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61-614 Poznań, Poland; sszew@amu.edu.pl (S.S.); alice.goyal@thapar.edu (A.G.); gotardb@amu.edu.pl (G.B.)

2 Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C,
02-097 Warsaw, Poland; m.abram@cent.uw.edu.pl

3 Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
* Correspondence: j.kargul@cent.uw.edu.pl (J.K.); krzyszgi@amu.edu.pl (K.G.); Tel.: +48-22-5543760 (J.K.);

+48-61-8296390 (K.G.)

Abstract: A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from
the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was
investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments
were performed at a range of electric potentials applied to the film and at different compositions of
electrolyte solution being in contact with the film. The amount of immobilized proteins supporting
light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents
(redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol
were added, and to ~35% when the high negative potential was additionally applied. The origin of
the large fraction of permanently inactive PSI (65–90%) was unclear. Both reducing agents increased
the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing
significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge
separation in the PSI film (10–35%) did not translate into an equally effective generation of photocur-
rent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials.
This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI
complexes underwent charge recombination.

Keywords: photosystem I; time-resolved absorption spectroscopy; chronoamperometry; biohybrid
photoelectrodes; electron transfer; photoelectrochemical cell

1. Introduction

When searching for novel clean sources of energy, inspiration is often gained from natural
light-harvesting macromolecular systems. Photosystem I (PSI) is one of the photosynthetic
pigment–protein complexes, present in higher plants, algae, and cyanobacteria, which is often
used as a light-sensitizing material in the proof-of-concept biohybrid photoelectrodes [1–7].
This is rational, since native PSI is a robust and abundant protein that generates substantial
electric potential of 1 V and electric current with almost 100% quantum yield of the photon-
to-photoelectron conversion [8–11]. Moreover, PSI complexes isolated from the membranes of
extremophilic phototrophs, e.g., red alga Cyanidioschyzon merolae (C. merolae), are resistant to
harsh environmental conditions, such as high temperature (up to 80 ◦C), extreme pH (pH 4–12),
and extremely high solar irradiance (up to 25,000 µE/m2/s; [12]). An important feature of PSI
complexes, along with other photosynthetic reaction centers, which ensures their exceptionally
high efficiency, is that the light-induced charge separation, i.e., electron transfer (ET) from the
excited primary electron donor to a chain of redox active cofactors, occurs inside these proteins in
an almost irreversible way [8,9]. This is because the forward ET reactions occur much faster than
the back ET or charge recombination (Figure 1). In the natural, fully functional photosynthetic
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system, after the excited electron from the PSI primary donor (a chlorophyll a dimer, P) reaches
the final PSI acceptors (iron–sulfur clusters, FA/B), the PSI complex is recovered by the electron
donation to P+ from a freely defusing water-soluble copper–protein complex (plastocyanin) or
heme-containing cytochrome (c6 or its homologue, c553, in the case of C. merolae). Concomitantly,
electron uptake from FA/B

− by the ferredoxin metalloprotein occurs on the opposite side of the
membrane (Figure 1). These two ET reactions occur in the natural system within 1–12 µs [13–16]
and in the submicro- to microsecond time regime [17–21], respectively. These ET reactions
are much faster than P+FA/B

−→ PFA/B recombination, whose lifetime is 25–65 ms [22]. The
charge recombination reactions were investigated in PSI complexes isolated from photosynthetic
membranes, and thus were devoid of natural electron donor (plastocyanin/cytochrome c)
and acceptor (ferredoxin) [22–24]. In addition to the P+FA/B

− recombination, faster phases of
recombination were also detected in these studies, in particular, for PSI complexes intentionally
disturbed, and assigned to charge recombination between P+ and intermediate PSI electron
acceptors: iron–sulfur cluster, FX

−, phylloquinones, A1
−, and chlorophylls, A0

−. The lifetimes
of the respective reactions were 1–2 ms (P+FX

−→ PFX), 10–100 µs (P+A1
−→ PA1), and 20 ns

(P+A0
−→ PA0) (see Figure 1).
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PSI and external carriers—by blue arrows. For simplicity, the two branches of initial ET cofactors 
were lumped together into one. Moreover, two final electron acceptors, FA and FB, are lumped to-
gether into one, FA/B. 

When incorporating isolated PSI particles into an artificial light-conversion system, 
a few issues are of particular importance in order to utilize their full functionality [25]. 
The first of them is to which extent the natural ET properties are preserved inside the PSI 
complex after its incorporation into the artificial system. Another one is the efficiency of 
coupling of the donor and acceptor sides of PSI with artificial electron carriers, which 
replace natural plastocyanin/cytochrome c and ferredoxin. Regarding the first issue, it 
was shown that embedding PSI particles in the trehalose glass matrix leads to the partial 
inhibition of forward ET. The fractions of PSI complexes in which ET did not proceed 
beyond A0, A1, and FX were 53%, 16%, and 22%, respectively [22]. In consequence, only 
~10% of electrons reached the terminal FA/B acceptors. This result demonstrates that the 
small efficiencies of photocurrent generation in the semi-artificial biohybrid devices may 
be due to the limited forward ET inside immobilized complexes, followed by internal 
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Figure 1. Scheme of ET reactions inside PSI complex and between PSI and natural external electron
donor (plastocyanin, Pc, or cytochrome c, Cyt C) and acceptor (ferredoxin, Fd). Forward ET reactions
are represented by black arrows and are completed (the state P+FA/B

− is formed) in a submicrosecond
time range [8]. Backward ET reactions are represented by red arrows, and ET between PSI and external
carriers—by blue arrows. For simplicity, the two branches of initial ET cofactors were lumped together
into one. Moreover, two final electron acceptors, FA and FB, are lumped together into one, FA/B.

