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Abstract: Neurodegenerative diseases (NDDs) represent a considerable global health bur-
den with no definitive treatments. Emerging evidence suggests that periodontitis may
contribute to NDD through shared inflammatory, microbial, and genetic pathways. A
retrospective cohort design was applied to analyze hospital records from 2012–2022 and to
determine whether periodontitis independently increases NDD risk when accounting for
major cardiovascular, cerebrovascular, metabolic, and inflammatory confounders. Likeli-
hood ratio-based Cox regression tests and Weibull survival models were applied to assess
the association between periodontitis and NDD risk. Model selection was guided by Akaike
and Bayesian information criteria, while Harrell’s C-index and receiver operating character-
istic curves evaluated predictive performance. Periodontitis demonstrated an independent
association with neurodegenerative disease risk (HR 1.43, 95% CI 1.02–1.99). Cerebral
infarction conferred the highest hazard (HR 4.81, 95% CI 2.90–7.96), while pneumonia (HR
1.96, 95% CI 1.05–3.64) and gastroesophageal reflux disease (HR 2.82, 95% CI 1.77–4.51)
also showed significant increases in risk. Older individuals with periodontitis are at height-
ened risk of neurodegenerative disease, an effect further intensified by cerebrovascular,
cardiometabolic, and gastroesophageal conditions. Pneumonia also emerged as an indepen-
dent pathophysiological factor that may accelerate disease onset or progression. Attention
to oral and systemic factors through coordinated clinical management may mitigate the
onset and severity of neurodegeneration.

Keywords: periodontitis; neurodegenerative disease; cardiometabolic disease;
cardiovascular disease; cerebrovascular disease; retrospective cohort; longitudinal; clinical;
Weibull regression

1. Introduction
Neurodegenerative diseases (NDDs) [1] constitute a critical global health concern,

largely due to their progressive nature, substantial morbidity, and growing prevalence in
aging populations [1]. Among these, Alzheimer’s disease (AD) and Parkinson’s disease
(PD) are particularly prevalent, with AD affecting an estimated 6.2 million individuals
aged 65 and older in the United States alone [2] and PD afflicting nearly one million
Americans [3]. Worldwide, approximately 55 million people were living with dementia [4]
in 2021, most commonly attributable to AD, a figure expected to rise to 139 million by
2050 [4]. Despite advances in supportive care, there remain no definitive cures or therapies
that effectively halt the progression of these debilitating conditions.
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Growing evidence from systematic reviews and observational studies suggests that
periodontitis, defined as a chronic inflammatory disease of the oral cavity, may be linked
to NDDs [5–7], particularly AD [8], through overlapping molecular pathways involving
systemic inflammation, microbial invasion, and shared genetic susceptibilities. Porphy-
romonas gingivalis, a key pathogen implicated in periodontitis, has been detected in the
brains of AD patients [8], where its virulence factors (gingipains) can breach the blood-brain
barrier [9], provoke tau hyperphosphorylation, and foster amyloid-β aggregation [10]. Con-
currently, elevated systemic levels of pro-inflammatory cytokines [6], such as Interleukin-1
beta (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α), may amplify
neuroinflammatory cascades and activate microglial cells, exacerbating neuronal injury. Ge-
netic studies further indicate upregulated immune-related genes in both periodontitis and
NDDs [6], hinting at convergent inflammatory pathways. Additionally, dysbiosis-induced
disruptions in the oral–gut–brain axis can intensify systemic inflammation and contribute
to neuropathology [6].

Despite considerable research linking periodontitis to NDDs, prior investigations have
been constrained by limitations such as small cohorts, cross-sectional designs, and insuffi-
cient control for pivotal comorbid conditions. Additionally, many studies have focused
exclusively on individual NDDs, such as Alzheimer’s or Parkinson’s disease, without
analyzing them collectively. This narrow focus limits the understanding of potential shared
mechanisms between periodontitis and various NDDs. Thus, a clear need remains for
robust, long-term analyses to assess the independent contribution of periodontitis to NDD
risk and elucidate potential underlying mechanisms. We hypothesized that periodontitis is
independently associated with an increased risk of neurodegenerative diseases collectively,
potentially mediated by inflammatory and microbial mechanisms. To address this, our
single-center, 10-year retrospective cohort study employed multivariate Weibull models
while accounting for major confounders such as cardiovascular, cerebrovascular, metabolic,
and inflammatory conditions. Unlike previous research, this investigation integrated an
extended follow-up period with rigorous analytical methods to isolate the specific con-
tribution of periodontitis to NDD risk, thereby offering new insights into the molecular
pathways underlying this association.

2. Results
2.1. Baseline Characteristics of the Study Participants

The study cohort, outlined in Table 1, included 4886 individuals with median age
of 49 years (IQR: 38–60), with a range from 0 to 86 years. The cohort comprised 45.42%
males (n = 2218) and 54.58% females (n = 2665). Periodontitis was present in 21.18%
(n = 1035) of the cohort. Hypertension was reported in 12.53% (n = 612) of participants,
while 6.88% (n = 336) had angina pectoris and 3.46% (n = 169) had chronic ischemic heart
disease. Atrial fibrillation and heart failure were relatively uncommon, affecting 1.31%
(n = 64) and 1.27% (n = 62) of participants, respectively. Cerebral infarction was observed
in 0.53% (n = 26), and 1.11% (n = 54) had arterial occlusion or stenosis of the precerebral
arteries. Other cerebrovascular diseases were present in 1.33% (n = 65), while atherosclerosis
was diagnosed in 1.94% (n = 95). Non-toxic goiter was present in 2.33% (n = 114) of the
participants. Diabetes and obesity affected 2.05% (n = 100) and 2.42% (n = 118) of the
cohort, respectively. Disorders of lipoprotein metabolism were observed in 6.06% (n = 296).
Pneumonia was recorded in 1.39% (n = 68), and 1.53% (n = 75) had gastroesophageal reflux
disease.
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Table 1. Baseline characteristics of the study population (n = 4886).

