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Abstract: Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter
encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in
the gut microbiota and host immune system are associated with many diseases, including cancer.
Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the
effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential
effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages.
Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with
mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks
old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse
lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight,
and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits
and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for
GC−MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs)
were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher
tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the
controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well
as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct
metabolic pathways including the Acetyl-coA metabolic process, activation of immune response,
b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and
T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial
role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and
systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial
opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches.

Keywords: MCT2; metabolome; microbiota; GC−MS; LCMS; tumor; lactate; RNA-seq; RNA

1. Introduction

Monocarboxylate transporters (MCTs) are members of the solute carrier (SLC) family
(SLC16) of proteins, comprising 14 isoforms. MCTs are expressed in many different tissues,
and are involved in the regulation of fundamental cellular processes, such as glycolysis and
fatty acid homeostasis, as well as other key metabolic pathways [1–3]. Of the 14 isoforms
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identified, proton-dependent MCTs 1–4 have been extensively studied due to their impor-
tance in transporting L-lactate, pyruvate, and short-chain fatty acids in a wide variety of
tissues [4]. Relevant to the current study, many of these MCT isoforms are upregulated
in tumor tissues, making them attractive targets and biomarkers for many different types
of cancer [1–3,5]. In a recent study in lung cancer patients, a higher expression of MCT2
was associated with increased cell senescence, suggesting that increased MCT2 activity
may favorably affect the clinical course of the disease [6]. These findings are congruent
with the assumption that the presence of a hyperglycolytic phenotype, which requires
higher lactate, and pyruvate utilization may be associated with higher overall survival [7,8].
Furthermore, the expression of MCT2 in tumors has been linked to its ability to regulate
glutamine-derived TCA-cycle flux, particularly of α-ketoglutarate, and can suppress mito-
chondrial respiration and decrease ATP production to generate a more susceptible tumor
environment [9]. However, the opposite findings have also been reported in experiments
involving prostate cancer. Indeed, Valenca et al. [10] showed that a heightened expression
of MCT2, particularly when co-localizing with peroxisomes, fostered cellular proliferation
of prostate cancer cells. In human cancers, MCT2 are strongly expressed in the cytoplasm
of colorectal cancer cells, indicating a possible role within intracellular organelles, such
as the mitochondria [11]. In addition, MCT2 is the primary isoform expressed in human
glioblastoma multiform and glioma-derived cell lines [12]. In glycolytic tumors, MCTs
promote the efflux of lactic acid, as important players in the maintenance of the tumor
intracellular pH, avoiding the routing to apoptosis, and providing the favorable microen-
vironment conditions for invasion [13,14]. Thus, the role of MCTs in general, and more
particularly of MCT2, in the tumor properties in vivo remains unclear.

The gut microbiome can modulate the host immune system both locally and system-
ically [15], and can regulate many functions of the tumor-bearing meta-organism, often
through immunomodulation [16]. In healthy adults, most of the endogenous bacteria are
represented by two phyla, Firmicutes and Bacteroidetes, which account for approximately
90% of the resident microbiota [17]. Several studies have shown that changes in the gut
and oral microbiota may contribute to carcinogenesis in mouse models and human pa-
tients [18,19]. Other studies have shown that specific bacteria present in the intestinal
tract can have systemic effects on the immune system by activating pro-inflammatory or
anti-inflammatory pathways, which could alter the risk of cancer in multiple organs [20].
Depletion of the gut microbiome in pancreatic cancer and melanoma models, and manipu-
lation of the gut microbiome in other cancer systems modified the tumor burden [21–23].
Similarly, cancer growth is promoted by a proinflammatory environment created by the
gut microbiota [24].

Gut microorganisms and their metabolites may migrate to other parts of the body via
the circulatory system, causing an imbalance in the physiological status of the host, and
the secretion of various neuroactive molecules through the gut−brain axis, gut−hepatic
axis, and gut−lung axis to affect inflammation and tumorigenesis in specific organs. The
immunosuppressive status of the tumor microenvironment remains poorly defined due to a
lack of understanding regarding the function of tumor-associated macrophages (TAMs) [25].
TAMs are crucially implicated in tumor progression and metastasis, and favor tumor cells
to modify the microenvironment and promote tumor growth, angiogenesis, invasion, and
metastasis, as well as suppress the antitumor immune response [26]. A multi-omics ap-
proach revealed distinct tumor immune microenvironment contributing to immunotherapy
in lung adenocarcinoma [27]. The mechanisms by which gut microbiome interacts with the
immune system and affects cancer progression are unclear. In this context, the emerging
role of MCT2 in cancer energetics and the parallel metabolic role played by changes in
the gut microbiota let us to hypothesize that systemic knock down of MCT2 (KO) in a
mouse model of syngeneic lung cancer would not only alter the tumor characteristics, but
may also induce significant differences in the gut microbiome and in the fecal and plasma
metabolomes. Using bulk RNA sequencing (RNA-seq), we also explored changes in the
gene expression of TAMs associated with manipulation of the host MCT2 expression.
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2. Results
2.1. MCT2 Immunoreactivity

To ascertain that the MCT2 protein is down-regulated in the presence of tamoxifen,
we conducted immunoblotting in several tissues, including the testis, cortex, and visceral
adipose tissues. Compared with vehicle-treated mice, tamoxifen-treated mice showed
significant reductions in the MCT2 protein expression in the testis p < 0.001, visceral fat
p < 0.01, and cortex p < 0.03, respectively (Figure S1).

2.2. Tumor Growth and Local Invasiveness

MCT2 KO mice exhibited an enhanced tumor weight (1646.38 ± 390.41 mg) compared
to CO mice (injected with saline) after 24 days (1141.44 ± 540.71 mg; p = 0.006, Figure 1). In
addition, tumor volumes were significantly increased in KO mice (3882.06 ± 1313.67 mm3)
compared to the CO animals (2298.31 ± 1094.59 mm3; n = 16/group, p= 0.006; Figure 1),
along with increased local invasiveness (i.e., disruption of the tumor capsule; 14/16 in KO
and 6/16 in WT; p < 0.01), suggesting that a reduced MCT2 expression promoted increased
tumor growth and regional invasiveness.

Figure 1. Individual TC1 tumor weight, volume, and lactate levels in MCT2 KO and CO mice:
(A) tumor weight; (B) tumor volume; (C) tumor lactate concentrations.

2.3. Electron Microscope

Since mitochondria are implicated in the process of tumor biology, which includes al-
terations of cellular metabolism and cell death pathways, fresh tumor tissues obtained from
KO and CO mice were minced, fixed, and imaged using electron microscopy (Figure 2).
Mitochondrial changes associated with more of an electron−lucent mitochondrial ma-
trix, swollen mitochondria, and disrupted cristae were apparent in tumors from KO mice
compared to CO. Mitochondrial swelling with partial or total cristolysis suggests that the
ability of neoplastic cells to generate ATP by mitochondrial oxidative phosphorylation may
be diminished.

Figure 2. Representative electron microscopy images of mitochondria in the tumor tissues of KO and
CO mice. Arrows indicate examples of disrupted mitochondria. n = 6/experimental group.
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2.4. RNA-seq in Tumor-Associated Macrophages

Next, we purified the TAMs from tumors harvested in KO and CO mice, and per-
formed bulk RNA-seq. The heatmap of the top 100 genes (50-up-regulated, red color,
and 50-down-regulated, blue colors) are shown in Figure 3. Gene Ontology (Table 1)
and KEGG pathways (Table 2) for those genes. Metabolic pathways that were differen-
tially expressed following Gene Set Enrichment (GSE) analysis included the Acetyl-coA
metabolic process, activation of immune response, B-cell activation and differentiation,
cAMP-mediated signaling, glucose and glutamate processes, T-cell differentiation, and
response to oxidative stress.

