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Abstract

Summary: Short reads sequencing technology has been used for more than a decade now.

However, the analysis of RNAseq and ChIPseq data is still computational demanding and the sim-

ple access to raw data does not guarantee results reproducibility between laboratories. To address

these two aspects, we developed SeqBox, a cheap, efficient and reproducible RNAseq/ChIPseq

hardware/software solution based on NUC6I7KYK mini-PC (an Intel consumer game computer with

a fast processor and a high performance SSD disk), and Docker container platform. In SeqBox the

analysis of RNAseq and ChIPseq data is supported by a friendly GUI. This allows access to fast and

reproducible analysis also to scientists with/without scripting experience.

Availability and implementation: Docker container images, docker4seq package and the GUI are

available at http://www.bioinformatica.unito.it/reproducibile.bioinformatics.html.

Contact: beccuti@di.unito.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole transcriptome sequencing (WTS) and ChIPseq made obsolete

the corresponding array hybridization based technologies. Short reads

sequencing technology has been used for more than a decade now, and

experience shows that the main bottleneck in sequencing workflows is

the time spent in analyzing and interpreting data (Wong et al. 2017).

The primary analysis of the data, i.e. mapping short read se-

quences on the reference genome, is still computationally demanding

and requires computer performances that are not commonly avail-

able in laptops. In particular, WTS requires a significant amount of

RAM and multicores processors. The needs of high performance

computing infrastructure for the analysis of sequencing data has

brought to the development of cloud based analysis tools, e.g.

Illumina BaseSpace (https://basespace.illumina.com/home/index),

Galaxy (https://usegalaxy.org/), etc. However, cloud based solutions

suffer of some criticalities, e.g. data uploading speed, limited storage

space and significant computing and data transfer costs. Moreover,

although all available data analysis platforms guarantee a certain

level of reproducibility, typically storing the version of the software

being used, tracking changes in the system libraries, which might

lead to sneaky reproducibility issues, is not provided.

To combine reproducible data generation with cost effective but

efficient hardware we have developed SeqBox, a software/hardware

ecosystem providing the most common analyses of RNAseq and

ChIPseq data (i.e. genomic mapping, experimental power evalu-

ation, differential expression, transcription factors/histone-marks

peaks identification, etc.) on a consumer game computer (Fig. 1A).

2 Materials and methods

The SeqBox ecosystem (Fig. 1A) is the union of SeqBox software

and SeqBox target hardware.

A user can access the system either through a Java-based graph-

ical interface (GUI, see Supplementary Material), or through R
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console (see Supplementary Material). Independently of the access

type, the user can exploit three different workflows: RNAseq,

miRNA and ChipSeq, which are managed by a Controlling Engine

written in R (Fig. 1A). The functions that realize the workflows are

either standard analysis algorithms or a set of supporting functions

that have been developed and included in Bioconductor packages

(e.g. DESeq2, ChIPpeakAnno). The algorithms used for sequencing

data analysis include STAR (Dobin et al., 2013) for RNAseq gen-

omic mapping, DESeq2 (Love et al., 2014) for differential expres-

sion analysis, BWA (Li and Durbin, 2009) for ChIPseq genomic

mapping, MACS (Zhang et al., 2008), and SICER (Xu et al., 2014)

for ChIP peaks detection (see Supplementary Material). All of them

are encapsulated into Docker images.

A Docker image is a lightweight, stand-alone, executable pack-

age that includes everything needed to run a specific software.

A runtime instance of an image, called container, runs completely

isolated from the host environment except for user-specified host

files. The advantage of using Docker images is that the whole envir-

onment is fixed, the images are available in the Docker repository,

and the identity of the images is the only element needed to repro-

duce the results. The execution of the Docker images, implementing

the workflow chosen by the user, is done by docker4seq, a R pack-

age which embeds a set of functions providing the running param-

eters to the mapping and counting engine.

SeqBox provides six Docker images: (i) skewer.2017.01, which

uses skewer (Jiang et al., 2014) for adapter trimming; (ii) rsem-

star.2017.01, which uses STAR (Dobin et al., 2013) to map short

reads mapping on the reference genome and RSEM (Li and Dewey,

2011) for gene and isoform-level quantification; (iii) anno-

tate.2017.01, which is used to associate RSEM output id with gene

symbols; (iv) mirnaseq.2017.01, which implements the miRNAseq

analysis workflow described in (Cordero, et al., 2012); (v)

r332.2017.01, which allows differential expression analysis via

Bioconductor package DESeq2; (vi) chipseq.2017.01, which uses

BWA (Li and Durbin, 2009) to map short reads on the reference

genome, MACS (Zhang et al., 2008) to detect transcription factors

binding sites, and SICER (Xu et al., 2014) to define histone-marks.

The GUI provides a graphical access to the docker4seq func-

tions allowing the use of the tools to biologists without scripting

experience.

SeqBox hardware: The parameters setting of the algorithms (in

terms of memory size versus number of assigned cores) is optimized for

an execution on the game computer NUC617KYK (Fig. 1A), which is

based on an Intel Core I7, featuring 4 cores running up to eight threads

that share a common memory of 32 Gb and a SSD disk of 256 GB.

3 Results

We benchmarked SeqBox with respect to a high-end server (SGI

UV2000, Fig. 1B). The performance comparison was done for

the three workflows (see Supplementary Figs S1–S3). In brief,

we compared the workflows using increasing amounts of reads

(see Supplementary Material) on SeqBox, using eight threads, and

on the SGI server increasing the number of threads from 8 to 160

(Supplementary Figs S1–S3). Parallelization provided by the SGI

server did not improve very much the overall performances in the

RNAseq workflow (Supplementary Fig. S1). SeqBox significantly

outperformed the server, because of the presence of a SSD with

high I/O performance which can cope with the limited parallelism

of SeqBox. In the case of miRNA and ChIPseq workflows the

parallelization is only available for the reads mapping procedures.

The limited parallelization of these two workflows combined

with the higher I/O performances of the SSD with respect to

the SATA array makes SeqBox extremely effective even with

very high number of reads to be processed (Supplementary Figs S2

and S3).

4 Conclusion

The majority of the algorithms used in the considered bioinformatics

workflows is strongly I/O bound and exhibits a limited exploitation

of parallelism. Our experiments show that a combination of a

consumer computer with a fast storage is able to over-perform a

high-end server. The integration of Docker technology within

a mini-PC consumer computer such as Intel NUC6I7KYK provides

therefore, to small biology laboratories, a solution for Next

Generation Sequence (NGS) analysis which is cheap, efficient and

reproducible.
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Fig. 1. (A) SeqBox framework: depicting the structure of SeqBox and its func-

tionalities from a user point of view. The analysis flows from left to right. (B)

Characteristics of the hardware used to evaluate the SeqBox performances
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