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A visual predictive check (VPC) is a common diagnostic procedure for population pharmacometric models. Typically, 
VPCs are generated by specifying intervals, or “bins”, of an independent variable (e.g., time). However, bin specification 
is not always straightforward and the choice of bins may affect the appearance, and possibly conclusions, of VPCs. The 
objective of this work was to demonstrate how regression techniques can be used to derive VPCs and prediction-corrected 
VPCs (pcVPCs) for population pharmacometric models. This alternative approach negates the need for empirical bin 
selection. The proposed method utilizes local and additive quantile regression. Implementation is straightforward and 
computationally acceptable. This work provides support for deriving VPCs and pcVPCs via regression techniques.
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  VPCs of population pharmacometric models are typi-
cally performed by defining intervals, or “bins,” of the in-
dependent variable. Bin specification is not always 
straightforward and may affect the appearance, and pos-
sibly conclusions, of a VPC.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This work proposed a regression approach to VPCs, 
which negates the need for empirical bins.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This work extends current VPC methodology, offering 
enhanced convenience and statistical rigor.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The proposed methodology offers another approach to 
performing VPCs, which may assist researchers with eval-
uating the structural and simulation properties of popula-
tion pharmacometric models.

A visual predictive check (VPC) is a diagnostic procedure 
that can facilitate assessments of the structural and sto-
chastic appropriateness of population pharmacometric 
models.1 Typically, VPCs involve calculating quantiles, such 
as the 10th, 50th, and 90th percentiles, of the dependent 
variable within user-specified intervals, or bins, of the in-
dependent variable. These quantiles are computed for the 
observed data and data simulated from a corresponding 
population pharmacometric model. The derived quantiles 
for the observed and simulated data are then compared 
visually. This intuitive diagnostic procedure can reveal is-
sues related to model specification and guide strategies for 
model improvement.2

In this typical approach to performing VPCs, the user-
specified intervals of the independent variable, or bins, 
can be determined by visual inspection of the data and/
or automated procedures.3–6 However, even with efficient 
automated procedures, bin specification is not always 
straightforward and can be time consuming. For instance, 
determining bins can be challenging when sampling is 

sparse and/or irregular. Moreover, the choice of bins can 
affect the appearance and interpretation, and possibly con-
clusions, of a VPC.3,4

In contrast to empirical bin selection, regression tech-
niques, such as additive quantile regression (AQR)7 and 
local regression (LOESS),8 can be used to perform VPCs. 
AQR characterizes a specified quantile, such as the 10th, 
50th, or 90th percentile, of a dependent variable condi-
tional on an independent variable (or variables). LOESS is 
a nonparametric smoothing technique that characterizes 
the centrality of a dependent variable over an indepen-
dent variable. Because AQR and LOESS are regression 
methods, specification of bins of the independent vari-
able is not required. These regression techniques are well 
established in the statistical literature7–12 and available in 
several statistical packages, including freely available R.13

The aim of this work was to demonstrate how regression 
techniques can be used to perform VPCs and prediction-
corrected VPCs (pcVPCs)14 for population pharmacometric 
models. This approach negates the need for empirical bin 
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selection, thus offers enhanced convenience and statistical 
rigor to current VPC methodology.

METHODS
Brief overview of AQR and LOESS
As mentioned above, AQR is used to characterize a spec-
ified quantile (e.g., the 10th, 50th, or 90th percentile) of a 
dependent variable conditional on an independent variable 
(or variables). Nonparametric terms can be included in the 
model to facilitate a data-driven model structure. For exam-
ple, in a population pharmacokinetic (PK) context, AQR can 
be used to characterize the median, 10th, and 90th percen-
tiles of the concentration-time profile. Time would be incor-
porated into the nonparametric component of the model. 
AQR requires a smoothing parameter λ, which contributes 
to the shape of the resulting fitted values. Throughout this 
work, we recommend optimizing for λ to help remove sub-
jectivity when generating VPCs (details are described in 
the following sections). AQR is available in several statisti-
cal packages, including R13 within the quantreg package.15 
Formal descriptions of AQR are provided elsewhere.7,9–12