Variable Category n (%)

Gender
Male 2218 (45.42%)
Female 2665 (54.58%)

Periodontitis
No 3851 (78.82%)
Yes 1035 (21.18%)

Hypertension No 4274 (87.47%)
Yes 612 (12.53%)

Angina pectoris No 4550 (93.12%)
Yes 336 (6.88%)

Chronic ischemic heart disease
No 4717 (96.54%)
Yes 169 (3.46%)

Atrial fibrillation
No 4822 (98.69%)
Yes 64 (1.31%)

Heart failure
No 4824 (98.73%)
Yes 62 (1.27%)

Cerebral infarction
No 4860 (99.47%)
Yes 26 (0.53%)

Arterial occlusion/stenosis of precerebral arteries No 4832 (98.89%)
Yes 54 (1.11%)

Other cerebrovascular disease
No 4821 (98.67%)
Yes 65 (1.33%)

Atherosclerosis
No 4791 (98.06%)
Yes 95 (1.94%)

Non-toxic goiter No 4772 (97.67%)
Yes 114 (2.33%)

Type 2 diabetes mellitus No 4786 (97.95%)
Yes 100 (2.05%)

Obesity No 4768 (97.58%)
Yes 118 (2.42%)

Disorders of lipoprotein metabolism No 4590 (93.94%)
Yes 296 (6.06%)

Pneumonia
No 4818 (98.61%)
Yes 68 (1.39%)

Gastroesophageal reflux disease No 4811 (98.47%)
Yes 75 (1.53%)

Note: Data are presented as counts with percentages for categorical variables. The study population included
4886 individuals, with demographic and clinical characteristics detailing the prevalence of periodontitis and
associated comorbidities, including cardiovascular diseases, cerebrovascular conditions, metabolic disorders, and
other systemic diseases.

2.2. Cumulative Hazard Analysis Using Nelson–Aalen Estimates

The Nelson–Aalen cumulative hazard estimates in Figure 1 demonstrated a higher
cumulative hazard for NDD over time among individuals with key risk factors compared to
those without. Periodontitis was associated with an increased cumulative hazard, though
the divergence remained modest. More pronounced risk differentials were observed for
hypertension, angina pectoris, and chronic ischemic heart disease, where affected individu-
als exhibited consistently higher cumulative hazard trajectories throughout the follow-up
period. The greatest separation in hazard accumulation was observed in individuals with
atrial fibrillation, heart failure, and cerebral infarction, indicating a significantly elevated
risk of NDD over time.

The Nelson–Aalen cumulative hazard estimates in Figure 2 demonstrated a signif-
icantly higher cumulative hazard for NDD over time among individuals with arterial
stenosis, cerebrovascular disease, and atherosclerosis, indicating an elevated long-term
risk. Individuals with non-toxic goiter and type 2 diabetes mellitus exhibited a moderately
increased cumulative hazard, with a more gradual divergence from those without these con-
ditions. Obesity, disorders of lipoprotein metabolism, pneumonia, and gastroesophageal
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reflux disease were also associated with a steeper increase in cumulative hazard over time,
suggesting their contribution to an increased risk of developing NDD.
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Figure 1. Cumulative hazard estimates for risk factors using Nelson–Aalen analysis. Note: Panel
(A) presents the cumulative hazard estimates comparing males and females. Panel (B) illustrates
differences between individuals with and without periodontitis. Panel (C) shows the cumulative
hazard for hypertension, while Panel (D) depicts angina pectoris. Panel (E) represents chronic
ischemic heart disease. Panels (F,G) display cumulative hazard estimates for atrial fibrillation and
heart failure, respectively. Panel (H) presents the cumulative hazard for cerebral infarction.
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(B) compares individuals with and without cerebrovascular disease, while Panel (C) illustrates
the cumulative hazard associated with atherosclerosis. Panel (D) shows hazard estimates for non-
toxic goiter, and Panel (E) for type 2 diabetes mellitus (T2DM). Panel (F) depicts the cumulative
hazard for obesity. Panel (G) examines disorders of lipoprotein metabolism (DLM), while Panels
(H,I) compare cumulative hazard estimates for pneumonia and gastroesophageal reflux disease
(GERD), respectively.

2.3. Cox Regression-Based Likelihood Ratio Tests for Covariates

In univariate Cox regression analysis (Table 2), periodontitis was associated with an
increased relative hazard of 1.31 (p = 0.064) for NDD risk, though it did not reach statistical
significance. Hypertension showed a significantly higher risk, with a relative hazard of
2.47 (p < 0.001). Angina pectoris and chronic ischemic heart disease were also significantly
associated with increased NDD risk, with relative hazards of 2.6 (p < 0.001) and 4.16
(p < 0.001), respectively. Atrial fibrillation (3.62, p = 0.002) and heart failure (3.73, p = 0.001)
were both strong predictors. Cerebral infarction exhibited the highest relative hazard
at 9.84 (p < 0.001), followed by arterial occlusion or stenosis of the precerebral arteries
(5.01, p < 0.001), other cerebrovascular diseases (6.91, p < 0.001), and atherosclerosis (6.22,
p < 0.001). Non-toxic goiter (4.82, p < 0.001), diabetes (4.00, p < 0.001), and obesity (4.79,
p < 0.001) were also significant predictors of NDD risk. Disorders of lipoprotein metabolism
(2.76, p < 0.001), pneumonia (2.73, p = 0.004), and gastroesophageal reflux disease (4.53,
p < 0.001) were significantly associated with an increased hazard of developing NDD.
Gender was not significantly associated with NDD risk (p = 0.132).