When incorporating isolated PSI particles into an artificial light-conversion system,
a few issues are of particular importance in order to utilize their full functionality [25].
The first of them is to which extent the natural ET properties are preserved inside the PSI
complex after its incorporation into the artificial system. Another one is the efficiency
of coupling of the donor and acceptor sides of PSI with artificial electron carriers, which
replace natural plastocyanin/cytochrome c and ferredoxin. Regarding the first issue, it
was shown that embedding PSI particles in the trehalose glass matrix leads to the partial
inhibition of forward ET. The fractions of PSI complexes in which ET did not proceed
beyond A0, A1, and FX were 53%, 16%, and 22%, respectively [22]. In consequence, only
~10% of electrons reached the terminal FA/B acceptors. This result demonstrates that the
small efficiencies of photocurrent generation in the semi-artificial biohybrid devices may be
due to the limited forward ET inside immobilized complexes, followed by internal charge
recombination. Indeed, very limited internal quantum efficiencies (IQE, defined as a ratio
of the number of photocurrent electrons efficiently generated in the system to the number
of absorbed photons) of PSI-based photoelectrodes were reported ([26]—5%, [27]—0.37%).
More often, only absolute photocurrents were reported in the literature, and the light
conversion efficiencies were not [28–32]. On the other hand, the reported efficiencies of
PSI-based photoelectrodes are sometimes substantial [33] but the full functionality of the
photosynthetic reaction centers was not convincingly confirmed in these studies [34,35].

An approach proposed in the present study is to correlate the results of photocurrent
efficiency obtained for the PSI-based photoelectrode with the results of the transient ab-
sorption measurements of ET kinetics inside PSI deposited on the electrode. In principle,
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this approach may help to assess to what extent the limitation of the photocurrent gen-
eration is due to the disturbance of ET in PSI (or other reaction centers used instead of
PSI), or, oppositely, it may demonstrate that the photocurrent generation efficiency is high
in a specific device despite disturbance of ET in the protein, thus indicating a different
source of photocurrent generation than the native PSI complex. An obvious condition
for this approach to be applicable is that the PSI-based photoelectrode must be at least
partially transparent.

Here, we have studied a simple photoelectrode composed of a multilayer of PSI
particles isolated from the C. merolae microalga and electrodeposited directly onto the
fluorine tin oxide (FTO) conducting glass. A similar photoelectrode was shown to be
characterized by a small IQE value of 0.26% despite almost full charge separation (formation
of the P+FA/B

− state with 90% efficiency) in these PSI particles dissolved in an aqueous
solution [24]. Previously, it was demonstrated that similar PSI-FTO systems, based on
PSI from cyanobacterium Synechocystis sp. PCC 6803, were fully functional in terms
of excitation energy transfer and the primary charge separation [36]. Consequently, a
question emerges whether immobilization of PSI particles on FTO significantly disturbs
secondary ET reactions inside the protein, which may result in the low IQE value for the
PSI-FTO electrode.

2. Materials and Methods
2.1. Preparation of PSI Particles

PSI particles were isolated from a thermo-acidophilic red microalga C. merolae grown
under a high light intensity (CmH; 350 µE m−2 s−1), as described elsewhere [12,37]. PSI
complexes grown under these conditions were composed of the PSI core and the peripheral
antenna, light-harvesting complex I (LHCI), containing on average four Lhcr antenna subunits.
In consequence, the PSI particles contained ~159 antenna Chls a per P [12]. The isolation
was performed using n-dodecyl-β-D-maltoside (β-DM) and the proteins were purified by ion
exchange chromatography. Isolated complexes were kept frozen in the presence of 20–25%
(w/v) glycerol at –55 ◦C prior to spectroscopic and electrochemical experiments.

2.2. Electrodeposition of PSI on FTO Conducting Glass and Steady-State
Absorption Measurements

A detailed procedure of the electrodeposition was described previously [27,36]. Briefly,
before immobilization, the PSI solution was dialyzed in distilled water with the addition of
5 mM Bis-Tris buffer (pH 7.0) to reduce the concentration of salts and detergent. Next, a
droplet of a volume of 30 µL of dialyzed PSI solution of absorbance A679nm,1cm ≈ 8.5 was
placed on one FTO glass electrode and covered with another one. The two FTO electrodes
were facing with their conductive sides towards the solution and were separated by a
~2-mm-thick spacer (Figure 2). Next, a potential difference of +2 V between the lower and
upper electrodes was applied for 5 min, which caused partial orientation of PSI particles
and their migration toward the bottom electrode. After that, the samples were dried at
4 ◦C overnight and stored at 4 ◦C prior to measurements. As a result, a multilayer of
the area of ~0.25 cm2 of partially oriented complexes was formed, with the PSI donor
side (P side) being preferentially proximal to the bottom electrode surface and acceptor
side (FA/B side)—distal from this surface. The absorption spectrum of the multilayer was
measured using a Hitachi U-2800A spectrophotometer and was corrected for the absorption
of FTO glass and light scattering by the PSI film (Figure 2d). The absorbance of the dry
PSI multilayer at Qy band maximum (~679 nm) was A679 = 0.27. The estimated number
of PSI monolayers, nPSI, deposited onto FTO was calculated to be ~40 using the following
equation [27]:

nPSI =
A679NAd2

ε679m
, (1)
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where NA is the Avogadro number, d = 15 nm—diameter of PSI complex, ε679≈ 57 000 M−1cm−1

—molar extinction coefficient of Chl a in PSI [38], and m = 159 is the number of Chls a per C. merolae
PSI complex [12]. The estimated thickness of the PSI film was 0.6 µm.
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Figure 2. PSI multilayer immobilized on FTO. (a) Scheme of the setup for electrodeposition of PSI
particles on the FTO conducting glass; (b) picture of the setup for the electrodeposition; (c) picture of
the bio-photoelectrode ready to use with estimated number of ~40 PSI layers; (d) absorption spectrum
of the bio-photoelectrode shown in panel c.

2.3. Photocurrent Measurements

Photocurrent measurements were performed in a custom-made three-electrode photoelec-
trochemical cell (PEC) enclosed within a black box with a hole for illumination (Figure 3a; for
details, see [27]). The working electrode (WE) was a PSI-FTO plate (Figure 2c), the counter
electrode (CE) was a platinum wire, and the reference electrode (RE) was Ag/AgCl electrode
(+220 mV vs. standard hydrogen electrode, SHE). The electrodes were connected to the Au-
tolab PGSTAT204 potentiostat. The electrolyte was an aqueous solution of 30 mM Bis-Tris
buffer (pH 7.0), 10 mM sodium ascorbate (sacrificial electron donor to P+ [3,39]), and 200 µM
dichlorophenolindophenol (DCPIP; mediator reduced by the excess of ascorbate). The PSI-FTO
working electrode was illuminated with the 685 nm LED (~24-nm spectral bandwidth (FWHM)
and 5.8 mW/cm2 light power density). The chronoamperometric data, i.e., WE-CE current vs.
time, were collected at different potentials applied to the WE, ranging from−280 to +620 mV vs.
SHE. Each time after the potential was changed, the dark current was stabilized for ~5 min. At
each potential, the dark current “baseline” was subtracted from the raw chronoamperometric
data to obtain the effective photocurrent data. The sequence of the applied potentials was kept
the same as in the transient absorption measurements (see below). Open circuit potential (OCP),
i.e., the potential at which no electrical current flows between WE and CE in the darkness, was
measured to be +115 mV vs. SHE. Hereafter, all the potentials are presented in mV vs. SHE.
The values of IQE of the PSI-FTO electrode were estimated, as described previously in [27].
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2.4. Time-Resolved Absorption Measurements