LOESS is a nonparametric smoothing technique that 
characterizes the centrality of a dependent variable over 
an independent variable. For instance, in a population PK 
context, LOESS can be used to characterize the centrality 
of the concentration-time profile. LOESS requires a “span” 
parameter α, which determines the smoothness of the fit. 
Throughout this work, we recommend optimizing for α to 
offer objectivity when generating VPCs and pcVPCs. Further 
details of LOESS are available elsewhere.8

Procedure for performing VPCs via regression 
techniques
The following procedure can be used to perform a VPC via 
AQR:

1.	 Apply AQR to the observed data for the specified 
quantiles, such as the 10th, 50th, and 90th per-
centiles, and display the results graphically. For this 
step, it is recommended to optimize for λ, then 
check visually to ensure the corresponding fitted 
values from the regressions are consistent with the 
observed data.

2.	 Simulate the dependent variable(s) from the derived 
population pharmacometric model for N replicates of 
the original data.

3.	 For each replicate in step 2, apply AQR as in step 1 
using the corresponding λs determined in step 1 (i.e., 
by optimization from the observed data).

4.	 For each specified quantile, compute the median (and 
other percentiles if desired) of the fitted values across 
the N replicates for each value of the independent 
variable.

To perform a pcVPC14 via LOESS and AQR:

1.	 Regress the observed population predictions (PREDs) 
from the population pharmacometric model against 
the independent variable using LOESS. This will yield 
the expected PRED for each measurement j of the 

independent variable, E(PREDj). For this step, it is 
recommended to optimize for α, then check visually 
to ensure the fitted values from LOESS are con-
sistent with the observed data.

2.	 Compute the prediction-corrected values of the de-
pendent variable for individual i at measurement j, pcij:

where yij represents the observed dependent variable for in-
dividual i at measurement j, E(PREDj) indicates the expected 
population prediction for measurement j and PREDij is the 
observed population prediction for individual i at measure-
ment j. If the data are modeled using a log transform both 
sides approach, then Eq. 1 can be modified to:

where E(ln(PREDj)) is obtained by performing LOESS on 
ln(PREDij) vs. the independent variable.

3. Apply the procedure for performing a VPC using pcij (or 
ln(pcij)) as the dependent variable.

Hence, the proposed procedure for a pcVPC utilizes cur-
rent methodology for pcVPCs,14 where E(PREDj) replaces the 
median PRED of each bin. In other words, in this new ap-
proach, the population predictions PREDij are normalized to 
E(PREDj), rather than to the median population prediction for 
each bin. A visual aid to this concept is presented in Figure 1.

Evaluation of VPCs via regression techniques
The proposed approach to VPCs and pcVPCs was evalu-
ated in five scenarios. Detailed descriptions are provided 
below.

Hypothetical population PK
The first scenario used simulated data from a hypotheti-
cal one-compartment PK model (ka = 0.80, CL/F = 8.0 L/h, 
V/F = 100 L; corresponding between-subject variances 
of 0.20, 0.02, and 0.01; proportional residual variance of 
0.025). A drug interaction effect, indicated by the presence 
or absence of a hypothetical concomitant medication, was 
incorporated into CL/F (fractional effect of 0.25). A total of 
100 virtual subjects were simulated, with 50 subjects on the 
concomitant medication and 50 subjects off the concomi-
tant medication.

Each subject received the same dose of the hypothetical 
drug (2 mg) and had six samples taken (1, 2, 4, 6, 12, and 
24 hours postdose, with random noise added to each time 
point). The population PK model used for simulation was fit-
ted to the simulated PK data. VPCs via AQR were performed 
for subjects on and off the concomitant medication sep-
arately and a pcVPC via LOESS and AQR was derived for 
all subjects. The VPCs and pcVPCs characterized the 10th, 
50th, and 90th percentiles of the original and simulated PK 
profiles. The smoothing parameters for AQR and LOESS, λ 
and α, were determined by optimization based on the original 
(simulated) PK data. Throughout, optimization procedures for 

(1)pcij =yij ⋅
E(PREDj )

PREDij

,

(2)ln(pcij )= ln(yij )+ (E(ln(PREDj ))− ln(PREDij )),
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λ and α were based on previous research.10,16–18 The VPCs 
and pcVPCs were generated using 500 replicates of the orig-
inal (simulated) PK data. To ensure the proposed approach 
could yield results similar to a conventional bin approach (ex-
pected in this simplistic scenario), the VPCs and pcVPC were 
re-derived by empirical bin selection, where the bins were de-
termined based on the nominal sampling times noted above.