Table 2. Proportional hazards test for equality of survival functions using Cox regression-based
likelihood ratio (LR) Test.

Variable Category Observed
Events

Expected
Events

Relative
Hazard LR Chi2 p-Value

Gender
Male 104 92.75 1.13

2.27 0.132Female 126 137.25 0.92

Periodontitis
No 185 195.42 0.95

3.44 0.064Yes 45 34.58 1.31

Hypertension No 201 217.92 0.95
18.29 <0.001Yes 29 12.08 2.47

Angina pectoris No 211 222.53 0.97
13.02 <0.001Yes 19 7.47 2.6

Chronic ischemic heart disease
No 212 225.52 0.97

23.88 <0.001Yes 18 4.48 4.16

Atrial fibrillation
No 221 227.48 0.99

10.12 0.002Yes 9 2.52 3.62

Heart failure
No 221 227.55 0.99

10.51 0.001Yes 9 2.45 3.73

Cerebral infarction
No 212 228.07 0.98

49.4 <0.001Yes 18 1.93 9.84
Arterial occlusion/stenosis of

precerebral arteries
No 219 227.75 0.98

17.77 <0.001Yes 11 2.25 5.01

Other cerebrovascular disease
No 213 227.43 0.98

36.32 <0.001Yes 17 2.57 6.91

Atherosclerosis
No 213 227.15 0.98

33.31 <0.001Yes 17 2.85 6.22

Non-toxic goiter No 214 226.57 0.98
24.84 <0.001Yes 16 3.43 4.82

Type 2 diabetes mellitus No 218 226.94 0.98
15.25 <0.001Yes 12 3.06 4
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Table 2. Cont.

Variable Category Observed
Events

Expected
Events

Relative
Hazard LR Chi2 p-Value

Obesity No 218 227.43 0.98
18.54 <0.001Yes 12 2.57 4.79

Disorders of lipoprotein
metabolism

No 210 222.57 0.97
15.18 <0.001Yes 20 7.43 2.76

Pneumonia
No 219 225.92 0.98

8.2 0.004Yes 11 4.08 2.73
Gastroesophageal reflux

disease
No 208 224.93 0.97

32.01 <0.001Yes 22 5.07 4.53
Notes: The table presents results from the Cox regression-based likelihood ratio (LR) test for equality of survival
functions, assessing the impact of each covariate on neurodegenerative disease (NDD) risk. Observed and
expected event counts reflect the distribution under the null hypothesis. Relative hazard represents the risk ratio
between groups. The LR chi2 statistic and p-value indicate whether a covariate significantly influences survival.
The LR test was used instead of the log-rank test due to tied event times, ensuring a robust comparison of survival
distributions. Bold values indicate statistical significance, with p < 0.05.

2.4. Kaplan–Meier Survival Estimates Stratified by Covariates

The Kaplan–Meier survival estimates, along with Cox model-predicted survival proba-
bilities in Figure 3, demonstrate differential survival trajectories for NDD based on covariate
stratification. The observed and predicted survival probabilities for males and females
showed minimal divergence over time. Individuals with periodontitis exhibited slightly
lower survival probabilities compared to those without, though the difference remained
small. More pronounced survival differences were observed in individuals with hyper-
tension, angina pectoris, and chronic ischemic heart disease, where affected individuals
consistently showed lower survival probabilities. The greatest separation in both observed
and predicted survival was evident among individuals with atrial fibrillation, heart failure,
and cerebral infarction, indicating a significantly elevated NDD risk in these groups.
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without periodontitis. Panels (C–E) show survival estimates for hypertension, angina pectoris, and
chronic ischemic heart disease (CIHD), respectively. Panels (F–H) display survival trajectories for
individuals with and without atrial fibrillation, heart failure, and cerebral infarction, respectively.
Both observed and predicted survival probabilities are included to assess the model’s fit in stratifying
NDD risk across these covariates.

The Kaplan–Meier survival estimates with Cox-based model predictions in Figure 4
showed a significantly lower survival probability for NDD among individuals with arterial
stenosis, cerebrovascular disease, and atherosclerosis, with a clear separation from those
without these conditions. Non-toxic goiter and type 2 diabetes mellitus were associated
with moderately lower survival probabilities, with a more gradual divergence over time.
Individuals with obesity, disorders of lipoprotein metabolism, pneumonia, and gastroe-
sophageal reflux disease exhibited a steeper decline in survival probabilities, indicating a
higher cumulative risk of NDD.
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ates). Note: Panel (A) presents Kaplan–Meier observed survival estimates and Cox model-predicted
survival probabilities for individuals with and without arterial stenosis. Panel (B) illustrates survival
estimates for cerebrovascular disease, while Panel (C) shows survival stratification for atherosclerosis.
Panels (D,E) display survival estimates for non-toxic goiter and type 2 diabetes mellitus (T2DM), re-
spectively. Panel (F) presents survival estimates for obesity. Panel (G) examines survival stratification
by disorders of lipoprotein metabolism (DLM), while Panels (H,I) compare survival probabilities
for pneumonia and gastroesophageal reflux disease (GERD), respectively. Observed and predicted
survival estimates are included to assess the model’s performance in predicting NDD risk across
these covariates.
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2.5. Weibull Regression Analysis of Risk Factors for NDD

