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Abstract: Integrated single-axis force sensors allow an accurate and cost-efficient force measurement
in 6 degrees of freedom for hexapod structures and kinematics. Depending on the sensor placement,
the measurement is affected by internal forces that need to be compensated for by a measurement
model. Since the parameters of the model can change during machine usage, a fast and easy
calibration procedure is requested. This work studies parameter identification procedures for force
measurement models on the example of a rigid hexapod-based end-effector. First, measurement and
identification models are presented and parameter sensitivities are analysed. Next, two excitation
strategies are applied and discussed: identification from quasi-static poses and identification from
accelerated continuous trajectories. Both poses and trajectories are optimized by different criteria
and evaluated in comparison. Finally, the procedures are validated by experimental studies with
reference payloads. In conclusion, both strategies allow accurate parameter identification within a
fast procedure in an operational machine state.

Keywords: integrated force sensors; sensor networks; calibration and identification; parallel robots

1. Introduction

In production, many manufacturing applications, such as process diagnosis and qual-
ity assurance, or adaptive process control for milling, grinding or thermo-smoothing,
require in-process force measurement, where, in particular, the measurement of spatial
forces and moments in 6 degrees of freedom (DoF) is requested [1]. As one approach,
Refs. [1–3] present a new measuring system using a hexapod-based end-effector with
structure-integrated sensors. Six 1 DoF force sensors are integrated into a rigid bar frame-
work and the measured forces are transformed to Cartesian forces and moments at the tool
centre point (TCP) by a control-integrated model.

Compared to commercial 6 DoF force/torque transducers (FT sensors), which are
mounted close to the TCP, the new measuring system does not reduce usable workspace,
causes no restrictions to spindle mounting and is also less expensive. Compared to a
drive current based force measurement in spindle drives, it is far more accurate (factor
100 smaller uncertainty [2]) and requires less modelling effort, since no non-linear and
stochastic mechanical influences of drive components interfere such as friction, stick-slip
effects or elastic deformation. Altogether, structure-integrated force measurement has
many benefits and can complement or replace the measurement by the use of conventional
FT sensors as long as it provides a 6 DoF measurement, fulfils accuracy and stiffness
requirements, and is simple to parametrise [1]. In addition, integrated sensors can be
supplied by the machine manufacturer and make force measurement and control an easy-
to-use machine-integrated feature in the future. However, to reach this point, further
studies and evidence regarding the parametrisation are required, as hardly any suitable
literature on parameter identification for force measurement models is available.

Machine-integrated force measurement solutions have been studied since the begin-
ning of force measurement and are outlined in a detailed state-of-the-art overview in [1]. In
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short, individual strain-gauge based solutions with a specific design, such as spindles [4],
end-effectors [5], or even the workpiece [6], are cost-intensive and do not, thus far, pro-
vide a spatial measurement in 6 DoF. Integrated torque sensors in joints [7] still require
large mechanical and modelling efforts (friction, stick-slip) and are not advantageous for
the desired application in parallel structures and kinematics, where mainly longitudinal
forces appear. Concerning the use of rigid Stewart or hexapod structures as force sensors,
the most promising works with practical results are a multicomponent calibration sys-
tem [8,9], a sensor for heavy duty applications [10–12], miniaturised sensors, for example,
for surgery [13,14], and a measuring system for industrial applications [15]. Still, all of
these sensors have been designed as pure (machine independent) measuring devices with
static calibration. Neither a movement of the hexapod struts nor of the complete sensor as
part of a machine is intended. Consequently, no kinematic or dynamic influences need to
be respected within a measurement model.

Instead, for the presented moving sensor system that is the end-effector of a parallel
kinematic machine tool, a real-time capable measurement model, which runs within the
numeric control system, is essential. As shown in [1,2], an accurate and precise spatial
force measurement and competitive characteristics (resolution, range, overload), when
compared to a commercial FT sensor, can be realised in the entire workspace by the use of
a rigid body dynamic, a sensor and an error compensation model. The stiffness loss at the
TCP by sensor integration is comparable to a commercial FT sensor, as presented in [3].

Nevertheless, some of the model parameters, such as mass, centre of gravity and
inertia, can change during machine usage, for example through a workpiece or tool change,
and need to be re-calibrated. These parameters shall be found using identification proce-
dures, which are the focus of this paper. Referring to parameter identification, many works
exist for the identification of rigid body dynamics for serial kinematics [16–19] and some
for parallel kinematics [20,21]. A general overview of identification in robotics is given by
the major books [22–24]. Where the known works identify only robot, load, and friction
parameters, this application requires additional parameters of the sensor and the error
model to be identified. In conclusion, the identification of measurement model parameters
for parallel structures and kinematics with integrated force sensors improves the potential
of the sensor integration approach and is still a novel field of research.

As a new contribution, this work presents a one-step calibration procedure that allows
the parametrisation of the measurement models first presented in [1], which are used in
the new approach of structure-integrated force measurement in parallel kinematic machine
tools. Different model parts, namely dynamic, sensor and error model parameters, are
included in the procedure and the feasibility of a fast and easy parameter identification in
an operational machine state is demonstrated. In detail, the procedure can run without
an experimental setup or special qualification in a few seconds during auxiliary process
times, as it is requested in production. Furthermore, the calibration procedure is realised by
the use of two different excitation approaches and is proven valid by the identification of
reference payloads. The results are applicable for all Stewart Platform based force sensors
presented in the literature overview that can now also be applied at the moving end-effector
of a machine tool or robot. Finally, FT sensors can also benefit from a measurement model
and a parameter identification procedure when used during movement.

2. Approach

A hexapod-based end-effector is one of multiple options to integrate force sensors
into hexapod structures and kinematics, which can be classified into not moving and
moving rigid sensor frameworks as well as kinematic-integrated sensors. Figure 1 shows
5 approaches for sensor integration and 2 standard solutions (R: 6 DoF FT sensor, C:
drive measurement) as reference. To achieve an accurate measurement, machine and
process induced influences need to be compensated from force sensor signals for all
setups. Depending on the exact sensor placement, different influences are included into a
measurement model, that accordingly requires parameters and online-calculated machine
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states. The larger the distance between TCP and sensors within the machine structure, the
more parameters need to be taken into account, which, as a result, lead to higher modelling
and parametrisation efforts, and higher measurement uncertainties. A proof of concept
for all setups evaluating quasi-static measurements is presented in [2], which shows
models, classification, parameter identification, sensitivity analysis, and experimental
results. A more detailed view of the end-effector, including the dynamic model as well as
accuracy and precision analyses during quasi-static, dynamic, and milling process force
measurements, is discussed in [1]. Kinematic-integrated approaches (setups 2x) and force
control using these measuring systems are topics of future work.
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Figure 1. Force sensor integration into hexapod structures and kinematics: approach and sensor placement; 1a: Rigid not
moving hexapod structure (e.g., clamping table), 1b: Rigid moving hexapod structure (e.g., end-effector platform), 2x:
Hexapod kinematics with sensors in the struts at various positions [1–3].