For time-resolved absorption measurements, a specially designed PEC was used
(Figure 3b; for details, see [27]) in which PSI-FTO WE was one of the walls, with PSI
multilayer being deposited on the internal side of this wall, in contact with the electrolyte
solution. Despite different construction, better suited for optical measurements, the overall
operation of this PEC was the same as the PEC for chronoamperometric experiments
(Figure 3a). The ET kinetics in PSI immobilized on the conducting glass was measured
using the transient absorption setup described in [40]. Briefly, the excitation source, Q-
switched Nd:YAG laser (532 nm, 8 ns FWHM, 1 mJ per pulse), operated at a repetition
rate of 10 Hz. Shutter was used to decrease excitation pulse repetition reaching the sample
down to 0.5 Hz or 0.05 Hz. Probe pulse had twice higher frequencies. The absorbance
difference signal was calculated from the formula:

∆A(t) = log (Iexc(t)/I(t)), (2)

where Iexc(t) and I(t) are the intensities of the probe light leaving the excited and nonex-
cited sample, respectively. The configuration of excitation and probe beams was almost
antiparallel (close to 180 degrees). The probing light source was a 150-watt xenon arc lamp
used in a continuous mode, equipped with a ~700-nm interference filter (10 nm FWHM,
FB700-10 Thorlabs) and a shutter, which minimized the actinic effect of the probe light.
The diameters of the pump and probe beams were 5 mm and 3 mm, respectively. The
probe light was dispersed using a monochromator, which was equipped with an R928
Hamamatsu photomultiplier further connected to a digital oscilloscope. The time window
of the experiments was 54 ms.

The kinetic traces were collected at different compositions of the electrolyte (either
pure 30 mM Bis-Tris buffer (pH 7.0) or supplemented with 10 mM sodium ascorbate and
0–200 µM DCPIP) at different potentials applied to PSI-FTO WE, ranging from −280 to
+620 mV, and at two frequencies of repetition (0.5 Hz and 0.05 Hz). Each time after the
potential was changed, a ~5-min interval was given for the system to adapt to the new
potential. Each analyzed kinetic curve was an average of 50 individual traces. The averaged
curves were fitted with a sum of two exponentials and an offset using the OriginPro
software according to the formula:

∆A(t) = ∑n
i=1 Aie

− t
τi + const, (3)

where τi is the lifetime of the i-th component, Ai is the amplitude associated with this
lifetime, and const is the amplitude of the component nondecaying on the 54-ms time scale
of the experiment.
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3. Results and Discussion
3.1. Photocurrent Measurements

Figure 4a shows the results of chronoamperometric measurement performed using
the PSI-FTO electrode at OCP = +115 mV. The value of the stable photocurrent, ~(–180 nA),
corresponds to IQE = 0.073%, which is ~3.5 times lower than the value 0.26% reported
for a similar C. merolae PSI-FTO electrode [24] but with a much thinner PSI multilayer
(A679 = 0.03 vs. 0.27). The intention of having a thicker PSI multilayer in this study was to
maximize the transient absorption signal. The negative photocurrent at OCP indicated that
cathodic photocurrent was generated (electrons flow from WE via electrolyte to CE), as it
was observed in similarly prepared PSI-FTO-based PECs with PSI from different organisms
(green alga Chlamydomonas reinhardtii, and cyanobacterium Synechocystis sp. 6803 [24]) and
other constructions based on PSI from C. merolae [41–43].
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Figure 4. Photocurrent generated in the PSI-FTO electrode with ~40 layers of PSI complexes. (a) Chronoam-
perometric data recorded for the PSI-FTO electrode of the photoactive surface of ~0.25 cm2 at OCP (see
corresponding red circle in panel b); three cycles of light illumination are presented with peak and stable
photocurrents indicated; (b) stable photocurrent amplitudes (left axis) and corresponding IQE (right axis)
vs. potential applied to WE (dark current baseline has been subtracted from the original chronoamperomet-
ric data); the numbers at the experimental points show the sequence of the applied potentials; additionally,
photocurrent measured at OCP is shown (red circle). Note that, in panel b, photocurrent was recalculated
per centimeter squared.

Figure 4b demonstrates that the photocurrent strongly depends on the potential applied
to the PSI-FTO photoelectrode. Generally, the lower the potential (lower than OCP), the
higher the cathodic (negative) current. On the other hand, at very high positive potentials
(points 5 and 6), the anodic current is observed. At moderate potentials (0–220 mV), the
photocurrent does not depend on the sequence of preceding potentials (see, e.g., points 2 and 9
in Figure 4b)—identical potentials result in identical photocurrents (similarly points 1 and 4). At
a relatively low potential of−180 mV, the photocurrent depends on the sequence of preceding
potentials—see points 3 and 7. Qualitatively, similar dependence was reported previously for
the PSI-FTO electrodes with PSI isolated from cyanobacterium Synechocystis sp. PCC 6803 [27].
A qualitative explanation of this dependence is illustrated in Figure 5. At OCP (red circle in
Figure 4b), the photocurrent is low because, in most PSI complexes, charge recombination
effectively competes with the transfer of charges outside PSI (Figure 5b). When lowering the
potential, the photooxidized primary donors, P+, are reduced by electrons delivered from
FTO, and, thus, P+FA/B