Figure 3. Cluster analysis of differential gene expression in tumor associated macrophages within
TC1 tumors in MCT2 KO and CO mice. Heatmap of the top 50 up-regulated (A) and top 50
down-regulated genes (B). Expression values for each gene (row) are normalized across all samples
(columns) by Z-score. Both column and row clustering were applied, and distinct gene clusters
identified by the Gap statistic method are shown to illustrate the major expression patterns observed
in the data.
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Table 1. Gene ontology (GO) enrichment analysis of identified in top 50 upregulated and top 50 down regulated differentially
expressed genes in tumor macrophages derived from KO compared to controls using RNA-seq.

GO Enrichment Analysis #Term ID Term Description False Discovery Rate

Molecular function

GO:0031994 insulin-like growth factor I binding 1.5 × 10−10

GO:0031995 insulin-like growth factor II binding 2.9 × 10−9

GO:0005158 insulin receptor binding 5.1 × 10−4

GO:0005159 insulin-like growth factor receptor binding 3.1 × 10−3

GO:0008083 growth factor activity 2.5 × 10−2

GO:0004859 phospholipase inhibitor activity 2.9 × 10−2

GO:0005515 protein binding 2.9 × 10−2

GO:0003677 DNA binding 4.2 × 10−2

GO:0098772 molecular function regulator 4.2 × 10−2

GO:0005160 transforming growth factor beta receptor binding 4.9 × 10−2

GO:0005178 integrin binding 4.9 × 10−2

Cellular Component

GO:0005615 extracellular space 6.5 × 10−7

GO:0000786 nucleosome 3.8 × 10−6

GO:0000788 nuclear nucleosome 7.6 × 10−5

GO:0005576 extracellular region 1.5 × 10−4

GO:0000785 chromatin 2.1 × 10−5

GO:0000790 nuclear chromatin 2.3 × 10−5

GO:0000228 nuclear chromosome 1.6 × 10−3

GO:0042568 insulin-like growth factor binary complex 2.1 × 10−3

GO:0035867 alphav-beta3 integrin-IGF-1-IGF1R complex 4.9 × 10−3

GO:0005694 chromosome 1.2 × 10−2

GO:0001518 voltage-gated sodium channel complex 2.5 × 10−2

GO:0005751 mitochondrial respiratory chain complex IV 4.4 × 10−2

Biological process

GO:0043567 regulation of insulin-like growth factor receptor 1.4 × 10−7

GO:0043568 positive regulation of insulin-like growth factor receptor 4.6 × 10−4

GO:0034728 nucleosome organization 5.1 × 10−4

GO:0001649 osteoblast differentiation 1.4 × 10−3

GO:0006323 DNA packaging 1.4 × 10−3

GO:0014910 regulation of smooth muscle cell migration 1.4 × 10−3

GO:0019556 histidine catabolic process to glutamate and formamide 1.4 × 10−3

GO:0019557 histidine catabolic process to glutamate and formate 1.4 × 10−3

GO:0042246 tissue regeneration 1.4 × 10−3

GO:0006325 chromatin organization 1.6 × 10−3

GO:0006333 chromatin assembly or disassembly 1.8 × 10−3

GO:0010906 regulation of glucose metabolic process 1.8 × 10−3

GO:0090031 positive regulation of steroid hormone biosynthetic process 1.8 × 10−3

GO:0048009 insulin-like growth factor receptor signaling pathway 2.7 × 10−3

GO:0045725 positive regulation of glycogen biosynthetic process 4.3 × 10−3
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Table 2. KEGG pathways identified in top 50 upregulated and top 50 down regulated differentially
expressed genes in tumor macrophages derived from KO compared with controls using RNA-seq.

KEGG ID Term Description False Discovery Rate

mmu00340 Histidine metabolism 0.0066
mmu04115 p53 signaling pathway 0.0066
mmu04610 Complement and coagulation cascades 0.0066
mmu05202 Transcriptional misregulation in cancer 0.0066
mmu05215 Prostate cancer 0.0066
mmu04350 TGF-beta signaling pathway 0.0091
mmu01522 Endocrine resistance 0.0104
mmu05322 Systemic lupus erythematosus 0.0104
mmu04066 HIF-1 signaling pathway 0.0122
mmu05205 Proteoglycans in cancer 0.0187
mmu04068 FoxO signaling pathway 0.0244

2.5. Fecal Microbiota

Fecal microbiota composition profiles were analyzed using the 16S rRNA sequencing-
based method in samples from both groups. Bacterial community patterns and principal
coordinate analysis (PCoA) were compared, and 460 amplicon sequence variants (ASVs)
were identified. The ASVs achieving significance in both KO and WT are listed in Table S1.
We also included the phylum, class, order, family, and genus for each ASV (Table S1). PCoA
revealed marked differences in the fecal bacterial composition in KO and CO groups based
on Bray−Curtis similarities, PERMANOVA (p = 0.016; Figure 4A).

Figure 4. Fecal bacterial composition of 16S rRNA and operational taxonomic units (OTU) identified in MCT2 KO and CO
mice. (A) Principal coordinate analysis (PCoA) plot ordinated by Bray−Curtis beta-diversity similarities for fecal microbiota.
Red indicates CO and blue indicates KO samples. PC—principal component; PERMANOVA—permutational multivariate
analysis of variance, p = 0.016, F = 3.2. (B) Pie chart showing the relative abundance of Phylum detected in KO and CO mice.
(C) Comparisons of gut microbial alpha-diversity and beta-diversity between CO and KO as estimated the Chao1 index
and by the Shannon index. (D) Hierarchical cluster analysis of the 50 consistently detected OTUs in the gut microbiota
(n = 5/group).
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Significant differences in the α diversity of the genus-level gut microbiome evaluated
by the richness index (Chao 1 index, p = 0.04) and bacterial diversity index using Shannon
(p = 0.02) emerged (Figure 4B). The dominant phyla were Firmicutes (40%), Bacteroidetes
(14%), Actinobacteria (2%), Proteobacteria (1%), Proteobacteria (1%), and Verrucomicrobia
(1%) (Table S1 and Figure 4C). Fecal microbiome analysis of KO mice showed that the
Firmicutes/Bacteroidetes ratio was six times higher compared to CO. The relative significant
phylum is shown in Figure 4C. Firmicutes and Bacteroidetes showed significant differences
with increased Firmicutes and decreased Bacteroidetes levels in KO mice (Figure 4C). At the
phylum level, the predominant bacterial taxa in the feces of both groups were Firmicutes and
Bacteroidetes, and the most abundant families were Ruminococcaceae, Muribaculaceae, and
Lachnospiraceae. Hierarchical clustering of samples was based on the relative abundance
of the 50 ASVs based on the lowest p-values following ANOVA of all ASVs comparing KO
and CO (Figure 4D).