However, every model needs a parametrisation and to make the promising results
of [1] available for practical purposes, this paper applies and evaluates parameter iden-
tification procedures on the example of the rigid hexapod-based end-effector (setup 1b),
Figures 1 and 2. Nevertheless, the introduced methods are also applicable for the remaining
structure-integrated setups and even for the use of FT sensors.

For all approaches, the parameters contain sensor positions and orientations (36 param-
eters, constant for rigid frameworks) and sensor zero offsets (6 parameters). Additionally,
for the focused moving rigid bar structures (setup 1b), mass, centre of gravity and inertia
of the framework (10 parameters), as well as its actual pose, velocity and acceleration in
real-time, are included. Moreover, additional parameters need to be introduced to include
influences concerning the sensibility of force sensors towards lateral forces, torques, elastic
structure deformation or temperature effects.

Table 1 gives an overview of the presented steps and variations according to the
methods and the structure of the approach: Based on the measurement model (Section 3),
at first, different identification models are derived, which include rigid body, sensor and
error compensation parameters (Section 4). As the description and optimisation of the
parameter set are crucial for identification, next, multiple parametrisations are analysed
and compared using measurement simulation, Pearson correlation and QR decomposition
(Section 5). Hereby, two excitation approaches are presented: a quasi-static measurement
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at independent poses (Section 6), and a dynamic excitation using continuous trajectories
(Section 7). The two excitations are created both, in a manual way and in an algorithmic
way by the use of different optimisation criteria and methods. Finally, both methods are
compared in terms of the application and identification of reference payloads (Section 8).

ni hi

gB

q-f i

R
B

P fExt

mP,

xP C

x

z y
{P}

fG

{B}
oB P

P
P,CI

fDyn

Figure 2. Left: Hexapod machine tool with rigid hexapod-based end-effector platform (setup 1b) including six structure-
integrated 1 DoF force sensors of the type Althen ALF256 5 kN. Right: Corresponding values for measurement model. The
integration of the sensors, which are screwed in after cutting, drilling, and thread-cutting the bars of the existing end-effector,
is fast, cheap, and does not change mass or size of the end-effector, significantly.

Table 1. Overview of approach, variations and methods.

Step/Approach Quasi-Static
Identification

Dynamic
Identification

1. Identification model
(Section 4)

Models
0, 1, 2, 3, 4, 5

Models
6, 7, 8, 9

2. Identifiability analysis
(Section 5) Measurement simulation, Pearson correlation, QR decomposition

3. Excitation generation
Manually: Brute force

Algorithmically: Data reduction with
4 criteria (Section 6)

Manually: G-Code
Algorithmically: Optimal Fourier-series

with 4 criteria, 7 orders, 3 solvers
(Section 7)

4. Validation (Section 8) Identification of reference payload for selected models and excitations
Q5M: Quasi-static, model 5, manual

trajectory
Q5N: N-optimal trajectory

D9M: Dynamic, model 9, manual
trajectory

D9N: N-optimal trajectory

3. Measurement Model

The measurement model in the current form was first presented in [1] and is sum-
marised here, since it is essential for the identification model. Solving the equations of
motion ∂p/∂t = ∑ f at the platform frame {P}, Figure 2 right, gives external spatial forces
and moments f Ext that act on the end-effector on the basis of the measured and processed
sensor forces f ∗q:

P f Ext =
P f Dyn − P f G − PJ−T

P · f ∗q . (1)

The sensor forces are transformed to Cartesian space using the geometric Jacobian PJP
of the platform structure, Figure 2 right,



Sensors 2021, 21, 3537 5 of 22

PJ−T
P =

(
n1 · · · n6

h1 × n1 · · · h6 × n6

)
, (2)

and gravity forces P f G are included by

P f G = mP

( BRT
P

Bg0
PxC × BRT

P
Bg0,

)
, (3)

with the gravitational acceleration Bg0 as well as mass mP, orientation BRP, and centre of
gravity PxC of the platform. Underlines indicate 6 DoF vectors; upright letters constants.
The spatial dynamic force vector P f Dyn divides in forces P f Dyn and moments PmDyn:

P f Dyn =mP
BRT

P
B ẍC (4)

PmDyn = PIP
BRT

P
Bω̇P + (BRT

P
BωP)× (PIP

BRT
P

BωP) +
PxC × P f Dyn, (5)

with inertia PIP = PIP,C + mP S(PxC) S(PxC), angular velocity BωP, and acceleration Bω̇P
of the platform in relation to the base frame {B}. Here, S(r) is the cross product matrix:
S(r) b = r× b. With the platform position BoP, the centre of gravity acceleration B ẍC is

B ẍC =BöP + Bω̇P × BRP
PxC + BωP ×

(
BωP × BRP

PxC

)
. (6)

The platform pose x calculates from measured drive positions q in forward kinematics
(FK) of the hexapod and the platform velocities v from measured drive velocities q̇ in
differential kinematics with the help of the geometric Jacobian of the hexapod JHex(x)

x =
(BoT

P
BφT

P
)T

= FK(q) (7)

v =
(BȯT

P
BωT

P
)T

= JHex(x) q̇. (8)

Numeric differentiation of q̇ and symbolic differentiation of JHex give the acceleration
v̇ of the platform

v̇ =
(BöT

P
Bω̇T

P
)T

= JHex(x) q̈ + J̇Hex(x, v) q̇. (9)

Finally, this leads to the measurement model in its canonical form, with Pω = BRT
P

BωP,
Pv = BRT

P v etc.,

P f Ext(x, v, v̇) =
[

mP1 mP S(PxC)
T

mP S(PxC)
PIP

]
︸ ︷︷ ︸

MP

[Pv̇
Pω̇

]
+

[
0 mP S(Pω) S(PxC)

T

0 S(Pω) PIP

]
︸ ︷︷ ︸

CP

[Pv
Pω

]

+

[
−mP

BRT
P

Bg0
−mP S(PxC)

BRT
P

Bg0

]
︸ ︷︷ ︸

gP

−PJ−T
P f ∗q

=MP
Pv̇ + CP

Pv + gP − PJ−T
P f ∗q .

(10)

Here, f ∗q stands for compensated sensor values that already contain corrections and
calculates to

f ∗q = f q − fq0 − f K(x). (11)

For the present setup, these are sensor zero offsets fq0 and pose-dependent influences
f K(x), which address lateral sensor forces and moments from platform deformation,
as described next.