− → PFA/B recombination becomes less pronounced (Figure 5a). A
neutral potential applied to WE, ~(+220 mV) (points 1 and 4 in Figure 4b), completely eliminates
photocurrent due to inefficient reduction of P+ by FTO and the dominating charge recombination
process (Figure 5c). Finally, at the very positive potentials of +420 and +620 mV, close to or
higher than the redox midpoint potential of P+/P (~450 mV [9,44]), the primary donor P
becomes permanently oxidized to P+ in a fraction of particles [27], and PSI complexes with such
oxidized primary donors become inactivated, i.e., no charge separation can effectively occur
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and, thus, no photoelectrons can be generated (Figure 5d). In this context, observation of anodic
(positive) current may have a double origin (Figure 4b). As proposed previously for different
photosynthetic proteins [27,45], one possibility is to assign this current to electrochemical
oxidation of photoexcited antenna Chls, which seems likely in the view of very negative redox
potential of Chl*/Chl+ of−920 mV [45]. An additional source of the anodic photocurrent may
be a minor fraction of PSI particles with opposite orientation—with the acceptor side facing the
FTO surface and still able to support charge separation (Figure 5d). This fraction may manifest
its presence only at high potentials, which inactivate many oppositely oriented PSI particles.
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Figure 5. Diagrammatic representation of the ET processes in the PSI-based photoelectrode as a func-
tion of the external bias. (a) Relatively large cathodic photocurrent due to very low potential applied;
(b) relatively small cathodic photocurrent at OCP; (c) no photocurrent at neutral potential; (d) rela-
tively large anodic photocurrent due to a very high potential. Blue rectangles—conducting FTO layer.
Green ovals—PSI particles. O and R—oxidized and reduced forms of redox compounds in the elec-
trolyte. Excess of R over O forms in panel (a) illustrates the real effect of reduced species domination
in bulk electrolyte solution. Black arrows—forward ET, red arrows—back ET. Chl*—photoexcited
antenna Chls. F—one of the PSI electron acceptors. Note that, for simplicity, only homogeneous
orientation of the PSI particles is depicted.

The difference in photocurrents recorded at a relatively low potential (−180 mV,
points 3 and 7 in Figure 4b) may be explained by the fact that these two measurements
were preceded by very different potentials. Point 3 was recorded after a sequence of
moderate potentials (points 1–2), whereas point 7 was recorded just after the very positive
potential of +620 mV (point 6) was applied to WE. Most likely, in the latter case, application
of the highly oxidizing potential resulted in the oxidization of the redox compounds of
the electrolyte (labeled by “O”) present inside the PSI multilayer (Figure 5d). Immediate
transition to the very low potential of −180 mV did not provide the full regeneration of the
reduced forms (“R”—see Figure 5a). Thus, we conclude that the effect of the low electrode
potential on photocurrent in point 7 was decreased by the high potential of the nearby
solution (dominated or significantly contributed to by the O form). On the other hand, the
effect of the low electrode potential on photocurrent in point 3 was enhanced by the low
potential of the nearby solution (dominated by the R form).

We also observed that a further decrease in the applied potential, from −180 mV
to −280 mV, results in the decrease rather than the further increase in the cathodic pho-
tocurrent (point 8). This effect can be explained by a depletion of the oxidized form of
electrolyte, O, in the PSI multilayer. In consequence, electron transfer from FA/B

− to O
was slowed down, the P+FA/B

− → PFA/B recombination was more effective, and cathodic
photocurrent decreased.

Finally, it should be emphasized that the photocurrent in the studied system was
relatively low: it was ~(−720 nA/cm2) at OCP which corresponds to IQE = 0.073%, whereas
the maximal cathodic photocurrent of ~(−4600 nA/cm2) at −180 mV (point 3 in Figure 4b)
translates to IQE = 0.47%. These numbers illustrate that, in both cases, the vast majority
of the charge-separated states either recombined or were not formed at all due to the
inactivation of the PSI complexes. To further investigate this issue, time-resolved absorption
measurements were performed.
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3.2. Time-Resolved Absorption Measurements

PSI absorption is dominated by antenna Chls, and contribution from ET cofactors is
much lower. In the studied PSI particles from C. merolae, there are 159 antenna Chls a per
primary electron donor. From this proportion, using Equation (4), one may estimate that,
for the multilayer of PSI particles of A679 = 0.27, the maximal expected photobleaching
signal resulting from photooxidation of P, ∆A700, should be (2–3) mOD:

∆A700 =
A679

m
∆ε700(P+ − P)

∆ε679(Chl∗ − Chl)
, (4)

where m = 159 and
∆ε700(P+−P)

∆ε679(Chl∗−Chl) is the ratio of differential molar extinction coefficients at
700 nm related with oxidation of P and, at 679 nm, related with excitation of antenna Chls,
respectively. This ratio is not exactly known but it may be estimated as ~1–2 given that P is
the dimer of Chls.

3.2.1. General Comments on the Kinetics of the P+ ∆A Signal

To follow the ET reactions in PSI deposited on FTO, we have chosen the probe wave-
length of 700 nm. Regarding the millisecond temporal resolution of our measurements, at
this wavelength, one may expect observation of immediate appearance of photobleaching
signal due to P photooxidation by the excitation laser pulse followed by the decay. In
principle, the P+ decay signal may be caused by one of the internal recombination reactions
or due to ET from an external electron donor to P+.

Figure 6a presents P+ decay kinetics of extreme initial amplitudes and their fits, while
Figure 6b presents a collection of fitting curves to the P+ decay kinetics recorded at different
experimental conditions, including a range of voltages applied to the PSI-FTO electrode,
different concentrations of the redox compounds in the electrolyte, and two frequencies
of excitation. All these curves are analytically expressed by the bi-exponential function
(Equation (3)), and the parameters of this function for each curve are collected in Table 1
(note that section A of Table 1 refers to PSI deposited on FTO, while section B refers to
the control/reference experiment performed for PSI dissolved in a buffer solution). The
various experimental conditions applied for investigation of FTO-PSI electrode resulted not
only in different lifetimes and relative amplitudes of the two exponential phases and the
offset (const), but also in different initial amplitudes of the photobleaching signal just after
the excitation (−∆A0). It is important to notice that, in all cases, the initial (−∆A0) signal
was significantly smaller than the expected maximal value of (−∆A0,max) = 2–3 mOD (see
above), despite saturating character of the excitation pulses. To estimate the percentage,
∆A0,rel, of the PSI particles immobilized on the FTO glass, which supported light-induced
charge separation (and, thus, formation of the state P+ was observed), we assumed that the
same PSI complexes dissolved in an aqueous solution performed charge separation with
~100% efficiency under optimal conditions (saturating excitation and efficient recovery
of the photoactive PSI state between the laser flashes by the redox compounds, 10 mM
ascorbate and 40 µM DCPIP—see data in section B of Table 1 [24]). Thus, we estimated the
values of ∆A0,rel from the following equation:

∆A0,rel =
∆A0

∆A0
(

PSIaq
) f 100%, (5)

where ∆A0 is the initial signal for any measurement (PSI in solution or immobilized on
FTO slide), ∆A0(PSIaq) is the initial signal for the PSI dissolved in the aqueous solution,
and f is a normalization factor given by Equation (6):

f=
A679

(
PSIaq

)
A679

, (6)
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where A679 is the absorbance of either sample at 679 nm, whereas A679
(

PSIaq
)

is the
absorbance of PSI particles dissolved in an aqueous solution. The resulting values of
∆A0,rel are collected in Table 1 and were the same as those calculated from Equation (7):

∆A0,rel =
∆A0

∆A0,max
100% (7)

for ∆A0,max = −2.4 mOD, which is in a good agreement with the expected range of values

of this parameter (2–3 mOD, see above) and corresponds to
∆ε700(P+−P)

∆ε679(Chl∗−Chl) = 1.4.
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Figure 6. The kinetics of the P700+ photobleaching decay at 700 nm in the PSI complexes deposited
on FTO glass. (a) Examples of experimental kinetics together with fitted bi-exponential curves (fit
curves 6 and 8 from Table 1); the region of overlap of the two different kinetic curves is shown in dark
pink; (b) the fit curves 1–17 from Table 1, lumped into four distinct groups (A–D); (c) normalized fit
curves 1–17 (groups A-D from panel b are indicated).
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Table 1. Experimental conditions and parameters of transient absorption kinetics of C. merolae PSI
complexes recorded at 700 nm. (A) PSI complexes deposited on FTO; (B) PSI suspended in aqueous
solution (1).

Expe-Riment Number Experimental Conditions Parameters of Kinetic Traces

Potential
(V)

[Asc]
(mM)

[DCPIP]
(µM)

f
(Hz)

−∆A0
(mOD)

∆A0,rel
(%)

τ1 (ms)
A1

τ2 (ms)
A2 const τave (ms)

(A) PSI-FTO, A679 = 0.27

(A1) Experiments with variable potential of WE and without redox compounds in electrolyte

1 0.22 (2) - - 0.05 0.28 12 0.8
0.44

34
0.56 0.00 19.4

2 0.02 - - 0.05 0.35 15 2.7
0.61

81
0.39 0.00 33.2

3 −0.18 - - 0.05 0.73 31 1.1
0.36

21
0.44 0.20 -

4 0.22 - - 0.05 0.43 18 2.1
0.44

34
0.36 0.20 -

5 0.42 - - 0.05 0.30 13 0.7
0.53

18
0.29 0.18 -

6 0.62 - - 0.05 0.25 10 2.0
0.49

59
0.50 0.01 30.5

7 −0.18 - - 0.05 0.63 26 2.3
0.50

55
0.50 0.00 28.7

8 −0.28 - - 0.05 0.80 33 2.2
0.39

35
0.56 0.05 -

9 0.02 - - 0.05 0.55 23 1.5
0.42

40
0.58 0.00 23.8

(A2) Experiments with no potential applied to WE and with redox compounds in electrolyte

10 - 10 - 0.05 0.52 22 0.8
0.41

16
0.46 0.13 -

11 - 10 4 0.05 0.48 20 2.1
0.44

21
0.31 0.25 -

12 - 10 40 0.5 0.26 11 1.3
0.50

15
0.50 0.00 8.2

13 - 10 200 0.5 0.23 10 2.0
0.29

9.4
0.71 0.00 7.3

14 - 10 200 0.05 0.54 23 1.4
0.41

49
0.59 0.00 29.5

(A3) Experiments with negative potentials applied to WE and with redox compounds in electrolyte

15 −0.4 10 200 0.05 0.84 35 2.2
0.39

47
0.61 0.00 29.5

16 −0.4 10 200 0.5 0.77 32 1.6
0.34

24
0.55 0.11 -

17 −0.5 10 200 0.5 0.80 33 1.6
0.36

29
0.54 0.10 -

(B) PSI in solution, A679 = 0.6 (3)

- 10 40 0.5 5.3 100 6.3
0.12

41
0.86 0.02 37

Amplitudes A1, A2 and const were normalized: A1 + A2 + const = 1. ∆A0,rel is the relative initial transient absorption
signal just after the excitation. The average decay time was estimated from the equation τave = τ1A1 + τ2 A2, only
for kinetics with const ≈ 0. (1) Results taken from [24]. (2) No potential was applied, but the measured potential of
the solution was 0.22 V. (3) A679,0.6 cm = 0.6 is the absorbance of the PSI solution of 6 mm thickness (defined by the
diameter of the excitation beam) of A679,1cm = 1.
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3.2.2. Initial P+ Photobleaching Signal as a Function of Voltage Applied to the PSI-FTO
Electrode in the Absence of the Redox Compounds

The first nine measurements of the P+ photobleaching kinetics (section A1 of Table 1)
were performed at different potentials applied to the PSI-FTO electrode in the absence
of any redox compounds in the electrolyte. The sequence of the applied potentials was
the same as in the case of photocurrent measurements (Figure 4b). Generally, the lower
the potential applied to the WE was, the larger the initial photobleaching signal (−∆A0),
similarly as was the cathodic photocurrent. This dependence is presented in Figure 7. The
initial signal was expected to be proportional to the size of the fraction of photoactive PSI
particles, i.e., particles which were capable of performing charge separation. Apparently,
for all potentials, only a fraction of PSI particles was photoactive. This fraction ranged
from ~10% at the highest potential (+620 mV, point 6) to ~33% at the lowest potential
(−280 mV, point 8). Interestingly, neither of these extreme potentials was fully effective.
The extreme positive potential (point 6) should be high enough to fully oxidize P (its
midpoint potential is +450 mV) and, thus, inactivate charge separation in all the complexes.
However, still, 10% of PSI particles were photoactive, indicating that the electric contact
between the FTO substrate and PSI multilayer was imperfect. On the other hand, the
extremely low potential of −280 mV increased the fraction of the photoactive complexes
from 10% to only ~33%. Thus, two thirds of the PSI complexes remained inactive, either
due to inefficient electric contact between the FTO substrate and PSI multilayer or due
to structural/functional disturbance of the electrodeposited proteins. One possibility
of such disturbance is that the apparently “inactive” PSI complexes performed charge
separation, but it was followed by unresolved submillisecond charge recombination events
(P+A1

− → PA1 and/or P+A0
− → PA0) [22,23].
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Figure 7. Initial photobleaching amplitudes as a function of voltage applied to PSI-FTO electrode.
Data points obtained in the absence of redox compounds in the electrolyte are represented by filled
squares (first nine numbered data points from Table 1). Data collected in the presence of 10 mM
ascorbate and 200 µM DCPIP are represented by red symbols (data points 15–17 from Table 1).
Squares refer to excitation frequency 0.05 Hz, and circles—0.5 Hz. Labels A, B, and C refer to
the three distinct groups of kinetics shown in Figure 6b. Left axis—absolute amplitudes, right
axis—relative amplitudes.

