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Abstract

Background: Aging population will lead to the increase of incidence of root caries globally. The clinical management
of root caries is challenging due to the difficulty in moisture isolation. The root caries is caused by the release of
organic acids from cariogenic bacteria which results in the dissolution of cementum and dentin of the root. The
purpose of this study is to study the efficacy of modified saturated calcium phosphate solution (CaP) supplement with
zinc (Zn?*) and/or fluoride (F) in providing root cementum surfaces less susceptible to acid dissolution and bacterial

colonization.

Methods: Human root cementum sections from extracted premolars were treated with three modified calcium
phosphate solutions (M/A-CaPs) respectively: (A) CaP-F/Zn, supplemented with F~ and Zn?"; (B) CaP-F, supplemented
with F only; (C) CaP-Zn, supplemented with Zn?* only. The surface characteristics of treated cementum sections were
investigated using scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR). Following
the acid attack and Streptococcus mutans challenge, M/A-CaPs treated cementum surfaces were analysed using

inductive coupled plasma (ICP) and SEM respectively.

Results: Compared with the control group, M/A-CaPs treated cementum presented significant improvements in
resistance to acid dissolution and bacterial colonization. Among M/A-CaPs, the CaP-F/Zn treated cementum surfaces
released the lowest amount of Ca®* ions (2.11 +0.51 ppm) upon acid challenge (n =3, p < 0.07) and also presented the
most significant inhibiting effect against the colonization of S. mutans (n =180, p < 0.05).

Conclusions: Saturated calcium phosphate solution CaP supplemented with both F"and Zn”* could be applied as an
effective coating material providing acid resistance and antibacterial property on cementum surfaces. The modified
calcium phosphate-based solution could be a new treatment strategy to prevent the development of root caries and

arrest the further progression of root caries.
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Background

Owing to the growing population of elderly people
worldwide, root caries is becoming an urgent issue in
geriatric dentistry [1, 2]. As one of the major causes of
tooth loss in elderly, the prevalence of root caries has
been revealed nearly half in the aging population by the
recent studies [3, 4]. Du M et al. reported that the root
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surface caries prevalence rates were 13.1 % in the
middle-aged group and 43.9 % in the elderly group.
Prevalence increased with aging, such that by age 75 and
over, over 50 % had one or more root surface lesions [5].
Compared with coronal caries, the clinical management
of root caries is more challenging with respect to the
limited accessibility and difficulty in tooth isolation.
Root caries differs from coronal caries primarily due to
different tissue compositions forming the outer layer of
the root. Coronal caries primarily begins in enamel, a
highly mineralised tooth structure with 96 % mineral.
Root caries, however, involves the less mineralised tissue,
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cementum, which contains only 50 % mineral. The nat-
ural root surface is covered by a cementum layer of
varying thickness. Similar to enamel, the cementum
could function as a barrier against the diffusion of the
mineral ions out of the lesion and provide initial caries
resistance for the root surface [6]. However, the cemen-
tum is a thinner layer of less mineralised tissue with
considerably varied thickness, especially the cervical
third with only 16-60 pm thickness. It is susceptible to
routine oral prophylaxis and periodontal treatments
such as scaling and root planning where the cementum
can be easily disintegrated or removed at the cementoe-
namel junction level even down to the coronal third of
the root. Due to traumatic tooth brushing, periodontal
diseases [7, 8], bleaching, and orthodontic movement of
teeth [9], gingival recessions were found in more than
60 % of the younger population (<20 years) and more
than 90 % of the older population (>50 years). It causes
the early exposure of cementum on the root surface
which increases susceptibility to root caries [10, 11].