In the Weibull regression analysis, results in Table 3 and Figure 5 indicated that in-
creasing age was significantly associated with a higher hazard of NDD (HR = 1.05, 95% CI:
1.04–1.07, p < 0.001). Periodontitis was a significant predictor, increasing the hazard of NDD
by 43% (HR = 1.43, 95% CI: 1.02–1.99, p = 0.037). Cerebral infarction exhibited the highest
hazard, more than quadrupling the risk of NDD (HR = 4.81, 95% CI: 2.90–7.96, p < 0.001).
Other cerebrovascular diseases (HR = 2.09, 95% CI: 1.20–3.65, p = 0.01), atherosclerosis
(HR = 1.81, 95% CI: 1.03–3.17, p = 0.038), non-toxic goiter (HR = 2.99, 95% CI: 1.71–5.24,
p < 0.001), diabetes (HR = 1.95, 95% CI: 1.05–3.62, p = 0.034), obesity (HR = 2.58, 95% CI:
1.37–4.86, p = 0.003), pneumonia (HR = 1.96, 95% CI: 1.05–3.64, p = 0.035), and gastroe-
sophageal reflux disease (HR = 2.82, 95% CI: 1.77–4.51, p < 0.001) were also significant
predictors of NDD. Hypertension, angina pectoris, chronic ischemic heart disease, atrial
fibrillation, heart failure, and arterial stenosis did not show significant associations. Gender
was not significantly associated with NDD risk (HR = 0.84, 95% CI: 0.65–1.10, p = 0.204).

Table 3. Multivariable Weibull regression model for neurodegenerative disease risk.

Variable Hazard Ratio [95% CI] p-Value

Age (years) 1.05 [1.04–1.07] <0.001
Sex (Male vs. Female) 0.84 [0.65–1.10] 0.204

Periodontitis 1.43 [1.02–1.99] 0.037
Hypertension 1.40 [0.89–2.19] 0.143

Angina pectoris 0.96 [0.54–1.68] 0.875
Chronic ischemic heart disease 1.45 [0.82–2.56] 0.206

Atrial fibrillation 0.95 [0.46–1.94] 0.887
Heart failure 1.09 [0.52–2.28] 0.824

Cerebral infarction 4.81 [2.90–7.96] <0.001
Arterial occlusion/stenosis of

precerebral arteries 1.30 [0.67–2.52] 0.435

Other cerebrovascular disease 2.09 [1.20–3.65] 0.01
Atherosclerosis 1.81 [1.03–3.17] 0.038
Non-toxic goiter 2.99 [1.71–5.24] <0.001

Type 2 diabetes mellitus 1.95 [1.05–3.62] 0.034
Obesity 2.58 [1.37–4.86] 0.003

Disorders of lipoprotein metabolism 0.84 [0.48–1.46] 0.534
Pneumonia 1.96 [1.05–3.64] 0.035

Gastroesophageal reflux disease 2.82 [1.77–4.51] <0.001
Note: The table presents hazard ratios (HR) with 95% confidence intervals (CI) derived from the Weibull regression
model assessing the association between various covariates and the hazard of developing NDD. A hazard ratio
greater than 1 indicates an increased risk, while values below 1 suggest a protective effect. Statistically significant
associations (p < 0.05) are highlighted with bold format. Age was analyzed as a continuous variable, while all
other covariates were binary (present vs. absent) with the absence of each given covariate acting as a reference
category. The model accounts for the underlying time-to-event distribution, providing adjusted hazard estimates
for each covariate.

2.6. Discriminative Performance of the Weibull Model

The receiver operating characteristic (ROC) curve analysis, presented in Figure 6,
evaluated the discriminatory ability of the Weibull model in predicting NDD risk. The area
under the curve (AUC) was 0.77 (95% CI: 0.74–0.80), indicating good to excellent predictive
performance. The standard error of the AUC was 0.02, reflecting a relatively precise
estimate. The curve deviates substantially from the diagonal reference line, suggesting
that the model provides meaningful differentiation between individuals with and without
NDD. These findings support the model’s robustness in capturing risk patterns associated
with NDD development.
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3. Discussion
The current study is the first to evaluate periodontitis as a risk factor for multiple

neurodegenerative diseases concurrently using Weibull survival analysis, while also in-
corporating pneumonia as a novel factor in the risk assessment, alongside cardiovascular,
metabolic, and inflammatory comorbidities. The Weibull regression analysis demonstrated
that periodontitis was a significant independent predictor of neurodegenerative disease
risk. Among cerebrovascular conditions, cerebral infarction exhibited the strongest asso-
ciation, while atherosclerosis, type 2 diabetes mellitus (T2DM), obesity, pneumonia, and
gastroesophageal reflux disease (GERD) also contributed significantly.

Aging emerged as a significant risk factor for NDDs in this study, consistent with
prior findings [11,12]. The heightened susceptibility of postmitotic cells, such as neurons
and oligodendrocytes, to age-related molecular disruptions contributes to this increased
risk [13,14]. One major contributor is epigenetic dysregulation [15], particularly aberrant
DNA methylation mediated by DNA methyltransferases, which can disrupt neuronal
gene expression and compromise genomic stability. Accumulation of DNA damage [16]
further exacerbates this instability, promoting neurodegeneration in conditions such as
Alzheimer’s and Parkinson’s disease. Additionally, mitochondrial dysfunction, including
declining nicotinamide adenine dinucleotide (NAD+) levels, impairs cellular metabolism
and proteostasis, leading to increased oxidative stress and energy deficits [17]. Cellular
senescence, telomere attrition, and chronic inflammatory signaling further contribute to
neuronal decline, creating a cascade of interconnected processes that accelerate neurode-
generation.