2.6. Fecal and Plasma Metabolomes

To identify the fecal and plasma metabolome features, untargeted metabolome profiles
were generated on KO and CO samples using UPLC-MS. For the fecal metabolome, PCA
based on the UPLC-MS analysis of the fecal metabolome resulted in the detection of
1738 compounds on Bray−Curtis similarities, PERMANOVA, on KO and CO (p = 0.0009;
Figure 5A). The ANOVA of these compounds detected differences in the abundance of
129 compounds (Table S2). The Volcano plot highlighted the significant metabolites in KO
vs. CO with a fold change of >1.5 (Figure 5B). The top six metabolites yielding the lowest
p-values based on t-test in KO compared to CO were either up-regulated (C5H11NO2,
C24H41NO4, C17H43N7O6S2, and C24H36O3) or down-regulated (C27H27N3O7 and
C4H7NO2; see Figure 5C).

Figure 5. Fecal metabolome for MCT2 KO and CO mice. Fecal metabolome was identified via ultra-high-pressure liquid
chromatography−mass spectroscopy (UHPLC−MS). (A) PCoA plot ordinated by Bray−Curtis beta-diversity similarities
for fecal metabolome, red indicates KO and blue indicates CO samples. PC—principal component; PERMANOVA—
permutational multivariate analysis of variance p = 0.0009, F = 1.73. (B) Volcano plot showing fold difference (FD, x-axis)
and p-value (y-axis) associated with metabolites detected at significantly greater relative abundance in MCT2 KO and CO.
(C) Box plots for six highly significant metabolites identified in the Volcano plot (n = 5/condition).
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The plasma metabolome was also acquired by UPLC-MS and 1858 compounds were
identified by retention time and mass/charge (m/z). No significant differences based on
Bray−Curtis similarities, PERMANOVA (p = 0.56), were found in KO compared to CO mice
(Figure 6A). The data in Figure 6B show the top six serum metabolites (lowest p values), all
of which withstood correction for multiple tests.

Figure 6. Plasma metabolome for MCT2 KO and CO. Plasma metabolomes were identified via ultra-
high-pressure liquid chromatography−mass spectroscopy (UHPLC−MS). (A) PCoA plot ordinated
by Bray−Curtis beta-diversity similarities for plasma metabolome, red color indicates CO and blue
color indicates KO samples. PC—principal component; PERMANOVA—permutational multivariate
analysis of variance p = 0.56, F = 0.71, n = 5. No significant differences were identified in the Volcano
plot. (B) Box plots for the top six plasma metabolites (lowest p values) after correction for multiple
tests (n = 5/condition).

2.7. Comparison between Fecal and Plasma Metabolomes

Data from untargeted UPLC-MS revealed 794 unique metabolites in the plasma,
1024 unique ASVs in the feces, and 113 were in common, as shown in the Venn dia-
gram (Figure 7A). Significant differences were associated with the site (plasma vs. fecal)
and treatment (KO vs. CO) among 113 common UPLC-MS features, based on two-way
ANOVA; Tukey box plots showing the distribution in each group of the two metabolites
with significant treatment-associated differences (Figure 7A,B). The data shown in the
heatmap (Figure 7B) summarize the ASVs that were altered in the KO and CO in fecal
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and plasma samples. Among the 113 common UPLC-MS compounds in the fecal and
plasma samples, we identified two metabolites (C4H7NO2 and C5H11NO2) with signifi-
cant subject-associated differences, as shown in Figure 7C, based on two-way ANOVA and
box plots.

Figure 7. Comparisons of fecal and plasma metabolites identified using UHPLC-MS in MCT2 KO
and CO. (A) Venn diagram for fecal and plasma metabolites showing the unique metabolites for
each and the interactions among them. (B) Hierarchical clustering of samples based on the relative
abundance of the interaction between fecal and plasma samples for MCT2 KO and CO. (C) Box plots
showing the two interaction metabolites between the plasm and fecal samples among 113 common
LCMS compounds, based on two-way ANOVA: box plots showing the distribution in each group of
the two metabolites with significant treatment-associated differences.

2.8. GC−MS for Plasma and Fecal Metabolomes

In parallel, GC–MS was utilized to profile the polar and nonpolar volatile fractions of
the plasma and fecal samples. In the plasma polar, a total of 74 metabolites were detected in
the positive ionization mode in both groups and underwent univariate analysis (Table S4).
There were four differentially expressed metabolites, of which two are known (Myo-Inositol
and D-(+)-Glucose) and two have unknown metabolic functions (Table S4).

For example, Myo-Inositol is involved in inositol phosphate metabolism, while D-(+)-
Glucose is involved in starch and sucrose metabolism. However, the data in the Volcano
plots show only Myo-Inositol based on the high significant of p-value and fold change
(Figure 8) and box plot (Figure 8B). For the plasma non-polar, out of 41 metabolites,
3 metabolites were significantly different, of which one has a known metabolic function
(Cholesterol) and two are unknown (Table S5). No significant differences emerged in the
Volcano plots.
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Figure 8. Plasma polar gas chromatography−mass spectroscopy (GC−MS). (A) Volcano plot showing
the fold difference (FD, x-axis) and p-value (y-axis) associated with polar metabolites. (B) Tukey box
plots showing the differences in abundance of Myo-Inositol in MCT2 KO and CO mice.

In the fecal metabolomes, 174 metabolites were identified via GC–MS in the polar
fraction, and 22 metabolites showed statistical significance in KO vs. CO (Table S6), of
which there were 11 metabolites with known functions, while the other 11 metabolites had
an unknown function (p-value <0.05). Volcano plots revealed three significant metabolites,
namely Xyluose, Xylose, and unknown, as shown in Figure 9A, and the box plot showed
these three metabolites identified via GC–MS in KO and CO (Figure 9B). Hierarchical
clustering analysis showed a clear separation of KO and CO mice (Figure 9C).

Figure 9. Fecal polar gas chromatography−mass spectroscopy (GC−MS). (A) Volcano plot showing
fold difference (FD, x-axis) and p-value (y-axis) associated with polar metabolites. (B) Tukey box
plots showing the significant abundance of Xyloses, Xylose, and unknown metabolites in MCT2 KO
and CO mice. (C) Hierarchical clustering of samples based on the relative abundance of the ASVs
yielding the lowest p-values following ANOVA of all ASVs comparing MCT2 KO and CO mice.
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For the fecal non-polar metabolome, we detected 126 metabolites, of which there were
13 that showed statistically significant differences (Table S7). Among these metabolites, six
were identified with known functions. The known metabolites consisted of pentadecanoic
acid, inositol-2-phosphate, 1-hexacosanol, n-octacosanol, and tetradecanoic acid (Table S7).
Volcano plots show eight statistically significant metabolites based on fold changes (2) and
p-value (log10; Figure 10A). Tukey box plots showed the significant abundance of five
metabolites in the controls and KO (Figure 10B). Hierarchical clustering in the fecal polar
analysis shows the differentially expressed metabolites based on their retention time and
weight mass for the KO and CO fecal samples (Figure 10C).

Figure 10. Fecal non-polar gas chromatography−mass spectroscopy (GC−MS). (A) Volcano plot
showing fold difference (x-axis) and p-value (y-axis) associated with polar metabolites. (B) Tukey box
plots showing the significant abundance of five metabolites in MCT2 KO and CO mice. (C) Hierar-
chical clustering of samples based on the relative abundance of the ASVs.