The clinical features and locations of root caries cause
technical difficulties in early diagnosis and treatment.
Hence, more efforts should be made on the prevention
and early management of this disease. Among the
mineralised tissues, fluoride concentration of cementum
is the greatest and it increases with age [12, 13] or with
F exposure [14, 15]. Intact cementum layer has intrinsic
ability to protect the underlying dentin against acidic de-
mineralisation via ions uptakes from the surroundings
and accumulating fluoride [16]. However, fluoride is not
generally bactericidal which cannot effectively inhibit the
growth of many cariogenic pathogens such as lactoba-
cilli, actinomyces spp, and streptococci [17]. Our previous
results have shown the successful colonization of
Streptococcus mutans on the dentin surfaces treated with
experimental mineralising solution containing F~ or F
bound dentin surfaces [18].

In our previous studies, modified calcium phosphate
solution (M/A-CaPs) containing both F~ and Zn** was
found to be effective in the mineralisation of dentin sur-
faces, occluding dentin tubules [19], and providing anti-
bacterial property especially at acidic pH condition [18].
The presence of F~ alone increased the mineralising effi-
ciency of CaP solution and inhibited dentin dissolution
by the formation of fluoridated hydroxyapatite. Zinc salt
has been demonstrated to provide antibacterial property,
inhibit plaque formation, and prevent gingival inflamma-
tion [20-22]. To overcome the limited antimicrobial ac-
tivity of fluoride, in addition to F, Zn>* element was
also supplemented in our experimental CaP solution.
Till now, there are limited options of dentifrices and
agents can effectively bind to the cementum, to form a
coating layer which is resistant to acidic dissolution and
bacterial colonization [23]. In this study, we compared
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the coating efficacy of M/A-CaPs with or without F™ and
Zn** on the cementum remineralisation. This study
would provide a new strategy to prevent the initiation of
root caries especially in the susceptible population
groups such as elderly people and patients suffering
from gingival recession.

Methods

Preparation of cementum samples

The sound human premolars extracted for orthodontics
reasons were collected from Guanghua School of
Stomatology Sun Yan-sen University (age range, from 16
to 22), and patients suffering from periodontal diseases
were not considered. After extraction, teeth were imme-
diately stored in saline, followed by being sterilized by
gamma radiation, and stored in saline (The study design,
sampling method and written consent forms were ap-
proved by The Human Research Ethics Committee of
Guanghua School of Stomatology, Sun Yat-sen University.
All participants provided the consents before their partici-
pation in this project.). Periodontal ligament fibers were
removed carefully from root surfaces under dissecting
microscope with a sharp Gracey curette. Root surficial
cementum was kept intact [24—26].

Following debridement and brushing with fluoride-
free prophylactic paste, the crowns and lower half roots
were removed using a water-cooled diamond-bladed saw
(Series 15 HC Diamond, N 11-4244, Buehler, USA), to
prepare upper root sections with dimensions of 6 mm x
6 mm x 2 mm. After sonication for 10 min to remove
the polishing abrasive particles, the specimens were
rinsed with double distilled water (DDW) and dried with
compressed air.

Preparation of M/A-CaP solutions
Calcium deficient apatites (SH874) was prepared by mix-
ing 10 mM calcium hydroxide (Ca(OH),) and 6 mM an-
hydrous monobasic sodium phosphate (NaH,PO,) in
100 ml DDW at 90 °C, 2 h, according to the reaction
below:

10 Ca(OH), + 6NaH,PO, — (Ca,Na);o(PO4LHPO,)s(OH),

The precipitate was filtered and collected, washed with
DDW three times, dried in the oven at 70 °C and char-
acterized using X-ray diffraction (Philips X’ pert X-ray
diffractometer). The M/A-CaP solutions were prepared
from mixtures of SH874, NaF, and/or ZnCl, as detailed
in Table 1 (patent application submitted).