Beyond intrinsic aging-related mechanisms, external inflammatory stimuli may further
accelerate neurodegenerative processes. Periodontitis, a chronic inflammatory condition
of the oral cavity, represents one such factor, and its significant association with NDD risk
in this study further strengthens its potential role in disease progression. Periodontitis,
characterized by gram-negative bacterial infection [18] (e.g., Porphyromonas gingivalis) and
persistent gingival inflammation, may initiate or exacerbate neurodegenerative processes by
fueling low-grade systemic inflammation and promoting the translocation of oral pathogens
and their virulence factors into systemic circulation [7]. P. gingivalis releases gingipains,
proteolytic enzymes capable of degrading immune receptors such as CD14, which may
dampen host defenses against lipopolysaccharides (LPS) and potentiate inflammatory
signaling cascades [5]. The chronic rupture of periodontal pockets creates an accessible
route for pathogenic bacteria and pro-inflammatory cytokines—including IL-1β, TNF-α,
and IL-6—to enter the bloodstream [19], contributing to elevated inflammatory mediators
that can cross the blood–brain barrier and induce microglial activation [5]. Microglia, upon
sensing these systemic stimuli, shift toward a pro-inflammatory phenotype that produces
neurotoxic levels of reactive oxygen species and cytokines, potentially accelerating neuronal
damage. IL-8 dysregulation also appears critical, since P. gingivalis gingipains may degrade
IL-8, altering the delicate balance of immune responses in both peripheral and central
compartments [6]. Risk stratification studies suggest a bidirectional interplay in which
individuals with neurodegenerative diseases frequently exhibit reduced oral hygiene
capacity, exacerbating periodontal pathology [6,20].

The current findings expanded on existing literature by analyzing periodontitis in
relation to multiple neurodegenerative outcomes within a 10-year survival framework,
integrating rigorous survival modeling and comprehensive adjustment for comorbidi-
ties. Unlike previous studies that primarily examined individual NDDs, this study offers
a broader epidemiological perspective on how chronic periodontal inflammation may
influence diverse neurodegenerative pathways.
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In addition to periodontal inflammation, cerebrovascular pathology emerged as a
significant risk factor for neurodegenerative diseases in this study. Cerebral infarction
exhibited the strongest association, while other cerebrovascular conditions also contributed
significantly. Emerging research [21–23] highlights cerebrovascular abnormalities as pivotal
contributors to neurodegenerative disease pathology. Neuronal loss remains a defining
feature of conditions such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS),
and Huntington’s disease (HD), yet vascular disruptions often precede or exacerbate this
neuronal decay [24,25]. Alterations in the blood–brain barrier (BBB), including reduced
pericyte number and function [26], can impair clearance of toxic proteins like amyloid-β
and enable infiltration of immune cells that intensify inflammatory cascades. Chronic
reductions in cerebral blood flow [27] and morphological changes in capillaries [28] may
further compromise neuronal viability, while genotypic variations—such as the APOE4
allele—amplify vascular fragility and pericyte vulnerability [29]. These interconnected
deficits can lead to microhemorrhages, capillary constriction, or white matter lesions,
ultimately aggravating cognitive decline and accelerating disease progression [30]. A
recurring theme in multiple neurodegenerative disorders is the loss of vascular integrity,
which fosters a pro-inflammatory environment that has profound implications for both the
onset and evolution of pathology in the central nervous system.

Given the critical role of vascular integrity in neurodegeneration, this study further
identified atherosclerosis, type 2 diabetes mellitus, and obesity as significant risk factors.
These conditions, closely linked to metabolic and vascular dysfunction, may play an
important role in exacerbating neurodegenerative processes. All three aforementioned con-
ditions converge on pathological pathways that disrupt cerebrovascular integrity, heighten
systemic and neural inflammation, and compromise metabolic homeostasis, ultimately
fostering neurodegenerative processes. Atherosclerotic lesions initiate with endothelial
dysfunction that weakens the blood–brain barrier [31], permitting leukocyte infiltration
and escalating oxidative injury. This dysfunction compromises the neurovascular unit,
impairing clearance of neurotoxic proteins such as amyloid-β and tau [31], thereby pre-
disposing the brain to toxic aggregates. T2DM augments the effects of vascular damage
through hyperglycemia, hyperinsulinemia, and insulin resistance [32], which together
accelerate brain atrophy and intensify risk for dementia. Dysregulated insulin signal-
ing also impairs amyloid-β degradation via insulin-degrading enzyme competition [33],
fueling cerebral accumulation of amyloid-β. Obesity further amplifies these threats by
perpetuating low-grade inflammation, altering adipokine secretion, and diminishing mi-
tochondrial efficiency [34]. These metabolic imbalances exacerbate insulin resistance and
worsen endothelial cell activation, reinforcing the cycle of neuroinflammation and neu-
ronal dysfunction [34]. Taken together, these factors generate a milieu that erodes both
vascular and neuronal resilience, thereby linking atherosclerosis, T2DM, and obesity to
neurodegenerative disease pathology.

Despite its classification as a benign condition without overt thyroid dysfunction,
non-toxic goiter has not previously been explored as a potential contributor to neurode-
generative risk. The observed association in our study may be mediated through subtle
thyroid inflammation, iodine dysregulation, or vascular alterations that heighten oxidative
stress and endothelial dysfunction—core processes implicated in neurodegeneration [17,35].
Non-toxic goiter shares key risk factors with neurodegenerative diseases, such as advanced
age [36], metabolic syndrome [37], and cardiovascular disease [38], suggesting a more
systemic pathophysiological interplay rather than a direct causal mechanism. Given the
limited research on this association, further studies are needed to determine whether
non-toxic goiter contributes directly to neurodegeneration or reflects underlying systemic
processes.
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While vascular and metabolic disturbances are increasingly recognized as contribu-
tors to neurodegeneration, the potential role of gastrointestinal pathology remains less
explored. In this study, GERD emerged as a significant predictor of neurodegenerative
disease risk, raising important questions about the neurological consequences of chronic
esophageal inflammation and recurrent microaspiration. GERD has been implicated in a
heightened risk of neurodegenerative disorders through mechanisms involving sustained
inflammation and altered gut–brain axis interactions. Esophageal epithelial damage from
repeated exposure to gastric acid can elicit chemokine production and immune cell re-
cruitment [39], raising local and systemic levels of proinflammatory mediators shown to
correlate with accelerated cognitive decline. Perturbations in normal vagal and spinal
innervation may further contribute to neuronal dysfunction [40], while discrepancies in
proton-pump inhibitor (PPI) research emphasize the complexity of pharmacological in-
fluences on neurodegeneration. Some evidence suggests that PPIs can modulate amyloid
protein processing [41], although clinical data remain inconclusive regarding their direct
impact on dementia risk.