2.9. Metabolic Pathways

The metabolic pathway of the target metabolites identified by GC−MS of both plasma
and fecal of KO and CO mice are summarized in the metabolic systems map shown in
Tables S4–S7). For plasma polar metabolites, two metabolic pathways were identified,
namely inositol phosphate metabolism and starch and sucrose metabolism (Table S4),
while in the fecal polar analyses, 11 metabolic pathways were also identified, including
glutathione metabolism, nucleotide sugars metabolism, purine metabolism, transfer of
acetyl groups into mitochondria, tryptophan metabolism, and tyrosine metabolism, as well
as valine, leucine, and isoleucine degradation (Table S6).

For the plasma polar metabolites, bile acid biosynthesis was significant (Table S5),
while for fecal non-polar metabolites, six metabolic pathways were identified, including
acylcarnitine 15-(3,4-dimethyl-5-pentylfuran-2-yl) pentadecanoylcarnitine, inositol phos-
phate metabolism, arachidonic acid metabolism, amino sugar metabolism, fatty acid biosyn-
thesis, and amino sugar metabolism (Table S7). We noticed inositol phosphate metabolism
is the common pathway between the plasma and fecal samples. In addition to metabolic
pathways, the genes associated with each pathway can be useful for linking multi-omics
analyses with other high-throughput technologies. For example, the arachidonic acid
metabolism pathway has 61 genes, including ALOX5, LTC4S, CYP1A1, CYP1B1, CYP2C8,
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CYP4F2, ALOX5AP, GPX1, GPX2, GPX4, ALOX15, PTGS2, PTGS1, CYP1A2, CYP2C19,
CYP2C9, CYP4A11, DPEP1, LTA4H, PTGR1, DPEP2, PTGDS, TBXAS1, and PTGES3.

2.10. Gene Networks

We constructed gene networks for two metabolites, namely myo-inositol for inositol
phosphate metabolism, and propionic acid for tryptophan metabolism (Figure 11). The
Regulatory Network of Target Genes was constructed with String software. In this network,
several genes are ranked as highly significant in inositol phosphate metabolism, such
as IPMK, ITPK1, IP6K1, IPPK, IP6K2, PPIP5K1, PPIP5K2, IP6K3, IMPA1, IMPA2, INPP5B,
OCRL, SYNJ1, and INPP5J, while in tryptophan metabolism signaling, the genes with a high
statistical significance were ACAT1, ECHS1, GCDH, AANAT, AOC1, ALDH2, ALDH9A1,
ALDH3A2, AOX1, ASMT, CAT, CYP1A1, CYP1A2, CYP1B1, DDC, HADH, IDO1, MAOB,
TDO2, TPH1, KYNU, INMT, HAAO, AADAT, AFMID, ACMSD, and ACAT2.

Figure 11. Gene network representation of the Inositol Phosphate Metabolism pathway (A) and
Tryptophan metabolism (B) in MCT2 KO and CO mice.

3. Discussion

In this study, we illustrated the putative restrictive effects of MCT2 expression on
tumor growth and local invasiveness, and investigated gene expression differences TAMs
when MCT2 expression was reduced compared to normal conditions. In TAMs, metabolic
pathways that showed the more prominent differences included glucose and glutamate
pathways, Acetyl-coA metabolic process, activation of immune response, B-cell activation
and differentiation, cAMP-mediated signaling, and T-cell differentiation, and response
to oxidative stress. In addition, the functional and taxonomic features of the gut micro-
biome during tumor development were evaluated via UPLC-MS and targeted amplicon
sequencing. The relationships between the gut microbiome and fecal metabolome and
plasma-related metabolites showed that the expression of MCT2 in the context of a lung
TC1 tumor model imposes significant differences in these systems.

Monocarboxylate transporters are important regulators for cellular bioenergetics, and
the transport of pyruvate and lactate across cellular membranes is an essential process
in mammalian cells [28,29]. MCT2 is highly expressed in neurons, where it plays an
important role in cellular energy metabolism and lactate shuttle [30,31]. Several studies
have shown that lactate accumulation in human tumors, including cervical tumors, head
and neck cancers, and rectal adenocarcinomas—tumors with metastatic spread—exhibited
a wider range and significantly higher levels of lactate than non-metastatic tumors [32–34].
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The lactate content can vary between individual tumors, even if the tumors are the same
size, grade, or entity [33–35]. Here, we found that lactate tumor levels are significantly
increased in MCT2 KO mice, suggesting that the utilization of lactate under a normal MCT2
expression may prevent enhanced glycolysis and the Warburg effect by improved lactate
bioenergetics. Furthermore, high rates of lactate production or increased intra-tumoral
lactate concentrations promote the acidification of TAMs, and lead to polarity changes
and transformation into pro-tumoral macrophages [36]. As such, high glycolytic rates
of cancer cells can lead to the increased generation of lactate and an accumulation of H+
ions, which ultimately induce an acidified tumor microenvironment [37]. The presence
of MCT2 facilitates the relocation of lactic acid and enhances its utilization as an energy
substrate, thereby reducing glycolysis and preventing pro-tumoral polarity changes in
TAMs while preserving the innate immune cell function [5,38–40]. Furthermore, MCT2 has
been reported to be located in the mitochondria with a role for mitochondrial metabolism,
and inhibition of MCT2 suppresses colorectal cancer progression via the induction of
mitochondrial dysfunction [41]. In the tumors harvested from the tamoxifen-induced
MCT2 KO, we found that their mitochondria were disrupted compared to CO tumors,
suggesting that these alterations in MCT2 expression may impose adverse effects on the
tumor cell bioenergetics and promote the emergence of more aggressive cancer.

Macrophages are crucial drivers of tumor-promoting inflammation, and TAMs con-
tribute to tumor progression at different levels by promoting genetic instability, nurturing
cancer stem cells, supporting metastasis, and taming protective adaptive immunity [42]. In
the tumor, TAMs are a key component of the local tumor mesenchymal−epithelial transi-
tion (TME) where they can contribute to tumor immune system evasion; suppress T-cell
activity; and control cancer initiation, progression, and metastasis in a large number of
different malignancies [43,44]. Cancer cells and TAMs co-exist in the context of a complex,
bidirectional metabolic relationship that is not only dictated by, but also impinges upon
the immunology of the TME [45,46]. Furthermore, TAMs can support tumor progression
by (a) indirectly increasing the availability of selected nutrients in the TME, (b) providing
trophic signals to malignant cells, and (c) mediating a robust immunosuppressive func-
tion [43]. In this study, we purified and performed bulk RNA-seq from TAMs derived
from tumors in MCT2 KO and CO mice, and identified multiple metabolic pathways that
are associated with tumor growth including, glucose and glutamate processes, T cells
differentiation, and the Acetyl-coA metabolic process. For example, acetyl coenzyme A
is a metabolite derived from several bioenergetics pathways (e.g., glycolysis, fatty acid
oxidation, and amino-acid catabolism) and is further metabolized by the tricarboxylic
acid cycle. Hypoxic TAMs within tumors can shift toward oxidative metabolism cou-
pled with decreased glucose intake, culminating in endothelial cell activation, leading to
neoangiogenesis and metastasis because of increased glucose availability in the TME [47].
Thus, glycolysis and higher lactate levels in TAMs and within the tumors themselves can
support tumor growth, despite an increased competition for local glucose availability. In
some murine models, these observations may reflect the requirement for glycolysis in M2
polarization [48].