According to the rigid body assumption of the end-effector, the force measurement is
expected to be independent of the platform position, Equation (10). However, experiments
show a not negligible position-dependent force deviations in a range of ±20 N (within a
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measuring range of ≈9 kN in XY) that are strictly systematic and mainly dependent on X-
and Y-coordinates [1]. Ref. [2] evaluates the platform deformation that results from the
36 varying platform joint forces and moments, which are applied by the hexapod kinematic
struts, as reasonable explanation for this behaviour through an analysis based on a finite
element model (FEM). As a full elastic model has disadvantages in parametrisation and
online calculation in the control system, the effect is compensated by a prediction model
with the choice of

f K1 = K1 (
BxP

ByP)
T , (12)

where the hexapod pose is used to describe the current static load situation of platform
forces. This approach produces two linear factors for each sensor, that can be identified by
quasi-static measurements. Evaluations show that these 12 parameters do not represent a
minimal model. Transforming K1 to Cartesian, reveals a systematic force deviation that
can be described in a reduced form as a second modelling approach

f K2 = PJT
P

(
k0 1

S
((

0 0 k1
)T
))BxP

ByP
0

 = PJT
P K2

BxP
ByP

0

. (13)

Now, the effect is compensated for by only two parameters {k0, k1}.
In fact, platform deformations resulting from platform joint forces not only occur at

position changes but also at orientation changes. Neglecting these influences leads to the
incorrect identification of mass and centre of gravity by quasi-static measurements, as
shown below. As the orientation is part of the rigid body gravity model, Equation (3), a
compensation approach will correlate with the parameters mass mP and centre of gravity
PxC. Therefore, identification is not possible when the force offsets are modelled in any
formulation using the orientation matrix, such as f K3 = f K1 + K3

BRT
P

Bg. To separate
the parameters, a different angle format can be used for the orientation error model,
Equation (14), as an extension to Equation (12)

f K4 = f K1 + K4 φ. (14)

Again, a transformation to Cartesian shows that the parameters can be reduced to the
two most significant influences k2 and k3

f K5 = f K2 +
PJT

P

(
S
((

0 0 k2
)T
)(

k3 k3 0
)

1

)
φ = PJT

P K5 φ. (15)

For this notation, an axis based format—here the Gibbs vector—needs to be used. A
change of the Jacobian due to platform deformation can be neglected.

In conclusion, by those four parameters, {k0, k1, k2, k3}, the pose-dependent force
deviations are compensated for by more than factor 10 to a remaining total error of ap-
proximately ±2 N (3 s, 99.73%) in XY for the measurement at quasi-static poses in the
workspace [1].

Alternatively, by inserting joints [12,15] or flexure hinges [13,25] into the structure,
forces lateral to the sensors can be reduced mechanically. Nevertheless, they cannot remove
longitudinal forces that result from a deformation of the fundamental frame, which here is
the platform part that deforms due to forces applied by the hexapod struts. Further, joints
and flexure hinges introduce backlash or reduce the platform stiffness respectively, which
is not desired in machine tools.

4. Identification Model

Besides process force measurement and control, structure-integrated force sensors
can be used for parameter identification: As mass, centre of gravity and inertia of the
end-effector can change during machine usage, for example through a workpiece or tool
change, a fast and easy procedure for identifying these parameters is required, which
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should last less than 5 min and can run in a production break. Other parameters, such as
sensor offsets and error compensation factors, are only affected marginally by load changes
but need to be determined at least once after system assembly. Generally, it is advantageous
to identify all parameters at the same time to achieve the least global variance. If the system
has been identified, a pure sensor drift can be tared without further measurements by
adjusting only fq0, Equation (11).

Since friction and stick-slip effects can be neglected for the sensor placement in the
rigid end-effector without joints (setup 1b), an identification from quasi-static measure-
ments is possible: Doing this, the 10 parameters, platform mass mP, centre of gravity PxC
and force sensor offsets fq0, as well as the pose-dependent compensation offsets K can be
identified. This procedure is appropriate for quasi-static or continuous applications that do
not require inertia, which cannot be identified statically. However, limited dynamics apply
for most applications in force measurement and control to reduce measuring noise. On
the other hand, a measurement during accelerated machine movement allows a parameter
identification from dynamic excitations and, additionally, the identification of the platform
inertia PIP,C. With this, both standard approaches to identification are discussed: the quasi-
static identification from independent poses and the identification from dynamic excitation
trajectories with dependent data points. The Jacobian, Equation (2), is not identified since it
is, as a pure geometrical transformation, already known from mechanical drawings. In the
rare case when it is unknown, it can be determined directly by geometric measurements
far more accurately than indirectly from dynamic identification.

Below, a linear identification model of the form

f q = A u (16)

is introduced for the complete system. A partial identification model, for example, without
inertia, can be achieved by elimination of the corresponding columns in the regressor
matrix A and rows in u. First, the vector u of u unknowns is set to

u =
(

mP mP
PxT

C
PIT

P fT
q0 KT

)T
, (17)

where matrices have been transformed to vectors, which is indicated by an overline:
PIP = {I11, I12, I13, I22, I23, I33}. Rearranging the model from Equation (1) to express n
virtual sensor forces f̂ q gives the non-linear identification model

f̂ q(x, v, v̇, u) = PJT
P

[
P f Dyn − P f G

]
+ fq0 + f K. (18)

The identification procedure can be performed with the non-linear model, Equation (18),
by calculating its local Jacobian and iterating over it or by transforming Equation (18) into
a linear form analytically, which is advantageous, as no iterations are needed to solve the
problem. The linear form of the rigid body part can directly be obtained from Equation (10)

AB(x, v, v̇) =(
v̇− g S(ω̇) + S(ω)S(ω) 0

0 S(v̇− g)T L(ω̇) + S(ω)L(ω)

)
, (19)

with the help of the operator L(ω) [22,24]

Iω = L(ω) I =

ω1 ω2 ω3 0 0 0
0 ω1 0 ω2 ω3 0
0 0 ω1 0 ω2 ω3

I. (20)

Together with the measurement parameters, this gives the linear form for one dataset
j = 1 . . . m
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f̂ qj = Aj(xj, vj, v̇j) u =
(PJT

P ABj 1 K̃(xj),
)
u. (21)

where 1 is the identity matrix and K̃ represents compensation factors of f K. In the case of
Equation (12) K̃ is K̃1 = L̃(xj), where L̃ provides a transformation K1 x = L̃(x)K1 similar
to the inertia linearisation. In the case of Equation (13) K̃ is

K̃2 = PJT
P

(
(BxPj

ByPj 0)T 0
0 (ByPj − BxPj 0)T

)
, (22)

with the unknowns K2 = {k0, k1}, and for K3, K4, and K5 in a similar way.
Stacking m measurements f̌ qj and the corresponding models Aj to the overdetermined

global system leads to
f̌ q = Au + ε, (23)

which can be solved by the use of a Gauss-Markov approach

û =
[

AT W A
]−1

AT W f̌ q, (24)

with the weighting matrix W = cov( f q)
−1 [26]. The weighting matrix can be used to

take varying characteristics of the measurements into account, regarding different units or
the individual measuring accuracy of different sensors. As only forces are measured and
identical sensors are used in the present setup (ALF256 5 kN, Althen GmbH Mess- und
Sensortechnik, Kelkheim, Germany), task variable scaling is not necessary and W is set to
identity, which reduces the problem to an ordinary least-squares regression.