Neuroinflammatory pathways linked to gastrointestinal dysfunction may not be con-
fined to the gut alone but could extend to the respiratory system, where chronic and
recurrent infections further exacerbate neurodegenerative processes. In this study, pneu-
monia was identified as a significant predictor of neurodegenerative disease risk, marking
a lesser-explored yet biologically plausible contributor to neurodegeneration. While prior
research has largely focused on systemic inflammation and vascular dysfunction, the po-
tential role of respiratory infections in shaping neurodegenerative trajectories remains
underexamined, warranting further investigation into their pathophysiological mecha-
nisms. Pneumonia could be a potential driver of neurodegenerative pathogenesis by
initiating systemic inflammatory responses that can breach the BBB and trigger patholog-
ical processes within the central nervous system [42]. Acute pulmonary infections often
result in elevated circulating levels of IL-6, IL-8, and TNF-α, which may enter the central
circulation or activate afferent neural pathways [42], leading to microglial and astrocytic
priming. Experimental data indicate that severe pneumonia can disrupt the lung-blood bar-
rier and BBB simultaneously, facilitating bacterial translocation into the brain and further
heightening neuronal injury [43]. Epidemiological investigations lend additional support,
showing that patients hospitalized for pneumonia are at increased risk of subsequent
cognitive decline or dementia across various age groups [43]. Although individuals with
established neurodegenerative disorders frequently display risk factors for pneumonia [44],
such as diminished airway protection and reduced mobility, our findings underscore the
possibility that pneumonia itself may serve as an independent pathophysiological insult,
capable of accelerating or even initiating neurodegenerative processes through systemic
inflammation and direct microbial impacts on the brain. While pneumonia demonstrated a
significant association with neurodegenerative disease risk, its impact size in the survival
model was more modest compared to cerebrovascular pathology and metabolic disorders,
suggesting its role as an exacerbating factor rather than a primary driver.

Strengths and Limitations

This investigation draws on real-world clinical data spanning a 10-year follow-up
period, which enables a comprehensive view of how periodontitis may evolve alongside
neurodegenerative outcomes under usual clinical conditions. Diagnoses based on ICD-10
codes assure clinical relevance, and the large cohort size provides robust statistical power.
Employing a longitudinal, time-to-event analytical framework (including Weibull survival
models) allows for the adjustment of a broad spectrum of comorbidities and potential
confounders, thereby affording a more nuanced understanding of the temporal and causal
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associations between periodontitis, systemic comorbidities and neurodegenerative dis-
eases. Limitations stem from the study using data from a single center; thus, the external
validity of the findings may be constrained. Reliance on ICD-10 codes does not capture
the full clinical severity or staging of either periodontitis or neurodegenerative conditions,
potentially obscuring more granular associations. Missing sociodemographic variables
precludes exploration of their contributory roles, while the absence of smoking status
presents a confounding factor that cannot be fully controlled. The retrospective study de-
sign carries inherent biases in data recording and availability, thereby limiting the analysis
of these parameters. Moreover, as an observational study, there remains a possibility that
unmeasured factors could influence the observed relationships, and causality cannot be
definitively established. Another inherent limitation of registry-based data is that there is a
small likelihood of cases diagnosed outside the hospital system.

4. Materials and Methods
4.1. Database Cleaning and Data Processing

This hospital-based retrospective cohort study [45] was conducted as a secondary
analysis of data from the University of Debrecen Hospital, covering the period from 2007 to
2022. The initial dataset comprised 37,164 recorded clinical encounters; however, data prior
to 2012 were excluded due to a high proportion of missing values and incomplete docu-
mentation of periodontitis, ensuring consistency in disease ascertainment and minimizing
information bias. After data refinement, the final dataset included 4886 unique patients,
contributing a total of 29,918 recorded encounters over the follow-up period. The presence
or absence of NDD and other comorbid conditions was determined based on International
Classification of Diseases, 10th Revision (ICD-10) codes [46], systematically recorded by
hospital-affiliated physicians across relevant medical departments, while dental-related
ICD-10 codes were specifically diagnosed and documented by dental practitioners within
the hospital’s dental units to ensure diagnostic accuracy. Follow-up time was defined from
each patient’s earliest recorded hospital encounter until NDD diagnosis, while individuals
who did not develop NDD were censored at their last recorded hospital visit or at the study
endpoint in 2022, assuming non-informative censoring. This approach ensured a robust
time-to-event analysis framework, allowing for accurate estimation of disease occurrence
and progression.

4.2. Inclusion and Exclusion Criteria

To ensure a disease-free cohort at baseline, individuals with a documented diagnosis of
any neurodegenerative disease were excluded during or prior to the first year of follow-up,
preventing the inclusion of prevalent cases and mitigating survival bias. Participants were
included if they had at least two recorded hospital encounters during the study period and
a minimum follow-up duration of one year, defined as the time between the first recorded
visit and either NDD diagnosis or censoring. This threshold ensured that all included
individuals had adequate longitudinal observation for meaningful survival analysis.