Mitochondria have been implicated in the process of carcinogenesis, which includes
alterations of the cellular metabolism and cell death pathways. Alterations of the mitochon-
drial networks are directly or indirectly involved in processes resulting in hypoxia-tolerant
and hypoxia-sensitive gliomas, and by the hypoxia-inducible factor-1 (HIF-1), glycolytic
protein isoforms, and fatty acid synthase [49]. In addition, the mitochondria in cancer
cells have been observed with a lucent-swelling matrix associated with disarrangement
and the distortion of cristae and partial or total cristolysis [49,50], supporting the presence
of damaged mitochondria in cancers [51,52]. Mitochondrial changes are associated with
mitochondrial-DNA mutations, tumoral microenvironment conditions, and mitochondrial
fusion−fission disequilibrium [49]. In colorectal cancer cell lines, the knockdown of MCT2
causes mitochondrial dysfunction, cell-cycle arrest, and senescence without additional
cellular stress [51].



Int. J. Mol. Sci. 2021, 22, 10616 14 of 24

It has become apparent that both the gut microbiome and plasma metabolome can
play a role in the pathogenesis of tumor cells. Our study identified a number of associations
between the altered gut microbiota and plasma metabolites, suggesting that alterations
in the MCT2 expression in the host can promote the emergence of changes in the gut
microbiota composition, which in turn may play a role in tumor growth and aggressive-
ness. Indeed, the gut microbiota has broad effects that contribute to host immune function
at steady state and during tumorigenesis [16]. The gut microbiome and the immune
system interact to maintain homeostasis of the gut, and alterations in the microbiome
composition leads to immune dysregulation, promoting chronic inflammation and the
development of tumors [53]. We believe that the microbiota differences associated with a
reduced expression of MCT2 may reflect unique interactions between plasma metabolites
and the gut microbiome which then foster further alterations in fecal and consequently
plasma metabolomes. It is now clearly established that the gut microbiota is involved
in the physiological activities of the host by affecting the bile acid pool, thus regulating
hormone secretion and immunity via the resulting metabolites including the triggering
of proinflammatory or immunosuppressive processes can be further affected by microor-
ganisms [54,55]. Cancer patients seem to harbor a specific microbiome composition in the
tumor niche, and disruption of the intestinal barrier function may trigger inflammation
and carcinogenesis [56]. Microbial metabolites may interact directly with cancer cells or
may regulate carcinogenesis by interacting with other components of TAMs, participating
in immune responses or angiogenesis [57,58].

Since the gut microbiota interacts extensively with the host through substrate co-
metabolism and metabolic exchange, we performed and analyzed concurrently obtained
fecal and plasma metabolomes from the same animals. In our studies, at the phylum
level, Firmicutes and Bacteroidetes accounted for more than 80% of the phylla, and the most
abundant families included Lachnospiraceae, Marinifilaceae, and Ruminococcaceae, with
most abundant genera being Lachnoclostridium and Ruminiclostridium. We found that
Firmicutes increased in KO mice, but were drastically reduced in CO mice. In this context,
Firmicutes and Bacteroidetes play an important role in regulating host energy metabolism.
Bacteroidetes first oxidize pyruvate to acetyl-CoA, and then produce acetic acid via phospho-
acetyltransferase and acetate kinase [59]. Furthermore, Bacteroidetes can also form propionic
acid via the acrylic acid pathway, and there is a growing recognition of the importance
of the Firmicutes/Bacteroidetes in metabolic diseases (Stearns et al., 2017). The significant
increases in Firmicutes/Bacteroidetes values in KO mice support the assumption that tumor
growth and invasion may be influenced by some of the changes in the gut microbiota.

As indicated in the results, metabolomic analyses identified significant differences in
multiple metabolites and corresponding pathways that are relevant to cancer biology. As
illustrative examples, the inositol phosphate metabolism pathway regulates cell prolifera-
tion, migration, and phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and is frequently
dysregulated in cancer [60], and tryptophan metabolism regulates the kynurenine pathway
inducing element of the immune response [61]. Similarly, fatty acid synthase was identified
as the tumor antigen OA-519 in aggressive breast cancer, and may play an importance
role of fatty acid biosynthesis for cancer cell growth and survival [62,63]. In addition,
the arachidonic acid pathway plays a key role in cardiovascular biology, carcinogenesis,
and many inflammatory diseases [64], and promotes tumor progression [65,66]. Thus, the
multifaceted effects of MCT2 span a complex network of metabolic pathways that regulate
tumor proliferation and local invasiveness.

Among the functional aspects of MCT2 in host−tumor interactions, several questions
on the role of MCT2 in TAMs remain unanswered. What are the molecular mechanisms
underlying the ability of TAM to rapidly switch their metabolic and functional profile
following the induced reduction of MCT2 expression? How does MCT2 affect the evolution
of the TAM landscape during tumor progression? Would an overexpression of MCT2 or
the administration of MCT2 analogs confer any benefit to the functional interplay between
TAMs, immune responses, and tumor progression? We should point out that in the
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syngeneic model of TC1 cancer in mice, the tumor cells’ constitutive expression of MCT2
was preserved, such that the knockdown only affected the host, leaving the tumor cells
unaffected. Future studies should examine the effects of knockdown or the overexpression
of MCT2 in the tumor cells in mice with a normal expression of MCT2 or in KO mice.

In summary, our study strongly supports the concept that MCT2 confers beneficial
effects in the host response to the tumor, and plays a role in tumor growth and tumor
invasion, likely by regulating the concentrations of lactate and likely other monocarboxy-
lates within the tumor. In addition, we showed that perturbations in the MCT2 expression
induce substantial changes in gut microbiota, fecal, and plasma metabolites, all of which
may play a role in tumor biology and immune responses.

4. Materials and Methods
4.1. Animals

The conditional MCT2 (Slc16a7) knockout C57BL/6 mouse model project #386-MCT-2
was generated at Ingenious Targeting Laboratory (Ronkonkoma, NY, USA). MCT2loxP mice
were intercrossed with mCre-Tg mice (The Jackson Laboratory stock # 008463) to generate
MCT2loxP/loxP; Cre+ mice (MCT2 cKO). MCT2 cKO mice (8 week-old) were administered
0.18 mg of tamoxifen per gram of body weight via injection. Mice were dosed once daily
for five consecutive days, and TC1 cells (100 K/mouse) were injected two days later. The
MCT2loxP mouse genotyping Primer: MCT2-R: CTA TCA CGC TGT TGC TGT AAG A;
MCT2-F: GAC TCC CTT CTC CCA TCT CAG, wild type 319 bp, and Flox+/+ 380 bp. The
schema for generating MCT2 mice knockout is shown in Figure S2. Cre+ genotyping of
primer: 8463-1: AAA GTC GCT CTG AGT TGT TAT (mCre Wild type forward); 8463-2:
GGA GCG GGA GAA ATG GAT ATG (mCre Wild type reverse); and 8463-3: CCT GAT
CCT GGC AAT TTC G (mCre reverse). Cre+/+ = 825 bp, and Wild type = 650 bp. MCT2-
positive males at 2 months of age were crossed with MCT-2 positive females at 2 months
of age. The complete details about MCT2 knockout mice are presented in Supplementary
Methods. MCT2 injected with tamoxifen is called MCT2 KO and MCT2 injected with
vehicle (WT) is called MCT2 CO. In the next section, MCT2 KO is called KO and MCT2 CO
is CO.

