-PsO2 in comparision to KCs-Ctr. IRS2 deletion
in vivo (IRS2-knockout mice model) and in vitro in KCs
showed that the inhibition of this gene increases glucose
transport in epidermal KCs [68], which is opposite to its
function in other tissues [69,70]. Furthermore, IRS2 over-
expression in KCs leads to a dramatic reduction in glucose
uptake in KCs stimulated with insulin [68]. In contrast, it
has been reported that inhibition of insulin receptor and
IRS1 in the KCs leads to a reduction in the glucose transport
rate [68,71]. We found that insulin was unable to stimulate
uptake of glucose in mature KCs-PsO when compared to
KCs-Ctrl, thereby validating the genetic origin of insulin
resistance in the psoriatic KCs. Taken together, these results
indicate a unique role of IRS2 in the KCs and suggest that
the upregulation of IRS2 in the current study may be asso-
ciated with the inhibition of the glucose transport.

Interestingly, the main glucose transporter in KCs,
GLUT1 [72], was not differentially expressed in our study.
However, other glucose transporters, including SLC2A10
(GLUT10) and SLC2A14 (GLUT14), were significantly
downregulated. A previous study hypothesized that genetic
variations in SLC2A14 may be associated with inflammatory
disease [73]. Also, SLC2A10 was found to be associated
with T2D [74,75]. Interestingly, we found that GDF15,
known as a macrophage inhibiting cytokine, was signifi-
cantly upregulated in KCs of both patients. Increased
GDF15 level has been shown to be associated with insulin
resistance, T2D, and cardiovascular diseases [76,77]. Taken
together, these findings suggest that the insulin resistance in
KCs associated with psoriasis may, in part, be due to genetic
alterations in the expression of IRS2, GDF15, SLC2A10, and
SLC2A14 in KCs of patients with psoriasis. Also, these data
suggest that IRS-2 and GDF15 can be classified as candidate
genes for psoriasis. Further investigations are needed to
discover how these genetic variations causing psoriasis also
induce insulin resistance and T2D.

Although we have identified large number of common
DEGs in both PsO-iPSCs, we noticed more severe pheno-
types in KCs derived from PsO1-iPSCs in comparision to
those derived from PsO2-iPSCs. It could be argued that the
severity of the genetic predisposition would have differ-
ences in the expression levels of certain genes. Further
studies using the iPSC-based model established here are
needed to gain deeper insight into signaling pathways and
key genetic factors involved in the pathogenesis of psoriasis.

Although our results showed that the iPSCs can generate
3D skin equivalents, which expressed some key markers, the
organotypic differentiation protocol needs further optimiza-
tion to generate all layers of the stratified epithelium of the
epidermis. Therefore, we are currently working on the gen-
eration of 3D epidermis equivalent and optimizing the con-
dition to establish a reproducible protocol in our laboratory
for the generation of epidermis equivalent. Also, in our future
study, we will compare the 3D skin equivalents generated
from PsO-iPSCs with those generated from Ctr-iPSCs and
normal skin. Using 3D skin model derived from PsO-iPSCs
would further help in understating the mechanism of psoriasis
progression and testing drugs for psoriasis treatment.

In conclusion, we have established in this study the
first human iPSC-based model to study genetic defects in
KCs carrying the same genetic signatures of patients with
psoriasis (Fig. 7). Our data showed that KCs derived from
PsO-iPSCs harbor psoriasis-associated genetic defects,
suggesting that the genetic alterations in KCs are the main
drivers in the development of psoriasis. These findings are
consistent with the concept that the KC abnormalities trigger
psoriasis [78]. Our iPSC model established in this study can
be used in future studies focusing on the understanding of
the pathophysiology of psoriasis and associated comorbid-
ities as well as developing novel therapeutics.
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