Warfarin population PK-pharmacodynamics
The second scenario utilized publicly available PK-
pharmacodynamic (PD) data and NONMEM19 code for war-
farin.20 Two different population PK-PD models were fitted 
to the data: an effect-compartment model and a turnover 
model. Corresponding VPCs via AQR were derived to eval-
uate and discriminate between the two models. The VPCs 
characterized the 10th, 50th, and 90th percentiles of the 
original and simulated PK-PD profiles. The corresponding λs 
were determined by optimization based on the original data. 
The VPCs were generated using 500 replicates of the original 
data. For the simulated profiles simulation-based 95% con-
fidence intervals (CIs), were derived for each percentile.21

Phenobarbital population PK
The third scenario used example PK data and NONMEM 
code provided with Perl-Speaks-NONMEM (PsN version 
4.6.0),5,6 which is freely available. The data consisted of 
59 neonates who received intravenous phenobarbital. The 
population PK model consisted of one compartment with 
a linear weight effect on CL/F. A pcVPC was derived using 
LOESS and AQR, which characterized the 10th, 50th, and 
90th percentiles of the original and simulated profiles. The 
smoothing parameters α and λ were determined by optimi-
zation based on the original data. To ensure consistency 

with PsN, additional pcVPCs were derived using PsN’s vpc 
command, where the autobin option was used to specify 5, 
8, and 10 bins. All pcVPCs were generated using 500 rep-
licates of the original data. For the simulated profiles, 95% 
CIs were derived for each percentile.

Hypothetical population PK with intensive and sparse 
sampling
The fourth scenario comprised simulated data from a hypo-
thetical one-compartment PK model with allometry on CL/F 
and V/F (ka = 0.80, CL/F = 8.0 L/h/70 kg, V/F = 100 L/70 kg). A 
total of 200 virtual subjects were included, with 100 subjects 
on 2 mg and 100 subjects on 4 mg of the hypothetical drug. 
Dosing was once daily for 8 weeks. A subset of 30 subjects 
had intensive sampling at 1, 4, 8, 12, and 24 hours after the 
first dose. All subjects had trough samples taken at days 28 
and 56 (within 3 days for both time points). The pcVPCs were 
generated using the proposed approach. The α and λ param-
eters were determined by optimization based on the original 
data. For the simulated percentiles, 95% CIs were displayed.

Hypothetical population PK-viral kinetics
The last scenario was a population analysis of hypotheti-
cal (simulated) PK-viral kinetic (VK) data. The model used 
for simulation was based on previously published work22 
(see Appendices S1 and S2 for further details). The PK-
VK profiles were simulated for 30 virtual subjects, with 7 
time points per subject. The profiles included a substantial 
proportion of data below the lower limit of detection (LLOD; 
~43% of all data). As such, these (simulated) data were 
analyzed in NONMEM using the structural model used for 
simulation (Appendices S1 and S2) and NONMEM’s M3 
method23 to account for censored data. A VPC via AQR was 
constructed to accommodate the handling of data below 
the LLOD in the analysis. Specifically, for the observed 
data, observations indicated as LLOD were imputed based 
on methods presented elsewhere24 (details in Appendices 
S1 and S2). Thus, AQR for the observed data included data 
above and below the LLOD, where the latter were imputed. 
Simulations were performed using the parameter estimates 
achieved via M3. The 10th, 50th, and 90th percentiles of the 
observed and simulated PK-VK profiles were characterized, 
where the corresponding λs were determined by optimiza-
tion based on the observed data. For the simulations, 95% 
CIs were derived for each percentile.

Additionally, the cumulative proportion of data LLOD over 
time was calculated for the observed and simulated data, 
where AQR (median only) was used to characterize the 
trend. The λ parameter was determined by optimization of 
the observed data. For the simulations, a 95% CI (for the 
median) was derived.