Qualitatively, the effect of low and high potential, assuming extreme, unobserved
100% efficiency of each of them, is shown in Figure 8. At low potential, the FTO substrate
efficiently donates electrons to P+ of the adjacent layer of PSI (Figure 8a). The P+ species
in the more distant PSI layers can receive the electrons from the final electron acceptor,
FA/B

−, of the neighboring protein. This way, the electron may be “transferred” from the
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FTO surface to the distal PSI layers and recover the ground state of ET cofactors in all the
proteins (active state of PSI). Similar electron transfer between neighboring PSI particles
forming the multilayer, albeit mediated by highly concentrated redox molecules (5 mM
DCPIP and 100 mM ascorbate), was proposed previously [46]. However, since, in the real
system, the connection between individual proteins is not so perfect, the electrons from
FA/B

− were not able to reach each PSI complex and this limited the P+ re-reduction effect of
the low potential. On the other hand, the electrons in FA/B

− acceptors in such electronically
uncoupled PSI particles could either recombine with the hole on P+ (recovering the active
PSI state) or could be expelled outside PSI—either to oxygen dissolved in the solution or to
the buffer molecules [24]. Under such conditions, the PSI particles would adopt the inactive
state P+FA/B, unable to perform charge separation. In the case of high potentials, the
delivery of electrons from the FTO glass to PSI was hampered and the described process of
PSI inactivation became even more intense (Figure 8b). The observation of the 10% fraction
of photoactive PSI complexes under high potential may be explained by the inability of this
fraction to transfer electrons outside the protein (see below). Efficient charge recombination
could then recover the photoactive ground state PFA/B ready for the next turnover.
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the redox compounds. (a) Low voltage (all PSI complexes contain charge-separated states due to
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Figure 7 shows that the initial P+ photobleaching signal (−∆A0) depended not only
on the value of the applied potential, but also on the sequence of applied potentials. Points
1, 2, and 7 were obtained for the same potentials as points 4, 9, and 3, respectively, but the
former group shows lower photobleaching signals than the respective signals from the
latter group. Notably, the latter group of the data points (4, 9, 3) was collected after the
application of lower voltages than the respective points in the former group (1, 2, 7). As
an example, point 9 was preceded by point 8 measured at −280 mV, whereas point 2 was
preceded by point 1 measured at +220 mV. The observed difference in the photobleaching
signal at points 9 and 2 (and the two other pairs of points) may be explained by the slow
adaptation of the system to the newly applied potentials. This slow adaptation may be
rationalized in the following way: after prolonged application of the very negative potential
at point 8 (−280 mV), an accumulation of electrons within the multilayer of PSI occurs
and partly persists till the measurement of point 9. Thus, the measurement at point 9 is
co-determined by the FTO voltage and low potential of the electrons accumulated in the
multilayer. The measurement at point 2 was preceded by that at point 1 performed at
potential +220 mV, which is much less favorable for the accumulation of electrons in the
PSI multilayer. Thus, the measurement at point 2 is co-determined by the FTO voltage and
relatively high potential of the solution inside the multilayer. We conclude that the effective
potential at point 9 is lower than at point 2. This situation is similar to that described for
the photocurrent measurements in chapter 1 (points 7 and 3; Figure 4b), but extended also
to higher potentials (points pairs 9/2 and 4/1; compare Figures 4b and 7), likely due to the
absence of the redox compounds in the time-resolved absorption experiments (Figure 7).
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3.2.3. Kinetics of the P+ Photobleaching Signal at Different Voltages Applied to the
PSI-FTO Electrode in the Absence of the Redox Compounds

The overall shapes of the kinetic curves from the measurements 1–9 were observed
to be not very different from one another (Figure 6c). A common feature of all the kinetic
traces is their bi-exponential decay character. Additionally, in some kinetic measurements,
a nondecaying component (const) was resolved, and, in some, not. The fit parameters are
presented in section A1 of Table 1 and, in a graphic way, in Figure 9. The faster decay phase
lifetime, τ1, of the value ranging from ~0.5 ms to ~2.5 ms did not show any systematic
dependence on the voltage applied to the PSI-FTO electrode (Figure 9a), and its mean
value was 1.7 ms. The slower decay component (τ2) ranged from ~20 to ~80 ms, again
without systematic dependence on the voltage (Figure 9b). The kinetics fitted with the
parameter const = 0, yielded, as expected, a somewhat larger lifetime τ2 of the mean value
54 ms. When the const parameter was non-zero, the mean value of τ2 was 27 ms, and the
overall mean lifetime τ2 was 42 ms. The broad distribution of the two lifetimes is assigned
to a limited signal-to-noise ratio. The mean value of 1.7 ms fits very well the lifetime of
the P+FX

− → PFX recombination [22,23], whereas the mean values 27–42–54 ms fit the
lifetime value of the P+FA/B

− → PFA/B recombination [22,23]. The const parameter (of the
relatively small value of up to 0.2, see Table 1) may reflect a fraction of PSI particles with
particularly long-lived P+ state. Such long-lived state may be caused by (1) particularly
slow P+FA/B

− → PFA/B recombination (reported to be 86 ms in [22]) that was not properly
resolved in the 54-ms time window of the experiment, and (2) escape of the electron from
FA/B

− outside PSI, leaving the complex in the state P+FA/B [24]. The observation that the
fits with non-zero const parameter resulted in significant acceleration of the slower decay
component (on average from 54 to 27 ms) indicates that a large fraction of the const value
was due to the former reason.