Exclusion criteria encompassed individuals with incomplete or missing diagnostic
records for periodontitis, as accurate exposure classification was essential for robust risk
estimation. The exclusion of individuals with missing periodontitis data, while necessary
for methodological rigor, introduces a potential selection bias if missingness was not
random. Therefore, baseline characteristics of excluded and retained participants were
compared to assess potential systematic differences. Individuals with only a single recorded
hospital visit and no subsequent encounters were also excluded, as they lacked sufficient
follow-up time to contribute valid person-time in the survival analysis framework, and
their inclusion could introduce immortal time bias.
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Participants who did not develop NDD by the end of the study period were censored
at their last recorded hospital visit or at the study endpoint in 2022, whichever occurred first.
Individuals lost to follow-up before the study endpoint were retained in the analysis and
censored at their last recorded visit, assuming non-informative censoring, meaning that loss
to follow-up was considered independent of the likelihood of developing NDD. Given that
hospital-based administrative data have high sensitivity for capturing NDD diagnoses due
to the chronic and progressive nature of these conditions, the likelihood of undiagnosed
cases outside the hospital system is expected to be low [47,48], though it remains a potential
limitation. This approach ensured that all included individuals were initially free of NDD,
had sufficient longitudinal follow-up, and possessed complete exposure and outcome data,
adhering to the methodological aspects required for retrospective cohort analyses.

4.3. Variable Definitions and Covariate Selection

NDDs were defined based on the presence of specific ICD-10 codes, as recorded in the
hospital’s electronic health system. The following diagnostic codes were used to classify
NDD cases: G11 (Hereditary ataxias), G12 (Spinal muscular atrophy and related syn-
dromes), G20 (Parkinson’s disease), G21–G22 (Parkinsonian syndromes), G30 (Alzheimer’s
disease), G31 (Other degenerative diseases of the nervous system), F01–F03 (Vascular and
unspecified dementias), and G93 (Other disorders of the brain).

Huntington’s disease (G10) and other degenerative diseases of the basal ganglia (G23)
were not included in the analysis, as there were no recorded cases within the dataset. Their
absence did not impact the model’s performance or validity, as no observations were lost
due to missing categories.

Periodontitis was identified using ICD-10 codes K05, K05.2, K05.3, K05.4, K05.5, and
K05.6, which encompass various clinical manifestations of periodontal disease, including
aggressive periodontitis, chronic periodontitis, and other specified periodontal conditions.

The selection of covariates was based on established epidemiological and mechanistic
associations with both periodontitis and NDDs, ensuring appropriate confounder control.
Age [14] and sex [49] were included as fundamental demographic confounders, given
their strong influence on NDD incidence and periodontitis prevalence [50]. Hyperten-
sion, ischemic heart disease [51], cerebral infarction, other cerebrovascular diseases [21],
and atherosclerosis [31] were incorporated as major vascular risk factors that contribute
to neurodegeneration through mechanisms such as chronic hypoperfusion, endothelial
dysfunction, and increased amyloid deposition [35]. Type 2 diabetes [52] and obesity [34]
were included due to their role in systemic inflammation and metabolic dysregulation,
both of which accelerate neurodegeneration and exacerbate periodontitis [53]. Hyperlipi-
demia was included as a potential confounder, as dyslipidemia independently contributes
to both atherosclerosis-associated neurodegeneration [54] and inflammatory responses
that exacerbate periodontitis [55], meeting the criteria for confounding. Pneumonia and
GERD were included as confounders due to their independent associations with both peri-
odontitis and NDD. Pneumonia contributes to systemic inflammation and frailty [42,56],
while GERD reflects chronic inflammatory processes that increase susceptibility to both
conditions [57,58]. Importantly, neither condition lies within the causal pathway linking
periodontitis to neurodegeneration, ensuring proper adjustment. Despite comprehensive
confounder selection, residual confounding due to unmeasured variables cannot be fully
excluded, though the inclusion of major cardiometabolic, inflammatory, and vascular risk
factors mitigates this concern.
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4.4. Statistical Methods

Baseline characteristics were derived from each participant’s first recorded hospital
encounter within the study period. The distribution of continuous variables was assessed
for normality using the Shapiro–Wilk test [59]. Normally distributed variables were summa-
rized using means and standard deviations (SD), while non-normally distributed variables
were reported as medians with interquartile ranges (IQR). Categorical variables were
described as frequencies and proportions.

4.4.1. Cumulative Hazard Estimation

Cumulative hazard estimates were derived using the Nelson–Aalen estimator [60],
a non-parametric approach that provides a stepwise estimate of the cumulative hazard
function over time. This method is particularly suited for right-censored survival data, as
it accounts for varying follow-up durations and does not require assumptions regarding
the underlying hazard distribution. The Nelson–Aalen estimator was computed for each
stratified covariate to assess differential hazard accumulation across exposure groups.

To facilitate interpretability, cumulative hazard functions were visualized graphically,
allowing for a comparative assessment of hazard trajectories among individuals with and
without periodontitis and other comorbid conditions. This approach aids in identifying
potential deviations in hazard accumulation patterns, which may reflect underlying dif-
ferences in disease progression dynamics. The rationale for employing the Nelson–Aalen
estimator in the present analysis lies in its robustness to censoring and its ability to provide
an unbiased estimate of cumulative hazard, offering a preliminary understanding of the
time-dependent risk associated with NDD development before proceeding to multivariable
survival modeling. This estimator is defined as follows:

Ĥ(t) = ∑
ti≤t

di
ni

(1)

where Ĥ(t) is the cumulative hazard at time t, di represents the number of events (failures)
at time ti and ni denotes the number of individuals at risk immediately before ti.

Nelson–Aalen cumulative hazard estimates were included to quantify absolute risk
accumulation over time, providing clinically relevant information on disease progression.
Unlike Kaplan–Meier survival probabilities, cumulative hazard estimates illustrate the
intensity of risk over follow-up, aiding in risk stratification and improving the interpretation
of long-term disease burden.

This approach was also useful for identifying deviations in hazard trajectories across
exposure groups, which informed our assessment of proportionality assumptions. Addi-
tionally, the observed hazard patterns supported the transition from Cox regression to the
Weibull survival model by highlighting the non-constant hazard function, further justifying
the choice of a parametric approach for improved model fit and predictive accuracy.