4.2. MCT2 Mouse Genotyping

Animal breeding was carried out using MCT2 cKO male and female homozygous
mice, and all offspring were genotyped at 21 days. DNA was isolated from the mouse
tails, and PCR was performed with MCT2 specific primers. Figure S3 confirms MCT2
conditional knockout at a molecular weight size at 380 bp.

4.3. Tumor Cell Line

Mouse epithelial lung tumor cells, TC1, (ATCC, CRL-2785) were purchased from
American Type Culture Collection (Manassas, VA, USA) and were cultured at 37 ◦C, 95%
air, 5% CO2 incubator. TC1 cells were maintained in an RPMI medium supplemented with
2 mM L-glutamine, 10 mM HEPES buffer, 1 mM sodium pyruvate, 0.1 mM non-essential
amino acids, 100 U/penicillin/100 µg/mL streptomycin, 10% fetal bovine serum (FBS),
and geneticin 0.4 mg/mL (Life Technologies, Grand Island, NY, USA).

4.4. Tamoxifen and Subcutaneous Flank Tumor Model

Tamoxifen was freshly prepared in sunflower oil at a concentration of 20 mg/mL,
and 180 µg of tamoxifen/g body weight of mice were injected daily for five consecutive
days. Mice treated with tamoxifen KO, n = 16, and those treated with sunflower oil
without tamoxifen CO, n = 16, were inoculated with TC1 cells (1 × 105 cells in 0.2 mL
PBS; all cells <3 passages) by subcutaneous injection into the right lower flank. Tumor
volumes were estimated every 3 days by externally measuring the length and width with
an electronic caliper. After 24 days from tumor injection, the mice were sacrificed and blood
was collected along with tumor surgical dissection and assessment of local invasion [67,68].
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4.5. Western Blots

Several tissues, including testis, cortex, and visceral adipose tissue samples, were
homogenized in a lysis buffer (50 mM Tris, pH 7.5, 0.4% NP-40, 150 mM NaCl, 10 mg/mL
Aprotinin, 20 mg/mL Leupeptin, 10 mM EDTA, 1 mM Sodium orthovanadate, 100 mM
Sodium Fluoride, Sigma-Milipore, St. Louis, MO, USA). Protein concentrations were
measured using the BCA kit (Life Technologies, Grand Island, NY, USA). Equal amounts
of total protein from each tissue were electrophoresed using SDS-PAGE gel (4–20%) and
were transferred into a nitrocellulose membrane (Millipore, Billerica, MA, USA). Following
membrane transfer, incubation in a blocking buffer (5% nonfat dry milk in 25 mM Tris,
pH 7.4, 3.0 mM KCl, 140 mM NaCl, and 0.05% Tween 20 (TBST)) for 1 h at room temperature
was performed. Membranes were then incubated overnight at 4 ◦C with MCT2 polyclonal
antibody from Bioss Antibodies Inc (# bs-3995R, Woburn, MA, USA. Membranes were
washed with TBS-T, and incubated with horseradish peroxidase linked, conjugated β-
Actin (Cat# 7074, RRID:AB_2099233, Cell Signaling Technology, Danvers, MA, USA) for
1 h at room temperature. Immunoreactive bands were visualized using an enhanced
chemiluminescence detection system (Chemidoc XRS+; Bio-Rad, Hercules, CA, USA).

4.6. Transmission Electron Microscopy and Mitochondrial Dysfunction

Tumor tissues were dissected and processed by transmission electron microscopy
(TEM). Tissues were fixed in 2% paraformaldehyde, 2% glutaraldehyde in 100 mM sodium
cacodylate buffer pH = 7.35. Next, the fixed tissues were rinsed with 100 mM sodium
cacodylate buffer, pH 7.35 containing 130 mM sucrose. Secondary fixation was performed
using 1% osmium tetroxide (Ted Pella, Inc. Redding, CA, USA) in a cacodylate buffer using
a Pelco Biowave (Ted Pella, Inc. Redding, CA, USA) operated at 100 Watts for 1 min. Speci-
mens were next incubated at 4 ◦C for 1 h, then rinsed with a cacodylate buffer and further
with distilled water. En bloc staining was performed using 1% aqueous uranyl acetate
and incubated at 4 ◦C overnight, then rinsed with distilled water. A graded dehydration
series was performed using ethanol at 4 ◦C, transitioned into acetone, and dehydrated
tissues were then infiltrated with Epon resin for 24 h at room temperature and polymerized
at 60 ◦C overnight. Sections were cut to a thickness of 85 nm using an ultramicrotome
(Ultracut UCT, Leica Microsystems, Wetzlar, Germany) and a diamond knife (Diatome,
Hatfield, PA, USA). Images were acquired with a JEOL JEM 1400 transmission electron
microscope (JEOL, Peabody, MA, USA) at 80 kV on a Gatan Ultrascan 1000 CCD (Gatan,
Inc, Pleasanton, CA, USA). Unless otherwise indicated, all reagents were purchased from
Electron Microscopy Sciences and all specimen preparations were performed at the Electron
Microscopy Core Facility, University of Missouri.

4.7. Lactate Measurement

The tumors were weighted and homogenized in PBS and adjusted to yield the same
concentration of tissue in each sample. Samples were then centrifuged at 13,000× g
for 10 min, the supernatants were collected, and the protein contents were measured.
Lactate quantifications were performed at room temperature with the Lactate Assay Kit
(BioVision, K607-100, Milpitas, CA, USA) following the manufacturer’s protocol. Lactate
concentrations were normalized with the protein concentration levels in each sample.

4.8. Isolation Tumor Macrophage

Subcutaneous tumors were dissected from KO and CO mice and tumors were trans-
ferred into cold 0.1% BSA in an RPMI medium (Life Technologies, Grand Island, NY, USA).
Tumors were minced into small pieces and digested with 2 mg/mL collagenase type 4
in 0.1% BSA in RPMI medium (1 g tumor/10 mL medium). The tumors were further at
incubated at 37 ◦C with gentle shaking for 45 min. The tumor cells were filtered through a
70 µm strainer and centrifuged at 2000× g for 5 min. The cells were washed twice with full
medium (RPMI1640 with 10% FBS) and were suspended at a concentration of 1 × 108/mL
in RPMI1640. D11b+ cell from cell suspension was isolated according to the manufacturer
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protocol of EasySep Mouse CD11b Positive Selection Kit II (STEMCELL, # 18970, Vancouver,
BC, Canada).

4.9. RNA-seq Analysis of Tumor Macrophages

Tumor-associated macrophages (TAMs) were purified from digested tumors by CD11b-
PE magnetic labelling (EasySepTMMouse CD11b Positive Selection Kit, StemCell Tech-
nologies, Vancouver, BC, Canada) following the manufacturer’s protocol. The total RNAs
were isolated from the TAMs from both KO and CO mice using the RNeasy Tissue Mini Kit
(Qiagen, Valencia, CA, USA), as described [69]. The total RNA quality and integrity were
assessed using the Eukaryote Total RNA Nano 6000 LabChip assay (Agilent Technologies,
Santa Clara, CA, USA) on an Agilent 2100 Bioanalyzer. The total RNA samples were
quantified by measuring A260 nm on a UV/VIS spectrophotometer (ND-1000, NanoDrop
Technologies, Wilmington, DE, USA). Poly-A enriched mRNASeq libraries were prepared
following Illumina’s TruSeq Stranded mRNA LT library preparation protocol (Illumina
Inc., San Diego, CA, USA) using 1 µg of total RNA. The cDNA sequencing libraries were
generated from poly-A selected RNA using a TrueSeq library preparation kit (Illumina,
Inc., San Diego, CA, USA). All of the sequencing was performed on an Illumina HiSeq 2500
(Illumina, Inc., San Diego, CA, USA).