Despite overall similar shape and lifetimes of all the kinetic curves (1–9) and their
limited signal-to-noise ratio, detailed analysis of the amplitudes of the fast and slow decay
phases revealed their systematic dependence on the applied voltage and their correlation
with the voltage dependence of the initial photobleaching signal (Figure 9c–e). As noted
above, initial photobleaching amplitude increases with decreasing potential (Figure 9c),
which is correlated with the decrease in the amplitude of the fast decay component, from
~55 to ~35% (Figure 9d), and an increase in the amplitude of the slow decay from ~45
to ~65% (Figure 9e). Since, with the given signal-to-noise ratio and time window of the
experiment, it was impossible to properly separate the amplitudes of the slow exponential
and const components, these two were lumped together (Figure 9e). The observed increased
contribution of the slow decay component (Figure 9e) with lowering the voltage, paralleled
by an increase in the total signal (Figure 9c), was as expected. A similar effect was reported
for PSI suspended in an aqueous solution upon increasing its reducing strength controlled
by the concentration of redox chemicals (instead of the application of low voltage to the
electrode; see [24]). Low potential reactivates preferentially PSI complexes that are able to
perform full charge separation (PFA/B→ P+FA/B

−), since only such complexes are expected
to be in the inactive state P+FA/B. On the other hand, PSI complexes unable to perform
charge separation beyond P+FX

− are not expected to form the inactive state P+FA/B, since
the P+FX

−→ PFX recombination seems to be prevalent over the escape of the electron from
FX
− outside the protein. In that context, the fraction of the PSI complexes with charge

separation limited to the state P+FX
− should not increase at all upon lowering the potential.

However, as shown in Figure 10 (collecting the data from Table 1 (section A1) and Figure 9),
this fraction also increases (from ~5.5% to ~12%), albeit to a lesser extent than the fraction
showing full charge separation (an increase from ~4.5% to ~22%). A possible explanation
of this phenomenon may be that the fast, ~1.7 ms, component is contributed to by fast
electron donation to P+ from the FTO electrode.
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Figure 9. Dependence of bi-exponential fit parameters on voltage applied to the PSI-FTO electrode
(with no chemicals added; experiments no. 1–9 in Table 1). (a) Lifetime τ1 with the average value
indicated; (b) lifetime τ2 with the average values indicated separately for the kinetics fitted with
const = 0 (54 ms; points in the red ellipses), const 6= 0 (27 ms; remaining points), and for all kinetics
(42 ms); (c) initial amplitude, −∆A0; (d) amplitude A1 of the fast phase (~1.7 ms); (e) the sum of the
amplitude A2 of the slow phase (~42-ms) and const parameter. The points shown as gray circles (1, 2,
7) are those for which the initial amplitude (−∆A0; panel (c)) deviates from the general trend due to
specific sequence of the applied potentials. The red lines in panels c-e indicate trends in the values of
the amplitudes with neglected points 1, 2, and 7.
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Figure 10. Fractions of active (green) and inactive (red) PSI complexes under (a) low (−280 mV) and
(b) high (+620 mV) potential. Within active PSI complexes, fractions recombining from the states
P+FX

− and P+FA/B
− are shown.

3.2.4. Kinetics of the P+ Photobleaching Signal in the Presence of the Redox Compounds

Section A2 of Table 1, which includes the results obtained without any potential applied to
the photoelectrode but with the addition of different concentrations of ascorbate and DCPIP,
shows that the re-reduction of P+ by the used redox compounds is less efficient than the re-
reduction of P+ by the low voltage applied to the WE. The initial photobleaching signal, whose
amplitude (∆A0,rel) is a measure of this efficiency, is limited to ~20–23% in the former case
compared to ~33% in the case of the lowest potential applied. Unexpectedly, the addition
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of 4–200 µM DCPIP, which in solution accelerates P+ re-reduction by ascorbate [3,22,24,39],
exerts no effect on ∆A0,rel compared to 10 mM ascorbate alone (datasets 10, 11, 14 in Table 1;
group B in Figure 6b,c). On the other hand, decreasing the excitation frequency from 0.05 Hz to
0.5 Hz decreases the initial photobleaching signal twice to 10–11% (datasets 12–13 in Table 1;
group D in Figure 6b,c). This demonstrates that ascorbate needs significantly more than 2 s to
re-reduce P+ in the PSI multilayer, which agrees with the previous reports [24,39]. The shapes
of the kinetic curves measured with 0.05 Hz excitation resembled those measured without
redox compounds and were fitted by similar fast (~1–2 ms, ~40%) and slow (~20–50 ms, ~60%)
decay components, assigned again to the P+FX

−→ PFX and P+FA/B
−→ PFA/B recombination

events, respectively. Significantly faster decay was observed upon 0.5 Hz excitation frequency
(datasets 12–13 in Table 1; group D in Figure 6b,c), assigned to ~10% fraction of PSI particles
permanently photoactive due to efficient, mostly P+FX

−→ PFX, charge recombination.
Section A3 of Table 1 shows the results of experiments performed both with negative

potentials applied to WE and redox compounds in the electrolyte. Combination of the
low potential (−180 mV) and presence of 10 mM ascorbate and 200 µM DCPIP in the
electrolyte increased the initial photobleaching signal, ∆A0,rel, merely by 5%, from 30 to
35%, compared to the effect of the low potential alone (compare datasets 3 and 15 in Table 1
and in Figure 7). Apparently, the effects of the P+ re-reduction by low potential alone
(∆A0,rel ≈ 30%; dataset 3) and redox compounds alone (∆A0,rel ≈ 20%; datasets 10, 11, 14)
are not additive, as could have been expected considering limited penetration depths of
the electric field from one side and the redox compounds from the opposite side of the
PSI layer. Such a hypothetical situation is presented in Figure 11a, whereby it is assumed
that all PSI particles in the multilayer are potentially photoactive, but their middle region
becomes inactive (the state P+FA/B is formed) due to the limited access of the two reducing
agents. To reconstruct the experimentally observed fractions of photoactive PSI complexes
(~30% for low potential alone (−180 mV), ~20% for redox compounds alone, and ~35% for
combinations of both), an alternative model was developed (Figure 11b; see SI for details).
In this model, the small enhancement effect of the combination of the low potential and
redox compounds was obtained by assuming limited but large penetration depth of both
these agents, and homogenous distribution of photoactive and inactive PSI complexes
across the multilayer. The resulting fraction of the PSI complexes inactive even in the
presence of re-reducing agents was 65%, and the penetration depths of the low voltage and
the redox compounds were 90% and 65% of the multilayer thickness, respectively. The
penetration depth of the redox compounds limited to 65% is in contrast with PSI multilayer
being fully permeable for the redox molecules (5 mM DCPIP and 100 mM ascorbate),
concluded in [46], despite the thickness in their study, 1–2 µm, being larger than in ours
(40 × ~(15 nm) ≈ 0.6 µm). This difference can be related with different methods of PSI
deposition and/or different concentrations of DCPIP and mM ascorbate.
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ascorbate and 200 µM DCPIP), respectively.
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Increasing the excitation frequency from 0.05 to 0.5 Hz, in the presence of both low
voltage and redox compounds (points 15 and 16, respectively, in Figure 7), decreased ∆A0,rel
signal only slightly. This small change indicates that the P+ re-reduction effect of the low
voltage is significantly faster than that of the used redox compounds (see above).