4.4.2. Likelihood Ratio Test for Equality of Survival Distributions

The univariate, Cox regression-based likelihood ratio (LR) test for equality of survival
functions was employed to assess whether the survival distributions differed significantly
across categorical covariate strata [61]. This test evaluates the null hypothesis that the
survival functions are identical between comparison groups by quantifying the improve-
ment in model fit when the covariate of interest is included. The LR test statistic follows a
chi-square distribution and is derived by comparing the log-likelihoods of nested models,
specifically a restricted model excluding the covariate and a full model incorporating it.

The rationale for its application in the present analysis stems from its superiority
over the log-rank test when event times are tied, as it is less sensitive to violations of the
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proportional hazards assumption and provides a likelihood-based assessment of survival
differences. By leveraging this approach, we ensured a statistically rigorous comparison
of survival distributions across exposure categories, identifying variables that warranted
further investigation in multivariable survival models.

Calculation of the likelihood ratio in the context of proportional hazard regression is
based on the comparison of the log-likelihoods of two nested models:

- Restricted Model (L0): A model without the covariate of interest.
- Full Model (L1): A model including the covariate of interest.

The test statistic is calculated as follows:

LR = −2(logL0 − logL1) (2)

where L0 is the likelihood of the restricted model (null hypothesis: no effect of the covariate)
and L1, which is the likelihood of the full model (alternative hypothesis: the covariate
influences survival).

The resulting LR statistic follows an asymptotic chi-square (X2) distribution with
degrees of freedom equal to the difference in the number of parameters between the two
models. The p-value is obtained by comparing the LR statistic to the chi-square distribution,
determining whether the inclusion of the covariate significantly improves model fit.

4.4.3. Kaplan–Meier Estimates

To assess the concordance between observed survival probabilities and those predicted
by the Cox proportional hazards model, Kaplan–Meier survival estimates [62] were plotted
alongside model-derived predicted survival curves. This approach facilitates a visual
assessment of model fit by comparing non-parametric empirical survival probabilities with
semi-parametric Cox regression estimates across different covariate strata.

The Kaplan–Meier estimator is a non-parametric function that estimates survival
probability at time t as follows:

ŝ(t) = ∏
ti≤t

(
1 − di

ni

)
(3)

where:

- ŝ(t) is the estimated survival probability at time t,
- di is the number of events (e.g., diagnosis of periodontitis) at time ti,
- ni is the number of participants at risk just before time ti.

In contrast, Cox model-based predicted survival is obtained by incorporating esti-
mated hazard ratios into the baseline survival function:

Ŝ(t|X) = S0

(
t)exp(βX) (4)

where:

- S0(t) is the baseline survival function,
- β is the vector of estimated regression coefficients,
- X is the covariate matrix.

4.4.4. Multivariable Parametric Survival Modeling Using the Weibull Regression Model

While the Cox proportional hazards model provides a robust semi-parametric ap-
proach for survival analysis without assuming an explicit baseline hazard function, its
reliance on the proportional hazards (PH) assumption [63] necessitates rigorous validation.
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Initial model diagnostics were performed using Schoenfeld residuals, which revealed a
violation of the PH assumption for the age variable, indicating non-proportionality over
time. Given that age is a fundamental predictor of NDD onset, this violation raised concerns
regarding the suitability of the Cox model for accurately capturing time-dependent hazard
dynamics in the multivariate model.

To further assess model performance, we compared the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) between the Cox and parametric alterna-
tives [64]. The Weibull regression model demonstrated a substantially lower AIC and BIC,
indicating superior model fit. Additionally, the area under the receiver operating character-
istic curve (AUC) [65] and Harrell’s concordance index (C-index) [66] were computed for
both models, with the Weibull model yielding significantly higher discrimination ability,
further supporting its selection.

The Weibull regression model assumes a parametric hazard function in the following
form:

h(t|X) = λptp−1eβX (5)

where:

- h (t|X) is the hazard function at time t given covariates X;
- λ is the scale parameter;
- p is the shape parameter, which determines whether the hazard is increasing (p > 1),

constant (p = 1), or decreasing (p < 1) over time;
- βX represents the linear predictor derived from the covariate effects.

Unlike the Cox model, which assumes an unspecified baseline hazard, the Weibull
model [67] provides a fully specified hazard function, allowing for explicit modelling
of time-dependent risk dynamics. This feature is particularly advantageous given the
age-related acceleration of NDD risk, which is better captured by the Weibull’s flexible
hazard structure. The significantly improved model fit and predictive accuracy, alongside
violations of the proportional hazard assumption in Cox regression, justified the use of
Weibull regression as the preferred survival model in this analysis. All model estimates
were expressed as adjusted hazard ratios (HR) with corresponding 95% confidence intervals
(CI), providing a quantifiable measure of relative risk while accounting for covariate effects.
The level of statistical significance was set at p < 0.05. All analyses, including model
estimation, diagnostic assessments, and graphical visualizations, were conducted using
Stata version 18 [68]. The forest plot was generated in Python version 3.13.1 using the
Matplotlib package version 3.9.0 [69].

5. Conclusions
Older individuals presenting with periodontitis appear to face an elevated risk of

developing neurodegenerative diseases, highlighting the potential impact of oral inflamma-
tion on brain health. The presence of cerebrovascular and cardiometabolic comorbidities,
as well as gastroesophageal reflux disease, may further compound neurodegenerative
risk, prompting vigilant screening for early neurological symptoms. Pneumonia, in turn,
emerged as a plausible independent pathophysiological factor that could exacerbate or
accelerate neurodegenerative trajectories. Coordinated efforts at primary, secondary, and
tertiary prevention may help reduce the cumulative risk burden and slow disease progres-
sion, allowing clinicians greater scope to manage symptoms effectively.
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