In contrast, parameter scaling is still required to obtain meaningful and comparable
singular values for the next steps model analysis and optimisation as well as improved
convergence. With the scaling matrix H = diag(h1 . . . hu), the model changes to [24]

f̌ q = (AH)(H−1u) = Ãũ + ε. (25)

For the choice of H, column scaling is used, as it is simple and does not require a
priori statistical data, with al as lth column of A [27]

hl =

{
||al ||−1 ||al || 6= 0
1 ||al || = 0.

(26)

An estimate of the global standard deviation of the regression problem can be obtained
from the χ2 statistic [24,26]

ŝ0 =

√
χ2

m · n− u
, with χ2 = ( f̌ q − Aû)TW( f̌ q − Aû), (27)

the number of poses m, the number of forces measured per pose n, and the number of un-
knowns u. The covariance matrix as well as local standard deviations of the unknowns give

M̂ = ŝ2
0 F−1 and ŝj =

√
M̂jj. (28)

5. Model and Identifiability Analysis

Generally, only those parameters that are modelled are identifiable, stimulated by
the exciting trajectory (sensitivity), and that can be distinguished from each other (linear
independence). Therefore, the optimisation of the parameter set and the optimisation of
the exciting data points or trajectory parameters, respectively, are the two major steps in
identification preparation. The parameters can be grouped in identifiable and unidentifiable
parameters as well as parameters that are only identifiable in linear combination, expressed
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by a new parameter. QR or singular value decomposition of Ã helps in analysing the
identifiability of the parameter set [24].

For the end-effector, different models are proposed for identification with different
parameter sets and properties (Table 2). Identification results for these models are shown in
Table 3. Generally, the inertia PIP is not identifiable by quasi-static measurements. Model 0
contains the basic static rigid body parameters and sensor offsets but does not include error
correction factors. Model 1, Equation (12), and model 2, Equation (13), include position-
dependent error correction, which increases the measurement accuracy significantly [1],
where model 2 describes this effect with fewer parameters, as described above.

Table 2. Identification modelling approaches with parameters, No.: Number of parameters, Identifi-
cation results are presented in Table 3; In squares: selected models for excitation optimisation.

Model & Parameters No. Comment

Quasi-static Identification

0 m∗P, Px∗C, fq0 10 No error correction.

1 m∗P, Px∗C, fq0, K1 22 XY error correction, parameters not
minimal.

2 m∗P, Px∗C, fq0, K2 12 XY error correction, parameters minimal.
3 mP, PxC, fq0, K2, K3 12 + x Not identifiable in any expression.
4 mP, PxC, fq0, K2, K4 30 Full error correction: correct mP and PxC.
5 mP, PxC, fq0, K2, K5 14 Full error correction: correct mP and PxC.

Dynamic Identification

6 mP, PxC, fq0, PIP 16 No error correction.
7 mP, PxC, fq0, PIP, K2 18 XY error correction.

8 mP, PxC, fq0, PIP, K2, K4 36 Full error correction, parameters not
minimal

9 mP, PxC, fq0, PIP, K2, K5 20 Full error correction.

Table 3. Identification results for different modelling approaches, as listed in Table 2. Model 3 is not identifiable. Quasi-static
results are based on measurements with 480 poses (Section 6). Dynamic results are based on manually chosen trajectory
(Section 7). CAD: A-priori values from geometric design. In squares: selected models for excitation optimisation.

Parameter CAD Quasi-Static Identification Dynamic Identification

Model
0

Model
1

Model
2

Model
4 Model 5

Model
6

Model
7

Model
8 Model 9

ŝ0 - - 5.24 1.54 1.54 0.97 1.28 6.80 5.61 5.09 5.11

mP [kg] 33 30.36 30.36 30.36 33.78 33.78 32.13 31.51 31.83 31.83

PxC [mm]
0 0.52 0.52 0.52 −0.73 0.46 0.58 −0.17 0.14 0.01
0 0.55 0.55 0.55 0.10 0.50 0.33 −0.07 −0.20 −0.32

128 74.91 74.91 74.91 108.93 108.93 104.16 97.73 105.0 105.0

fq0 [N]

- −60.8 −60.8 −60.8 −54.9 −53.9 −53.4 −55.0 −54.3 −54.4
- 38.6 38.6 38.6 46.1 45.5 42.0 40.7 41.4 41.4
- 324.4 324.4 324.4 331.0 331.2 329.5 328.0 328.5 328.4
- −142.6 −142.6 −142.6 −135.2 −135.8 −137.9 −138.3 −138.0 −137.8
- −18.1 −18.1 −18.1 −10.2 −11.3 −14.6 −15.5 −14.6 −14.5
- −21.1 −21.1 −21.1 −15.5 −14.3 −18.7 −20.6 −20.0 −20.1

PIP,C [kg·m2]
1.65 - - - - - 0.94 1.02 1.25 1.26
1.65 - - - - - 0.87 0.99 1.22 1.21
1.51 - - - - - 0.92 0.92 0.88 0.91

k0 [N/mm] - -
K6×2

2
21.0 21.0 21.0 - 25.54 24.0 24.0

k1 [N/mm] - - −8.9 −8.9 −8.9 - −9.65 −8.47 −8.46
k2 [N/rad] - - - -

K6×3
4

65.5 - -
K6×3

4
37.39

k3 [N/rad] - - - - 26.9 - - 28.2
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For all static models that neglect a modelling of orientation-dependent force errors
(models 0–2), the parameters m∗P and Px∗C do not represent the physical platform mass and
centre of gravity, which results in an empirical model rather than in a physical model. Still,
the models are valid because these parameters include the mentioned effects. Changes
of mass and centre of gravity, on the other hand, can be identified with high precision
and the correct physical values [2]. This is important, as tool or workpiece parameters are
represented with physical meaning.

Including orientation-dependent force errors in the models always leads to a correla-
tion of the error model parameters to the rigid body parameters, mass and centre of gravity,
for quasi-static measurements since both parameter sets can only be excited by inclinations.
When modelled by rotation matrix, Equation (15), the parameters are not identifiable as the
mathematical representation is too close to the rigid body gravity model in Equation (3).
Figure 3 left shows this effect in plots of correlation and QR decomposition of the scaled
regressor matrix Ã for model 3.

Corr – Model 3 Corr – Model 5 Corr – Model 9

High
Correlation

QR – Model 3 QR – Model 5 QR – Model 9

Unindentifiable 
Parameters 

Figure 3. Matrix of Pearson correlation coefficients (Corr) and upper R-part of QR decomposition of Ã (QR); left: model 3
(not identifable in any description based on RT g), centre: preferred quasi-static model 5 (includes models 0, 2), right:
preferred dynamic model 9 (includes models 6, 7). The models 1, 4, 8 are not displayed due to too many parameters. Corr
shows the pairwise linear correlation between 2 parameters, that points out linear dependencies. In R high values in the
row behind the diagonal element indicate dependent parameters. The diagonal elements Rii of R that are less than the
numerical zero (m · n · ε ·max |Rii|) indicate unidentifiable parameters ui [24].