Software
The hypothetical PK and PK-VK data were generated with 
the mrgsolve package in R25; analyses and simulations were 
performed in NONMEM19 via PsN version 3.7.6.5,6 Analyses 
and simulations for the warfarin PK-PD scenario were per-
formed in NONMEM via Wings for NONMEM26 using pre-
viously written control streams.20 NONMEM via PsN was 
used for analysis and simulations for the phenobarbital 

Figure 1  Median population predictions by bin and expected 
population predictions via LOESS for a hypothetical 
pharmacokinetic example. The approach to prediction-corrected 
visual predictive checks in the current work involves normalizing 
the population predictions (black open circles) to the expected 
population predictions via LOESS (red solid line), rather than to 
the median of the population predictions for each bin (red open 
triangles).
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scenario, where control streams were provided by PsN. For 
all scenarios, the VPCs and pcVPCs via LOESS and/or AQR 
were derived in R version 3.3.113 by applying the loess,17 
loess.as,18 and rqss15 routines. The VPCs and pcVPCs via 
empirical bin selections were derived in R version 3.3.1 for 
the first hypothetical PK scenario; PsN and Xpose27 were 
used for the phenobarbital example. All work was per-
formed on a laptop computer with a 64-bit operating sys-
tem, Intel Core i7-6600U CPU (2.60 GHz 2.81 GHz) and 20 
GB of random access memory.

RESULTS
Hypothetical population PK
The VPCs and pcVPCs derived using the proposed ap-
proach were similar to those derived from empirical bin se-
lection (Figure 2). For subjects off and on the concomitant 
medication, optimization for λ, which was based on the orig-
inal (simulated) data, took between 0.3 and 0.5 seconds per 
quantile (i.e., the 10th, 50th, or 90th percentile). Application 
of AQR to the original data took ~0.016 seconds per quan-
tile and performing AQR across the 500 replicates of the 
original data took ~30 seconds.

For the pcVPC, it took ~0.1 seconds to optimize for α, 
between 0.4 and 0.5 seconds per quantile to optimize for 
λ (again based on the original data) and 0.015 seconds per 
quantile to apply AQR to the original data. It took ~35 sec-
onds to apply AQR across the 500 replicates.

Warfarin population PK-PD
The VPCs via AQR correctly highlighted the acceptable fit 
of the effect-compartment model and the ideal fit of the 
turnover model (Figure 3). Optimization for λ, which was 
based on the original data, took between 0.2 and 0.5 sec-
onds per quantile. For both models, it took ~0.016 seconds 
per quantile to apply AQR to the original data and ~25 sec-
onds to perform AQR across the 500 replicates.

Phenobarbital population PK
The pcVPCs via LOESS/AQR and empirical bin selection 
highlighted that on median, the model underpredicted the 
10th and 50th percentiles of the data (Figure 4). However, 
large variation was observed for the simulated percentiles, 
as indicated by the 95% CIs. For the pcVPC via LOESS and 
AQR, it took ~0.03 seconds to optimize for α, 0.3 seconds 
per quantile for λ optimization, 0.016 seconds per quantile 
for application of AQR to the original data, and 31 seconds 
to run AQR across the 500 replicated data sets. The pcVPCs 
via empirical bins varied in appearance by the number of 
bins specified. In addition, for all pcVPCs via empirical bins, 
the last bin was very wide due to sparse sampling within the 
time interval of 200–400 hours. This led to these pcVPCs 
being truncated at ~300 hours (i.e., the midpoint of the last 
bin). In contrast, the pcVPC from the proposed (regression) 
approach spanned the entire profile.

Hypothetical population PK with intensive and sparse 
sampling
For this scenario, optimization of α and λ was performed ini-
tially using all observed data (i.e., intensive and sparse com-
bined). However, this resulted in misspecified LOESS and 

AQR fits for the subset of subjects with intensive sampling, 
because optimization was biased toward the trough/sparse 
samples (i.e., the majority of the data). This was rectified by 
performing the pcVPCs by clinic visit (first day (n = 30); day 
28 (n = 200); and day 56 (n = 200)). This was achieved by 
writing a simple loop in R. After this modification, the result-
ing pcVPCs were acceptable (Figure 5). It took ~2 minutes 
to generate the stratified pcVPCs in Figure 5.