The raw RNA-seq data were analyzed using the FastQ Screen Trimmomatic to re-
move the adaptor and low-quality sequences, and the filtered reads were mapped to
GRCm38 with HISAT2 [70]. The expression level of each gene was quantified as FPKM
https://toppgene.cchmc.org/ (fragments per kilobase of exon per million mapped frag-
ments, accessed on 5 May 2021) and counts, and the DESeq2 algorithm (http://cole-
trapnell-lab.github.io/cufflinks/install/, accessed on 8 June 2021) was applied to filter
the different expression genes (DEGs). The significance of the differentially expressed
genes was identified based on the adjusted raw p-values to a false discovery rate (FDR) of
<0.05 and fold changes (log2 FC > 1). Gene ontology (GO, http://www.geneontology.org/
(accessed on 16 April 2021)) and Kyoto encyclopedia of genes and genomes (KEGG,
http://www.genome.jp/kegg/analyses (accessed on 13 March 2021)) were explored to
evaluate the biological function of the DEGs [71].

4.10. Functional Enrichment Analysis of DEGs

Gene set enrichment analysis (GSEA) was used to rank all of the genes in the dataset
based on differential expression. A total of 1000 permutations were performed to estimate the
empirical p-values for the gene sets. Details of GSEA can be found in Subramanian et al. [72].
For understanding the biological processes and pathways in which the DEGs are involved,
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment
analyses were performed on the DAVID database. The construction and analysis of the
protein−protein interaction (PPI) network was performed using the STRING database
(http://www.string-db.org/, accessed on 22 June 2021) for a network of DEGs with high
confidence (confidence score > 0.70).

4.11. DNA Extraction

Feces from MCT2 KOKO and CO mice underwent DNA extraction using PowerFecal
kits (Qiagen) according to the manufacturer’s instructions, with the exception that samples
were homogenized in the provided bead tubes using a TissueLyser II (Qiagen, Venlo, The
Netherlands) for three minutes at 30 s, rather than performing the initial homogenization
of samples using the vortex adapter described in the protocol. Samples were then eluted in
100 µL of elution buffer (Qiagen). DNA yields were quantified via fluorometry (Qubit 2.0,
Invitrogen, Carlsbad, CA, USA) using quant-iT BR dsDNA reagent kits (Invitrogen) and
normalized to a uniform concentration and volume.

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
http://cole-trapnell-lab.github.io/cufflinks/install/
http://cole-trapnell-lab.github.io/cufflinks/install/
http://www.geneontology.org/
http://www.genome.jp/kegg/analyses
http://www.genome.jp/kegg/analyses
http://www.string-db.org/
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4.12. 16S rRNA Library Preparation and Sequencing

Extracted fecal DNA was processed at the University of Missouri DNA Core Facility.
Bacterial 16S rRNA amplicons were constructed via amplification of the V4 region of the
16S rRNA gene with universal primers (U515F/806R) previously developed against the V4
region, flanked by Illumina standard adapter sequences [73,74]. Oligonucleotide sequences
are available at proBase [75]. Dual-indexed forward and reverse primers were used in all
reactions. PCR was performed in 50 µL reactions containing 100 ng metagenomic DNA,
primers (0.2 µM each), dNTPs (200 µM each), and Phusion high-fidelity DNA polymerase
(1U, Thermo Fisher). Amplification parameters were 98 ◦C(3 min) + [98 ◦C(15 s) + 50 ◦C(3 s)

+ 72 ◦C(3 s)] × 25 cycles + 72 ◦C(7 min). Amplicon pools (5 µL/reaction) were combined,
thoroughly mixed, and then purified by the addition of Axygen Axyprep MagPCR clean-
up beads to an equal volume of 50 µL of amplicons and incubated for 15 min at room
temperature. The products were then washed multiple times with 80% ethanol and the
dried pellet was resuspended in 32.5 µL EB buffer (Qiagen), incubated for 2 min at room
temperature, and then placed on the magnetic stand for 5 min. The final amplicon pool was
evaluated using the Advanced Analytical Fragment Analyzer automated electrophoresis
system, quantified using quant-iT HS dsDNA reagent kits, and diluted according to
Illumina’s standard protocol for sequencing on the MiSeq instrument.

4.13. Informatics Analysis

DNA sequences were assembled and annotated at the MU Informatics Research Core
Facility. Primers were designed to match the 5′ ends of the forward and reverse reads.
Cutadapt [76] (version 2.6; https://github.com/marcelm/cutadapt, accessed on 6 January
2021) was used to remove the primer from the 5′ end of the forward read. If found, the
reverse complement of the primer to the reverse read was then removed from the forward
read, as were all bases downstream. Thus, a forward read could be trimmed at both ends
if the insert was shorter than the amplicon length. The same approach was used on the
reverse read, but with the primers in the opposite roles. Read pairs were rejected if one
read or the other did not match a 5′ primer, and an error-rate of 0.1 was allowed. Two
passes were made over each read to ensure removal of the second primer. A minimal
overlap of three bp with the 3′ end of the primer sequence was required for removal.

The QIIME2 [77] DADA2 [78] plugin (version 1.10.0) was used to denoise, de-replicate,
and count ASVs (amplicon sequence variants), incorporating the following parameters:
(1) forward and reverse reads were truncated to 150 bases, (2) forward and reverse reads
with number of expected errors higher than 2.0 were discarded, and (3) Chimeras were
detected using the “consensus” method and removed. R version 3.5.1 and Biom ver-
sion 2.1.7 were used in QIIME2. Taxonomies were assigned to final sequences using the
Silva.v132 [79] database, using the Classify-sklearn procedure.

The raw data were deposited in NIH with submission ID: SUB9574437, and BioPro-
ject ID: PRJNA726916. https://www.ncbi.nlm.nih.gov/bioproject/726916, accessed on
5 January 2021.

4.14. Metabolomic Profiling

For fecal metabolomics, 10 mg of each fecal sample was used and 1.0 mL of 80%
methanol containing 18 µg/mL of umbelliferone (Sigma-Milipore, St. Louis, MO, USA)
was added followed by sonication, and was then vortexed for 20 s each. The samples were
then shaken in an orbital shaker for 2 h at 140 rpm and centrifuged at 3000× g for 40 min.

For plasma metabolomics, 100 µL of each plasm sample were used, and 1.0 mL of
80% methanol containing 18 µg/mL of umbelliferone and 0.1% formic acid were added,
followed by sonication and were then vortex for 20 s each. Samples were then shaken in an
orbital shaker for 2 h at 140 rpm and centrifuged at 3000× g for 40 min.

Supernatant of 0.5 mL was transferred to an autosampler vial and dried under nitro-
gen followed by reconstitution in 100 µL for the LCMS analysis. LCMS data were acquired
using a waters aquity UHPLC system coupled with a Bruker Impact II QTOF mass spec-

https://github.com/marcelm/cutadapt
https://www.ncbi.nlm.nih.gov/bioproject/726916
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trometer. Data extraction and normalization were performed using Bruker’s Metaboscape
4.0 software and statistical analysis were conducted using MetaboAnalyst4 software.