Including orientation-dependent force errors, based on a different orientation repre-
sentation, leads to the model 4, Equation (14), and model 5, Equation (15), which allows for
the identification of mass and centre of gravity with correct physical meaning, where model
5 describes the effect with less parameters.Still, the correlation between these parameters is
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a physical fact that cannot be completely overcome by a different modelling for quasi-static
measurements so that the uncertainties stay high, as can be seen in Figure 3 centre.

Even though models 0–2 are valid and contain fewer parameters, a structural rigid
body approach using parameters with physical meaning is advantageous for a second
reason: as Table 2 shows, dynamic identification results in correct rigid body parameters
for models 6 and 7 without orientation-dependent force error models. This is because a
dynamic trajectory excites the parameters in a different way, while the platform joint forces
that cause the force errors through platform deformation are foremost inducted by static
hexapod strut forces—dynamic joint forces are much smaller and can be neglected, as
separate simulations show. For the same reason, model 3 becomes identifiable for dynamic
excitations when expanded by an inertia model (not displayed).

Finally, models 8 and 9 include all error compensation parameters for dynamic identi-
fication, where model 9 uses fewer parameters (Figure 3 right).

For a symmetric platform without accessories, some centre of gravity parameters
{PxCx, PxCy} and moments of deviation {PIxy, PIxz, PIyz} may also be eliminated, which
reduces the model by 5 more parameters. On the other hand, in practice, a workpiece can
be applied at any position at the end-effector making these parameters necessary, which is
why this reduction is not performed in the present case.

In conclusion, models 5 and 9 provide a full error correction with minimal parameters
and are chosen as the basis for further steps in the evaluation of quasi-static and dynamic
identification procedures, respectively.

In order to optimise poses and exciting trajectories, criteria are needed that can be
defined on the basis of the regression matrix A and on the inverse Fisher information matrix

F−1(x) = (AT(x)W A(x))−1, (29)

as presented in Table 4.

Table 4. Observability indicies and optimization criteria [24,28].

Criteria Expression Description

A trace(F−1(x))→ min (30) Minimize sum of unknown variances (average variance).

D det(F (x))→ max (31) Maximize volume of parameter uncertainty hyperellipsoid.

K κ(A(x)) = µ1/µu → min (32) Minimize condition as eccentricity of the hyperellipsoid.

N µ2
u/µ1 → max (33) Maximize noise amplification index.

6. Quasi-Static Identification Measurements

For quasi-static identification measurements, several poses are approached in the
workspace and, at each pose, a set of force samples is taken in a stationary condition. The
ability to wait until dynamic effects extinguish, and to average over many samples, leads
to a higher data point quality for quasi-static measurements when compared to dynamic
measurements. At the same time, the data points are independent so that every data point
is valid; the data do not need to be cut and, generally, fewer data points are acquired,
which is advantageous concerning memory and processing time of the regression. Still, the
measuring time is very high and the inertia cannot be identified.

Depending on the model, a minimum of m = u/n poses is required, where an overde-
termined measurement including approximately 10 times more poses than necessary aims
to obtain regression results with acceptable uncertainty. The choice of the correct poses is
crucial for good identification results, where different parameters are excited by different
poses: The identification of {mP, PxC} and {k2, k3} requires large inclinations to excite
varying gravity forces in Equation (3) and platform joint forces compensated by Equa-
tion (15), respectively. The identification of {k0, k1}, Equation (13), requires large position
changes in XY directions.
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Optimising the pose set by selecting the most sensitive poses avoids redundancies and,
in total, reduces both poses and measuring time, significantly. Basically, two approaches are
available to optimise the dataset: As the data points are independent, poses can be added
randomly until the chosen criterion saturates. Alternatively, starting from a generated good
dataset, poses can be removed as long as the chosen criterion does not change significantly.
Here, the latter approach is performed using the criteria shown in Table 4. For every pose
set, one pose is deleted temporarily and the criterion is calculated. After examining all
poses, the pose with the smallest change of the selected criterion is found as pose with
least influence and deleted permanently. Finally, this procedure repeats until the algorithm
reaches the desired number of poses (Algorithm 1).

Table 5 shows results for a reduction to 30 poses starting from a working dataset of
480 generated poses that include position changes from −300 mm to 300 mm in steps of
100 mm in XY and, at each position, orientation changes from 10 ° to 20 °, 0 ° to 270 ° and
−15 ° to 15 ° in steps of 10 °, 90 ° and 15 °, respectively, for modified Euler angles [29],
Figure 4 left.

Table 5. Optimisation of quasi-static identification procedure with model 5 through a reduction of the number of poses to
30 starting from algorithmically generated 480 poses; last row: normal probability density plots for the parameters.

Parameter No Opt. (Q5M) A Opt. (Q5A) D Opt. (Q5D) K Opt. (Q5K) N Opt. (Q5N)

Poses 480 30 30 30 30
Min. poses - 3 4 4 3

ŝ0 - 1.28 1.83 1.77 1.39 1.81
û ŝj(û) û ŝj(û) û ŝj(û) û ŝj(û) û ŝj(û)

mP [kg] 33.78 0.22 33.02 0.94 33.66 0.90 33.69 1.00 32.96 0.92

PxC [mm]
0.46 0.19 1.02 0.93 0.89 0.87 1.94 0.75 1.16 0.90
0.50 0.19 0.49 0.87 0.29 0.82 −0.25 0.78 0.38 0.89

108.93 1.34 105.93 5.14 111.36 4.87 110.01 5.38 106.75 5.08

fq0 [N]

−53.94 0.49 −54.67 2.03 −53.63 1.96 −53.18 2.05 −54.78 1.99
45.45 0.49 43.52 2.02 44.84 1.95 44.80 2.06 43.45 2.00
331.17 0.49 329.90 2.02 331.11 1.96 329.59 2.12 329.32 1.99
−135.76 0.49 −137.03 2.02 −135.64 1.96 −135.05 2.10 −136.56 1.99
−11.33 0.49 −12.86 2.03 −11.67 1.95 −12.37 2.10 −13.47 2.02
−14.26 0.49 −15.23 2.04 −13.93 1.96 −12.90 2.11 −15.01 2.02

k0 [N/mm] 20.99 0.27 20.82 1.19 20.97 1.14 19.95 1.19 20.98 1.22
k1 [N/mm] −8.90 0.05 −8.74 0.22 −8.99 0.21 −8.56 0.22 −8.78 0.22
k2 [N/rad] 65.50 4.28 50.98 17.70 61.82 17.08 66.64 18.93 49.46 17.45
k3 [N/rad] 26.87 0.86 23.33 3.21 27.51 3.10 28.19 3.43 23.45 3.16
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Algorithm 1: Selection of optimal poses using criteria of Table 5.