Hypothetical population PK-VK
The VPCs correctly highlighted the appropriateness of 
accounting for censored (i.e., LLOD) data in this scenario 
(Figure 6). The VPCs also (correctly) showed that the model 
could simulate LLOD data consistent with what was ob-
served. For the observed data, it took ~0.4–0.6 seconds 
per quantile for λ optimization and 0.02–0.03 seconds per 
quantile to apply AQR. It took ~30 seconds to apply AQR 
across the 500 replicates.

For the cumulative proportion LLOD, it took ~0.5 seconds 
for λ optimization and 0.02 seconds to apply AQR (median 
only for both). It took ~10 seconds to apply AQR across the 
500 replicates (again median only).

DISCUSSION

This work proposed the use of regression techniques to 
perform VPCs and pcVPCs for population pharmacometric 
models. This alternative approach was shown to be accu-
rate and reliable within evaluation scenarios representative 
of typical application. The method utilized well-established 
statistical techniques and was straightforward to implement.

A highlight of the current work was the extension of the 
existing, novel methodology for pcVPCs.14 This extension 
involved normalizing model-derived population predictions 
to those expected from LOESS, rather than to the median 
of the population predictions for each bin. As such, this new 
approach to pcVPCs may offer improved accuracy in sce-
narios where bins are required to be wide or highly variable 
in width due to sparse or irregular sampling, poor design 
implementation, or other issues. This was shown in the phe-
nobarbital example, where the pcVPC from the proposed 
approach spanned the entire PK profile in the presence of 
sparse/irregular sampling at late time points. This provided 
more information than the pcVPCs derived from bins (via 
autobin in PsN), which were truncated due to the sparse/
irregular sampling. Moreover, the categorical nature of the 
bins yielded 95% PIs (via Xpose) that were discontinuous 
and somewhat difficult to interpret.

Another highlight of the current work was the applica-
tion of the proposed method in a scenario where censored 
data (i.e., below the LLOD) were accounted for in the anal-
ysis (i.e., the hypothetical population PK-VK model). The 
proposed methodology yielded VPCs that were accurate 
and easy to interpret. Furthermore, the transparency of 
the method, particularly with imputation of censored val-
ues (i.e., below the LLOD), offers readers the ability to re-
produce the examples and adapt as necessary for future 
applications.

The computational expense of the proposed approach 
was acceptable in the evaluation scenarios. However, it is 
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Figure 2  The visual predictive checks (VPCs) for the hypothetical one-compartment population pharmacokinetic model. The left 
and right columns of the figure display VPCs via regression and empirical bin selection, respectively. For all plots, the blue solid line 
represents the observed median and the blue dashed lines represent the observed 10th and 90th percentiles. Similarly, for all plots, 
the red solid line represents the simulated median and the red dashed lines represent the simulated 10th and 90th percentiles. AQR, 
additive quantile regression.
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Figure 3  The visual predictive checks (VPCs) for the population pharmacokinetic-pharmacodynamic models of warfarin. The left 
and right plots display the VPCs for the effect-compartment and turnover models, respectively. For both plots, the blue solid line 
represents the observed median and the blue dashed lines represent the observed 10th and 90th percentiles. Similarly, for both plots, 
the red solid line represents the simulated median and the red dashed lines represent the simulated 10th and 90th percentiles. The 
pink shaded regions indicate 95% confidence intervals for the simulations. AQR, additive quantile regression.
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Figure 4  The prediction-corrected visual predictive checks (pcVPCs) for the population pharmacokinetic model of phenobarbital. For 
all plots, the blue solid line represents the observed median and the blue dashed lines represent the observed 10th and 90th percentiles. 
Similarly, for all plots, the red solid line represents the simulated median and the red dashed lines represent the simulated 10th and 
90th percentiles. The pink shaded regions indicate 95% confidence intervals for the simulations. AQR, additive quantile regression.
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pertinent to note that computation time for the new method 
is relatively longer than conventional binning approaches. 
This is to be expected because regression techniques are 
more computationally demanding than computing simple 
percentiles within user-defined bins. Nevertheless, com-
putation time for the proposed approach should still be 
acceptable for modern personal computers. Moreover, it 
is important to highlight that even though binning proce-
dures, such as autobin in PsN, offer computational effi-
ciency, to the best of our knowledge, such procedures 
generate bins to ensure they have approximately equal 
numbers of observations and/or similar variances of the 
dependent variable. Hence, these kinds of procedures do 
not optimize directly for the shape of the pharmacometric 