It is interesting to note that similar studies of the P+ decay performed for the same
preparation of C. merolae PSI but suspended in a buffer solution containing 10 mM ascorbate
and up 40 µM DCPIP revealed photoactivity of all PSI particles, even at 0.5 Hz excitation
frequency (∆A0,rel = 100%; see part B of Table 1 and [24]), whereas only ~20–35% of
immobilized PSI are active in the presence of the same redox compounds. The unsolved
question arises: what is the nature of the remaining major fraction of inactive immobilized
PSI complexes? Do they constitute a “rogue” fraction of PSI particles in the state P+FA/B
without efficient electric connection with the re-reducing agents, do they perform fast
unresolved charge recombination, or are they disturbed in a more profound way, e.g., by
the electrodeposition procedure? The latter possibility seems to be least likely, since the
femtosecond studies on cyanobacterial PSI electrodeposited on the FTO glass revealed that
the excitation energy transfer and primary charge separation were similar to those for PSI
in solution [27].

3.3. Comparison of the Time-Resolved Absorption and Photocurrent Results

Table 2 presents the main results obtained from the time-resolved absorption and
photocurrent experiments for the FTO-PSI system. Moreover, the results obtained for this
system are compared with those reported previously for C. merolae PSI complexes sus-
pended in a buffer solution containing ascorbate and DCPIP [24]. Time-resolved absorption
data show fractions of PSI able to perform charge separation and, in principle, able to
transfer the electron outside PSI. On the other hand, photocurrent data show the electrons
successfully expelled from PSI to the external electric circuit of the PEC. The first observed
effect of PSI immobilization on FTO is a decrease in the fraction of proteins able to perform
charge separation from 100% in solution to 20–35% after deposition on FTO, depending on
the potential applied (OCP or −180 mV) and redox compounds added. The second effect
of the PSI immobilization on FTO is a decrease in the fraction of proteins able to perform
full charge separation (formation of the P+FA/B

− state) from ~90% in solution to 10–20%
after deposition on FTO, depending on the potential applied. The third effect, an ability to
expel the electron outside PSI, was not directly determined for the FTO-PSI system. If one
assumes that this ability is the same as in the solution (~2% [24]), the resulting fraction of
PSI performing ET outside PSI would be 0.2–0.4%, which is a range of values similar to IQE
(0.073–0.47%). In such a scenario, one may conclude that the internal charge recombination
(occurring between FA/B

− and P+ in an individual PSI complex) was the major factor
responsible for the very limited IQE measured in the studied system. Alternatively, the
fraction of PSI showing ET outside the protein may be higher in the film than in the solution.
This may happen since the ET from the FTO electrode to P+ may be faster than from the
redox compounds in solution, as suggested by the results discussed above. In such a case,
the external charge recombination, i.e., ET from FA/B

− in one PSI complex to P+ in another
one, would be the third important factor – in addition to limited photoactivity of PSI and
internal charge recombination – responsible for the low IQE value.
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Table 2. Comparison of parameters related to charge separation in C. merolae PSI, ET outside PSI, and
IQE estimated from the time-resolved absorption or photocurrent experiments.

Type of Experiment Parameter In Solution (3)

Immobilized on FTO

No Redox Compounds Added +10 mM Ascorbate
+200 µM DCPIP

@OCP
(+115 mV)

@low Potential
(−180 mV)

@OCP
(+115 mV)

@low Potential
(−180 mV)

Time-resolved absorption

Fraction of
photoactive PSI (1) 100% 20% 31% - 35%

Fraction of fully
photoactive PSI (2) ~90% ~10% ~20% - ~20%

Fraction of PSI
showing ET
outside PSI

2% (0.2%)(4) (0.4%) (4) - (0.4%) (4)

Photocurrent IQE - - - 0.073% 0.47%

(1) PSI complexes undergoing any of the charge separation steps; (2) PSI complexes undergoing full charge
separation yielding the final state P+FA/B

−; (3) data from [24]; solution contained 10 mM ascorbate and 40 µM
DCPIP; (4) the values in brackets were estimated assuming 2% efficiency of ET outside immobilized PSI, i.e., the
efficiency measured for PSI complexes suspended in solution.

4. Summary and Conclusions

Our studies demonstrate that electrodeposition of PSI complexes on FTO significantly
affects their ability to support full natural forward electron transfer. Up to 90% of immobi-
lized PSI particles remain inactive. This number may be reduced to 65% by application of
reducing agents, such as low electric potential applied to the FTO-PSI photoelectrode, or
addition of redox mediators to the electrolyte solution being in contact with the protein
film. This work indicates that (quasi)permanent photo-oxidation of PSI complexes (PSI
in the state P+FA/B) may be the reason for their decreased photoactivity, and that it may
originate from limited access of the reducing agents to a fraction of crowded protein parti-
cles. Additional causes of PSI inactivation may be fast, unresolved charge recombination
(P+A1

−→ PA1 and/or P+A0
−→ PA0) or other types of ET disturbance. On the other hand,

the fraction of photoactive complexes is inhomogeneous—roughly half of the active PSI do
not perform full charge separation, but they undergo P+Fx

− → PFx charge recombination.
Despite significant perturbation of forward ET inside immobilized PSI particles, it is not the
major reason for the low, <0.5%, photon-to-photocurrent efficiency in the studied system.
Apparently, the P+Fx

− → PFx and P+FA/B
− → PFA/B charge recombination reactions are

generally much more effective than the electron transfer from FTO to PSI and from PSI to
the counter electrode in the studied system. We conclude that, in designing new efficient
PSI-based photoelectrodes, it is essential to provide both intact operation of PSI and efficient
electron and hole uptake from PSI by artificial elements of the solar conversion system.
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