// Create a set of valid poses
for x ← xmin to xmax by xstep do

for y← ymin to ymax by ystep do
for z← zmin to zmax by zstep do

for a← amin to amax by astep do
for b← bmin to bmax by bstep do

for c← cmin to cmax by cstep do
if is_valid(pose(x,y,z,a,b,c)) then

pose_list.add(pose(x, y, z, a, b, c));
// Reduce from n to r optimal poses
red_pose_list← pose_list;
for i← 1 to n− r do

crit0← calc_criteria(red_pose_list);
for j← 1 to length(red_pose_list) do

test_list← red_pose_list;
test_list.remove_pose(j);
crit(j)← calc_criteria(test_list);

red_pose_list.remove(index_o f (min(crit0− crit)));

Figure 4. Poses for quasi-static parameter identification in the Cartesian workspace, left: original dataset with 480 poses
(Q5M); centre and right: reduced datasets (30 poses each) after optimization with A (Q5A) and N (Q5N) criteria, respectively.

This optimisation reduces the measuring time from 21 min for 480 poses to 81 s
for 30 poses (with approximately 2.6 and 2.7 s per pose, respectively), which meets the
requirement of a fast measurement in production breaks and, at the same time, realises
an over-determination factor of 12.8. Further, the algorithm can be run until A loses rank,
which gives the minimum number of possible poses and, therefore, proves the selection
of good poses through the algorithm, as the number is close to or reaches the theoretical
minimum of 3 poses for all criteria (Table 5). A reduction to less than 30 poses is possible
but not recommended since it increases the parameter uncertainties.

All criteria reduce the data set to 30 valid poses. As expected, poses with high absolute
position values and large inclinations are preferred, whereas centred poses and poses with
small inclinations are neglected (Figure 4 centre and right). For all parameters and criteria,
the standard deviations increase by approximately factor 5. The most sensitive parameters
regarding the data reduction are {k2, k3} and {mP, PxC}, as the standard deviations are
already higher without reduction. This matches the expectations from the correlation and
QR plots in Figure 3, which indicate this correlation. Even when the condition criteria
K shows the smallest total standard deviation ŝ0 of the optimised solutions, the plots
reveal a displacement of the averages for several parameters when compared to the not-
optimised solution. However, all optimised solutions are valid and do not differ very much.
Besides validating the approach, this indicates that in the presented case, the previous
step—meaning the model optimisation—is far more important than the used criteria for
pose optimisation.

7. Dynamic Identification Measurements

Dynamic parameter identification measurement stands for the online acquisition of
data points during a highly accelerated movement of the end-effector. Using a dynamic
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excitation trajectory enables the collection of many data points in a short time and the
identification of the platform inertia that cannot be identified by quasi-static measurements.
On the other hand, if an individual data point of the trajectory has a lower quality, a
pre-processing of the data may be necessary and the regression needs more calculation
time owing to more data points when compared to quasi-static measurements. Filtering
options are also limited, the reconstruction of the necessary acceleration can be challenging
and a synchronous measurement of force and acceleration needs to be ensured beforehand.
With the use of 16 Bit analogue inputs EL3742 and EL3702 (Beckhoff, Verl, Germany),
which are connected to a local EtherCAT-Client EK1101 (Beckhoff, Verl, Germany) at the
end-effector platform, a fast and synchronous data acquisition of the forces is realised. The
oversampling functionality allows a data acquisition rate up to 100 kSamples/s (10µs)
that is used for 100 times averaging during a task cycle of 1 ms. Further, strut positions
and velocities are acquired synchronously from a Sercos II drive bus, where velocities are
differentiated to accelerations numerically. Finally, filter times of force and acceleration are
adjusted to obtain a synchronous data acquisition, where the differentiator delay needs to
be taken into account. Details of data acquisition and measurement results, for example,
during a milling process, are presented in [1].

For the exciting trajectory, two approaches are presented: a manually created trajectory
and an optimised trajectory based on periodic functions. The model is so simple that the
individual parameter sensitivity with regard to specific movements can be estimated
by examining the equations, compare Equation (10), Equation (13) and Equation (15).
A trajectory that is sufficient for parameter identification can be found considering the
following aspects: the parameters mass mP and centre of gravity PxC are excited best
by accelerations, which can be created by gravitational acceleration using inclinations
(BRT

P
Bg0), as in the quasi-static approach, or by highly accelerated dynamic movements in

translational directions Pv̇, where the latter is advantageous as it reaches higher magnitudes
and avoids correlation to the error correction factors {k2, k3}. The inertia requires high
angular accelerations Pω̇ and the error correction factors {k0, k1} require large position
changes with low acceleration.

This leads to a trajectory, as shown in Figure 5 left, that contains successive excitations
in all Cartesian directions {x, y, z, α, β, γ} followed by slow inclinations, a fast 6 DoF motion,
and 3 circles placed in the 3 Cartesian planes, where the latter has a large diameter to excite
{k0, k1}. The measured accelerations show clear excitations in the respective directions,
except for slower or more complex movements, where they become noisy.

Optimising a trajectory, on the other hand, requires criteria that are defined in Table 4
and, as the data points are not independent, a proper description of the trajectory that is
smooth, closed and limited with respect to the workspace borders. Periodic Fourier series,
as presented by [30] for serial kinematics and applied for parallel kinematics by [20], meet
these requirements and are used here as well.

For every DoF i = 1 . . . 6 in the workspace, a movement is defined as follows: [20,30]

ix(t) =
N

∑
l=1

( ial
lω

sin(lωt)−
ibl
lω

cos(lωt)
)
+ ix0 (34)

i ẋ(t) =
N

∑
l=1

(
ial cos(lωt) + ibl sin(lωt)

)
(35)

i ẍ(t) =
N

∑
l=1

(
−ial lω sin(lωt) + ibl lω cos(lωt)

)
. (36)

The analytical availability of the derivatives is advantageous, as they can be used to
filter the usually noisy velocity or acceleration measurements. Depending on the angle
format, v and v̇ can be obtained from ẋ and ẍ by the well known transformation
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v = Tẋ (37)

v̇ = Tẍ + Ṫ ẋ, with (38)

T =

(
1 0
0 R(Φ, Θ)

)
and R =

cΘcΨ −sΨ 0
cΘsΨ cΨ 0
−sΘ 0 1

, (39)

on the example of Roll-Pitch-Yaw angles {Φ, Θ, Ψ}.

Figure 5. Trajectories and corresponding measured accelerations for dynamic parameter identification; left: manually
designed excitation trajectory with independent excitation of the Cartesian directions (D9M), right: excitation trajectory
resulting from N-optimal 3rd order periodic Fourier series (D9N).

Further, the trajectory must be kept within valid bounds during optimisation. Basically,
the hexapod movement is limited by strut lengths, velocities and accelerations, passive
joint angles and singularities. Owing to the specific configuration of the hexapod (e.g.,
eccentric joints), limited workspace coordinates are sufficient to avoid critical joint angles
and singularities with certainty for the present kinematic, as long as they are not chosen
very close to the workspace border. Velocity and acceleration limits can also be expressed
in workspace coordinates
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xmin ≤ x(t) ≤ xmax (40)

ẋmin ≤ ẋ(t) ≤ ẋmax (41)

ẍmin ≤ ẍ(t) ≤ ẍmax. (42)

Altogether, this approach significantly improves optimisation speed as it avoids the
calculation of the inverse kinematic, differential kinematic and validation algorithms inside
the optimisation problem. At the same time, the remaining workspace stays large enough
to house an optimised trajectory.