profile, and, thus, may not necessarily produce bins that 
provide means for accurate characterization. Therefore, 
key advantages of the proposed approach are conve-
nience (i.e., not having to determine bins) and possible 
improved accuracy, at the expense of some computation 
time. Future applications of the methodology will reveal 
how it performs in different scenarios.

The VPCs and pcVPCs presented in this work were de-
rived in R13 using the loess and rqss routines. However, 
other statistical packages could have been used, such as 
Stata28 or SAS.29 In the current work, R was chosen for its 
accessibility and growing use within the pharmacometrics 
community. Moreover, implementation in R did not require 
advanced programming.

Figure 5  The visual predictive checks for the hypothetical population pharmacokinetic model with intensive and sparse sampling. The 
subset of intensive subjects is displayed in the upper left panel. The top right and bottom left panels display trough/sparse sampling 
for all subjects. For all plots, the blue solid line represents the observed median and the blue dashed lines represent the observed 10th 
and 90th percentiles. Similarly, for all plots, the red solid line represents the simulated median and the red dashed lines represent the 
simulated 10th and 90th percentiles. The pink shaded regions indicate 95% confidence intervals for the simulations.
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Despite the strengths of performing VPCs and pcVPCs 
via regression, the approach is not without possible lim-
itations. For instance, it is possible that implementing 
LOESS or AQR may be problematic in some scenarios, 
such as extremely sparse sampling, poor design imple-
mentation, uninformative sampling, very small numbers 
of subjects, highly variable sampling across the profile, 
extreme residual variability, etc. If LOESS or AQR cannot 
be achieved (or achieved adequately) with the observed 
data, other approaches, such as empirical bin selection, 
may be required. However, in such scenarios, VPCs and/
or pcVPCs via empirical bin selection may be highly sen-
sitive to the choice of bins. The longitudinal nature of the 
data was not accounted for in the AQR procedure used 
in this work (i.e., a grouping or clustering variable, such 
as subject identifier, is not specified in rqss15). As such, 
if confidence intervals or PIs for the estimated quantiles 
are to be derived, appropriate empirical procedures ac-
counting for the longitudinal nature of the data should be 
employed. For instance, clustered bootstrap for observed 
data and methodology proposed previously for simula-
tions2 (the latter was used for the evaluation scenarios). 
Importantly, appropriate specification of α and λ is crucial 
for the accuracy of the proposed approach. Therefore, it is 
recommended to optimize for α and λ first when applying 
LOESS and AQR (respectively) to the observed data, then 
inspect visually to ensure the corresponding fitted values 
are consistent with the observed data. The importance 
of this step was shown in the scenario with sparse and 
intensive PK sampling, as visual inspection revealed that 
optimization had to be stratified by clinic visit to yield sen-
sible results. Optimization can be an efficient and objec-
tive way to specify these important parameters. Moreover, 
more sophisticated optimization algorithms than those 
presented in this work may be used but may come at the 
expense of computation time.

Last, the authors would like to reiterate that this work 
is an extension of current VPC methodology, offering 
enhanced convenience and statistical rigor. Hence, it is 

not our intention to discredit previous/conventional ap-
proaches, but rather, to offer another way for performing 
this useful diagnostic procedure. For instance, the new 
approach could be used as a sensitivity check for conven-
tional binning approaches.

CONCLUSIONS

This work provides support for using regression tech-
niques, namely LOESS and AQR, to perform VPCs and 
pcVPCs for population pharmacometric models. This 
alternative approach negates the need for empirical bin 
selection.
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