To each of the remaining sample solutions, 1.5 mL of CHCl3 containing 10 µL/mL of
docosanol was added, then sonicated and vortexed for 20 s each followed by incubation at
50 ◦C for 1 h. Then, 1 mL of HPLC grade water containing 25 µg/mL of ribitol was added
to each sample, sonicated, and vortexed for 20 s each and incubated for 1 h at 50 ◦C. Sample
tubes were centrifuged at 3000× g for 40 min and allowed to stand for 5 min. Then, 1 mL
solution from the upper layer non-polar GCMS analysis and another 1 mL solution from
the bottom layer for polar GCMS analysis were transferred to two separate autosampler
vials. One pooled sample was prepared each for polar and non-polar GCMS by combining
10 µL of solution drawn from each sample. All of the solutions in the autosampler vials
were dried using a gaseous nitrogen stream.

For polar GC−MS analysis, dried samples were methoximated in pyridine with
50 µL of 15 mg/mL methoxyamine hydrochloride, and then trimethylsilylated with 50 µL
MSTFA (N-methyl-N-(trimethyl-silyl)trifluoroacetamide) + 1%TMCS (chlorotrimethylsi-
lane) reagent. Samples for non-polar GCMS analysis were reconstituted in 50 µL of pyridine
followed by trimethylsilylation with 50 µL of MSTFA + 1% TMCS. The derivatized extracts
were then analyzed for non-targeted metabolic profiling using an Agilent 6890 GC cou-
pled to a 5973 N MSD mass spectrometer with a scan range from m/z 50 to 650 (Agilent
Technologies, Inc., Santa Clara, CA, USA). Then, 1 µL of sample was injected into the GC
column with a split ratio of 1:5 for polar GCMS and 1:1 for non-polar GCMS analysis.
Separation was achieved with a temperature program of 80 ◦C for 2 min, then ramped at
5 ◦C/min to 315 ◦C and held at 315 ◦C for 12 min, a 60 m DB-5MS column (J&W Scientific,
0.25 mm ID, 0.25 µm film thickness) and a constant flow of 1.0 mL/min of helium gas. A
standard alkane mix was used for GCMS quality control and retention index calculations.
The data from the pooled sample were deconvoluted using AMDIS and annotated through
mass spectral and retention index matching to an in-house constructed spectra library.
The unidentified components were then searched and identified using spectral matching
to a commercial NIST17 mass spectral library. The combined identifications were saved
as an. ELU file, and the abundance of the ions in all the other samples were extracted
using custom MET-IDEA software. The abundances were then normalized to the internal
standard, ribitol, and the normalized values were used for statistical comparisons using
Metaboanalyst4 software.

The supernatant (0.5 mL) was transferred to an autosampler vial for liquid
chromatography−mass spectrometry (LC−MS) analysis, wherein data were acquired
using a Waters Aquity UHPLC system coupled with a Bruker Impact II QTOF mass
spectrometer. Data extraction and normalization were performed using Bruker’s Meta-
boscape 4.0 software and statistical analysis (https://www.bruker.com/products/mass-
spectrometry-and-separations/ms-software/metaboscape.html, accessed on 12 Febru-
ary 2021) and MetaboAnalyst4 software (https://www.metaboanalyst.ca/, accessed on
6 February 2021). To each of the remaining sample solutions, 1.5 mL of CHCl3 containing
10 µL/mL of docosanol was added, then sonicated and vortexed for 20 s each followed by
incubation at 50 ◦C for 1 h. One mL of HPLC grade water containing 25 µg/mL of ribitol
was added to each sample, sonicated and vortexed for 20 s each, and incubated for 1 h
at 50 ◦C. The sample tubes were centrifuged at 3000× g for 40 min and allowed to stand
for 5 min. The upper layer non-polar (1 mL) for gas chromatography−mass spectrometry
(GC−MS) non-polar analysis, and another 1ml solution from the bottom layer for the polar
GC−MS analysis were transferred to two separate autosampler vials. One pooled sample
was prepared each for polar and non-polar GC−MS by combining 10 µL of solution drawn
from each sample. All the solutions were dried in autosampler vials using gaseous nitrogen
stream. Dried samples for polar GC−MS analysis were methoximated in pyridine with
50 µL of 15 mg/mL methoxyamine hydrochloride, and then trimethylsilylated with 50 µL
MSTFA (N-methyl-N-(trimethyl-silyl) trifluoroacetamide) + 1% TMCS (chlorotrimethylsi-
lane) reagent. The samples for non-polar GC−MS analysis were reconstituted in 50 µL of

https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/metaboscape.html
https://www.bruker.com/products/mass-spectrometry-and-separations/ms-software/metaboscape.html
https://www.metaboanalyst.ca/
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pyridine followed by trimethylsilylation with 50 µL of MSTFA + 1% TMCS. The derivatized
extracts were then analyzed for non-targeted metabolic profiling using an Agilent 6890
GC coupled to a 5973 N MSD mass spectrometer with a scan range from m/z 50 to 650
(Agilent Technologies, Inc., Santa Clara, CA, USA). Then, 1 µL of sample was injected into
the GC column with a split ratio of 1:5 for polar GC−MS and 1:1 for non-polar GC−MS
analysis. Separation was achieved with a temperature program of 80 ◦C for 2 min, then
ramped at 5 ◦C/min to 315 ◦C and held at 315 ◦C for 12 min, a 60 m DB-5MS column (J&W
Scientific, 0.25 mm ID, 0.25 µm film thickness) and a constant flow of 1.0 mL/min of helium
gas. A standard alkane mix was used for the GC−MS quality control and retention index
calculations. The data from the pooled sample were deconvoluted using AMDIS and were
annotated through mass spectral and retention index matching to an in-house constructed
spectra library. The unidentified components were then searched and identified using
spectral matching to a commercial NIST17 mass spectral library. For the non-targeted ultra-
high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS),
characterization of fecal samples was performed as described in [80–82]. For the UHPLC
methods, samples were shaken in an orbital shaker for 2 h at 140 rpm and centrifuged at
3000× g for 40 min, and 0.5 mL of the supernatant was transferred to an autosampler vial
for LCMS analysis wherein the data were acquired using a waters acquity UHPLC system
coupled with a Bruker Impact II QTOF mass spectrometer. The combined identifications
were saved as an ELU file, and the abundance of the ions in all the other samples were
extracted using custom MET-IDEA software. The abundances were then normalized to the
internal standard, ribitol, and the normalized values were used for statistical comparisons
using Metaboanalyst4 software.

4.15. Statistical Analysis

Differences in OTU relative abundance between KO and CO samples were determined
using Student’s t-test. The significance of the differences between the means of the groups
was compared by ANOVA using the Statistical Package (version 21.0, SPSS Inc., Chicago, IL,
USA). Two-way ANOVA with the Student Newman−Keuls post-hoc method was used to
assess differences in MCT2 groups, where p < 0.05 was considered statistically significant.
Data show the mean of independent biological experiments with the standard deviation
(± SD), unless otherwise indicated. Multivariate statistical analyses such as ANOVA,
box plots, and Volcano plots were performed with the MetaboAnalyst 3.0 program after
data pre-treatments, i.e., normalization to the sum, log transformation, and Pareto scaling.
Changes in metabolite abundances were considered statistically significant at p < 0.05. To
account for quantitative and qualitative community differences between groups, statistical
testing for β-diversity was performed via a two-way PERMANOVA analysis of both
Bray−Curtis and Jaccard dissimilarities for bacterial OTU community structure.
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