Looking at the parameters, the trajectory consists of 6(2N + 1) + 1 variables ix0, ial ,
ibl and ω that can be optimised, where N is the order of the Fourier series and needs to
be chosen beforehand. As the trajectory can be centred in the workspace due to machine
symmetry, the parameters ix0 are set to zero, which reduces the problem by 6 parameters.
Generally, fewer parameters is advantageous for the convergence of the optimisation
algorithm, where low order Fourier series produce very simple trajectories, which make
an optimisation pointless, for example, circles for order 1. On the other hand, high order
trajectories may easily converge to a local minimum and, further, may contain many
direction changes that can break the acceleration constraints or require a reduction of the
total velocity, which also reduces the excitation effect of the trajectory. For these reasons,
the order should be at least 3 (37 parameters) and not higher than 7 (85 parameters).
The presence of very small parameter values can indicate that the order can be reduced.
Optimisation calculations, performed using model 9 for the criteria (A, D, K, N) of Table 4,
different orders (1–7) and different solvers (‘interior-point’, ‘active-set’ and ‘sqp’ of Matlab
R2019a (The Mathworks Inc., Natick, MA, USA) fmincon optimiser for constrained non-
linear minimisation), show the best results using the ’active-set’ solver, D- or N-optimal
criterion and third to fifth order trajectories, such as those presented in Figure 5 right.
Even with these optimisations, which are performed with equal start values, can result in
similar trajectories for different solvers and criteria, there are differences in performance
and quality. In detail, the ‘active-set’ converges in most cases and needs fewer iterations
than ‘sqp’, which sometimes does not converge—‘interior-point’ does not converge in
general. Regarding the criteria, the D-optimal criterion, which maximises the volume
of the parameter uncertainty hyper-ellipsoid, converges best due to least iterations and
uncertainties, as also predicted by other authors for this identification task [17,20]. Further,
the N-optimal criterion, which can be seen as a combination of minimising the condition
number and maximising the minimum singular value [24,28], performs quite well, as
it produces valid excitation trajectories within few iterations and with good parameter
identifiability. Finally, A- and K-criterion can also lead to valid trajectories but usually need
more iterations and contain weak parameters indicated by QR-analysis and, therefore, are
not recommended. Furthermore, the algorithm requires good initial parameters, as it may
converge to local minima, which is indicated by different trajectory results on randomly
generated start values. On the other hand, even local minima results lead to trajectories
that are sufficient for parameter identification. For this reason, random initial values are
acceptable when they significantly differ from zero and are within the trajectory bounds.
Consequently, the optimisation algorithm using the mentioned settings leads to a fast
convergence (mainly depending on solver and criteria), a limited trajectory with significant
acceleration (mainly depending on start values and criteria) and significant trajectory
parameters (mainly depending on order). In contrast to the quasi-static approach, both
optimising the model and choosing the algorithm and criteria are essential for good results.

When comparing the measured accelerations of both trajectories (Figure 5), the manu-
ally planned trajectory shows higher magnitudes and far less noise. An explanation for
this behaviour can be assumed in two characteristics of the optimised path approach. First,
the optimised trajectory is planned as a continuous spatial path in all DoF and is composed
of many intermediate points, whereas the manually created trajectory behaves more like a
point-to-point motion that realises the successive Cartesian excitations and contains fewer
intermediate points. This is significant because the path planner and interpolator in the
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numeric control (CNC) pre-process the path under the condition of minimal contour devia-
tions including a velocity adjustment during the look-ahead procedure and jerk limitation
depending on contour artefacts, such as non tangential block transitions. By activating
spline interpolation, allowing contour deviations and improving dynamic parametrisation,
a significantly higher dynamic is achieved. Nevertheless, to find a good parametrisation of
the CNC path planner for the optimised trajectories containing simultaneous translations
and rotations in 6 DoF can be challenging for parallel kinematics. For point-to-point move-
ments instead, the path can be planned with maximal acceleration in all DoF neglecting
contour deviations. Second, by the use of 7 segment motion profiles for the point-to-point
movements, higher accelerations can be reached in general, when compared to the sin/cos
movements of the optimised Fourier series.

Table 6 compares identification results for both dynamic trajectories. Both identify
similar rigid body parameters and sensor offsets, where the manually chosen trajectory
shows smaller uncertainties in both, ŝ0 and ŝj, when compared to the periodic trajectory.
Further data processing, such as the selection of highly accelerated motion sections or the
filtering of the accelerations based on discrete Fourier transformation (DFT-filtering), does
not improve the results for the presented application. As a consequence of less measuring
noise in accelerations and smaller uncertainties during identification, the manually chosen
trajectory is preferred.

Table 6. Identification results using model 9 for dynamic measurements with manually created and
optimised Fourier series trajectory, compare Figure 5.

Parameter Dyn. Manual Dyn. N-optimal
Traj. (D9M) Traj. (D9N)

Poses 19,820 11,530
ŝ0 - 5.11 8.59

û ŝj(û) û ŝj(û)

mP [kg] 31.83 0.02 31.88 0.04

PxC [mm]
0.01 0.13 1.60 0.25
−0.32 0.12 −1.09 0.25
105.05 0.12 107.40 0.29

fq0 [N]

−54.41 0.13 −52.80 0.27
41.37 0.13 41.73 0.27
328.38 0.13 328.63 0.27
−137.75 0.13 −137.58 0.27
−14.46 0.14 −13.04 0.27
−20.11 0.14 −16.63 0.27

PIP,C [kg·m2]
1.26 0.005 1.38 0.03
1.21 0.005 1.18 0.02
0.91 0.005 1.02 0.02

k0 [N/mm] 24.05 0.24 30.75 0.36
k1 [N/mm] −8.46 0.04 −9.49 0.07
k2 [N/rad] 37.38 0.89 93.00 1.13
k3 [N/rad] 28.27 0.19 27.78 0.27

8. Validation and Comparison

As a final step, the identification procedures and exciting poses/trajectories are vali-
dated and compared by the application and identification of benchmark payloads (Figure 6).
In detail, weights with a total mass of 100 kg are applied to the end-effector in steps of
approximately 20 kg and parameters are identified using the presented methods of quasi-
static identification (model 5, with all poses, Q5M, and with 30 N-optimal poses, Q5N)
and dynamic identification (model 9, manually designed, D9M, and optimised periodic
trajectory, D9N).

Table 7 shows the identification results for selected parameters of all measurements as
well as relative deviations to the theoretical physical values that result from the application
of the known benchmark payloads. For all approaches, the identified masses, centre of
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gravities and inertias properly change with the applied load and show a relative error
that is in large part significantly smaller than the maximum of 3.9%, measured for PzC at
100 kg with the Q5N method. Further, the constant parameters fq0 remain constant with
a maximal deviation of 2.5% (fq02 at 100 kg Q5N). The relative errors increase with the
applied load, where the average relative error per step is nearly constant, for example,
∆mP = −0.5%/20 kg for Q5M. The quasi-static methods show a slightly lower accuracy in
the identification of the centre of gravity when compared to dynamic methods, as already
expected from model analysis in Section 5. Least deviations in mass (<2%) and sensor
offsets (<1.1%) shows D9N, where the other methods show slightly higher deviations that
are similar between them.

Figure 6. Validation of the approach through identification of known payloads.

For the dynamic trajectories, the global standard deviation ŝ0 increases significantly
with the load (factor 5.4 and 5.8 between 0 kg and 100 kg for D9M and D9N, resp.), whereas
the quasi-static method is not affected that much (factor 1.8, Q5M) by the applied loads,
even after reducing the number of poses (factor 1.7, Q5N). A reduction of eigenfrequencies
with higher applied mass may increase the signal noise during movement and cause this
effect. Again, the periodic trajectory D9N leads to higher uncertainties in identification, for
example, ŝ0 = 46.6 at 100 kg, caused by higher acceleration noise, when compared to the
manually created trajectory D9M, for example, ŝ0 = 29.8 at 100 kg.

More details are shown in Table 7. For the error correction parameters {k0, k1}
theoretical values, and therefore deviations, are not obtainable. Differences between the
methods partly result from different experimental setups, as static and dynamic methods
were measured separately, where load positioning may vary slightly between the successive
runs. N-optimal quasi-static results are extracted from the full quasi-static measurement by
deleting 450 non-optimal poses.

It should be noted that a correct physical representation of the parameters is not the
main focus of the identification procedure. In fact, all model parameters together must
allow an accurate force measurement after calibration. Details on accuracy and precision in
practise for quasi-static, dynamic and process force measurements with the end-effector
setup are presented in [1]. All identification methods show acceptable accuracy and are
suitable for the desired fast re-calibration of the measurement model. Hereby, dynamic
measurement allows the identification of all parameters in a very fast measuring process
(12 s), whereas the slightly slower quasi-static measurement (81 s) shows less noise at load
conditions but does not include the inertia.
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Table 7. Selected identified parameters and relative differences to the theoretical physical values of benchmark payloads for quasi-static and dynamic approaches; characteristics of each
applied mass step: m = 19.93 kg, h = 60 mm, xC = {0, 10.3, 31.1}mm, Izz = 0.1536 kgm2.

Param. / Load 0 kg 20 kg 40 kg 60 kg 80 kg 100 kg

ŝ0 - 1.28 1.37 1.48 1.65 1.94 2.30
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mP [kg] 33.78 53.48 (−0.4%) 72.92 (−1.0%) 91.98 (−1.7%) 111.05 (−2.2%) 130.00 (−2.6%)
PzC [mm] 108.93 98.54 (−0.1%) 110.65 (−0.1%) 129.35 (−1.2%) 152.92 (−1.4%) 178.43 (−1.5%)

fq02 [N] 331.17 330.35 (−0.2%) 328.74 (−0.7%) 327.28 (−1.2%) 325.78 (−1.6%) 323.26 (−2.4%)
k0 [N/mm] 20.99 22.36 23.83 25.58 27.05 28.44
k1 [N/mm] −8.90 −9.54 −10.18 −11.00 −11.66 −12.36

ŝ0 - 1.81 1.93 2.07 2.33 2.74 3.14

Q
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mP [kg] 32.96 52.89 (−0.0%) 72.33 (−0.7%) 91.22 (−1.7%) 110.57 (−1.9%) 129.19 (−2.5%)
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9. Summary

Structure-integrated force measurement is an accurate and cost-efficient alternative to
classic force measurement in 6 DoF. To compensate for machine internal influences, such as
dynamics, a measurement model is essential. Depending on the measuring task, classic
solutions using FT sensors at the end-effector also require or benefit from a measurement
model. However, every model needs a parametrisation that, in this case, both determines
the measuring accuracy and, furthermore, can change during machine usage. Following
modelling and model analysis, two methods are presented to identify these measurement
model parameters, which run in a fast and easy procedure, in an operational machine
state and do not require any additional knowledge or setup-efforts from the machine user.
Where quasi-static identification measurement is based on data acquisition in stationary
conditions at several poses, dynamic identification measurement is based on highly accel-
erated movements while taking samples continuously. Both methods are applied to the
hexapod-based end-effector with integrated force sensors and are optimised to find the
most significant measuring poses and the best most exciting trajectory, respectively. By
the application and re-identification of reference payloads both methods are validated and
compared. In conclusion, all of the presented procedures allow for an accurate determi-
nation of the model parameters with relative deviations to the theoretical values that are,
in most cases, significantly smaller than the maximum error of −3.9% (PzC Q5N, 100 kg),
where the quasi-static method shows fewer uncertainties at load conditions (ŝ0 = 2.3 Q5M
vs. ŝ0 = 46.6 D9N, 100 kg) and the dynamic method is faster (12 s D9N and 20 s D9M vs.
81 s Q5N and 21 min Q5M) and allows inertia identification.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

A(·)B Coordinate vector/tensor: top left reference frame, bottom right body frame
ˆ(·), ˇ(·) Estimated values, and measured values
(·), (·) Spatial vector (6× 1), and vectorized matrix
(·)−T Transposed inverse
f q, fq0, f K, f ∗q Measured forces, sensor bias, correction values, and processed sensor forces
f Ext, f Dyn, f G External, Dynamic, and Gravitational spatial forces and moments
JP, JHex(x) Jacobian of the sensor framework and Jacobian of the hexapod kinematic
mP, PxC, PIP Mass, centre of gravity, and inertia of the platform
q, q̇, q̈ Position, velocity, and acceleration of the drives
x, BoP, BRP Pose, position, and orientation of the TCP
v, BȯP, BωP Velocity, translational velocity, and angular velocity of the TCP
v̇, BöP, Bω̇P Acceleration, translational acceleration, and angular acceleration of the TCP
MP, CP, gP Mass matrix, matrix of centrifugal and Coriolis terms, gravitational terms
A, u Identification model, vector of unknowns
m, u, n Number of: measurements, unknowns, forces per measurement
H, W , Ã Scaling matrix, weighting matrix, and scaled model
ŝ0, ŝj, M̂ Global standard deviation, local standard deviations, and covariance matrix
Q5M Quasi-static approach Model 5, manually generated poses
Q5[A,D,K,N] Quasi-static approach Model 5, A, D, K or N optimal arithm. gen. poses
D9M Dynamic approach Model 9, manually generated trajectory
D9[A,D,K,N] Dynamic approach Model 9, A, D, K or N optimal arithm. gen. trajectory
CAD Computer-Aided Design
CNC Computerized Numerical Control
DoF Degree of Freedom
FK Forward Kinematic
TCP Tool Center Point
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