Table 1 Ingredients of each 100 ml M/A-CaP solutions

Solutions  SHgz, (mMM)  NaF (mM)  ZnCl, (mM)  4.25 % H5PO, (ml)
CaP-F/zn 10 2 2 10
CaP-F 10 2 0 10
CaP-Zn 10 0 2 10
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Solutions A (CaP-F/Zn), B (CaP-F), and C (CaP-Zn)
were adjusted to pH 5.5 using sodium hydroxide. The
Ca%*, PO,*, and Zn*' ion concentrations of the fil-
trates were determined by inductive coupled plasma
(ICP, Thermo Jarrell Ash Model-Trace Scan Inductive
Coupled Plasma, Waltham, MA) and the F™ ion concen-
tration was measured by fluoride tracer (Orion, 940900).

Treatment of the cementum samples
Sections were randomly distributed into treated groups
and control group. The cementum sections were
immersed with shaking (60/min) in CaP-F/Zn, CaP-F,
CaP-Zn solutions or DDW for 4 min, then rinsed in
DDW and dried with compressed air.

Determination of physiochemical properties

The coatings on cementum surfaces were characterized
using scanning electron microscopy (SEM) (JEOL JSM-
5400; JEOL USA, Inc., Peabody, MA; and Hitachi S-
3500 N; Hitachi, Ltd., Tokyo, Japan) and fourier
transform infrared spectroscopy (FT-IR) (Nicolet 550;
France). For the SEM analysis, the cementum sections
were mounted onto aluminium stubs and sputter coated
with gold. SEM images were taken under the same mag-
nification and working distance. Of six sections in each
group, ten images were selected randomly on each sec-
tion and six of these SEM images were captured. This
experiment was independently repeated three times. For
the FT-IR analysis, the apatite powder pellet was pre-
pared by mixing 1 mg of the powdered material scraped
from the treated cementum surfaces with 250 mg KBr
(IR grade) and pressing at 10,000 psi using a hydraulic
press (Carver laboratory press, mode C, Ser.No.33000-
577, Fred S. Carver INC). The FT-IR scan covered the
range from 4000 cm™ to 400 cm'. Assignment of
absorption bands were determined according to earlier
study on carbonate apatites and standard calcium phos-
phates [27].

Dissolution of the coating was determined by moni-
toring the release of calcium ions from M/A-CaPs
pre-treated cementum surfaces in weak acidic buffer
(0.1 M KAc, pH 6, 37 °C) over time using ICP. This
experiment was carried out after applying nail varnish
on all parts of cementum sections except a circular
area (diameter, 5 mm).

Determination of anti-bacterial property

Streptococcus mutans strain ATCC 25175 was used to
evaluate the effect of the coating on bacterial
colonization on cementum surface. The bacteria from a
brain heart infusion agar plate were inoculated into
200 ml brain heart infusion broth (OXOID) and incu-
bated at 37 °C overnight. The M/A-CaPs pre-treated ce-
mentum sections were divided into 4 groups according
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to the treatment (18 sections/group) and put into 24-
well plates. The bacterial cells were collected and ad-
justed to ODggg of 0.30 and 2 ml of bacterial culture for
each well were applied to challenge the cementum. The
specimens were then incubated at 37 °C in an anaerobic
atmosphere. In order to ensure the specimens to be
challenged by bacteria from the same growth phase, the
culture was changed every 2 h. Every three cementum
sections in each group were then taken out from wells at
6, 12, and 24 h and washed with phosphate-buffered sa-
line (PBS) to remove the unbound bacterial cells.

Cementum samples were fixed in Trump’s fixative
(VWR, Inc.) for 1 h and then rinsed with PBS, post-fixed
for 1 h in 2 % Osmium Tetroxide (OsQO,), rinsed with
PBS then dehydrated in ethanol, and dried in vacuum
desiccators. The specimens were viewed and six images
of each sample were randomly captured by SEM under
the 2000 x magnification. A Bioquant Nova Advanced
Image Analysis apparatus (200 R&M Biometrics, Inc.)
was used to count the number of bacteria on cementum
surface.

Statistical analysis

All data were assessed by SPSS15.0 using one-way
analysis of variance (ANOVA) followed by Student-
Newman-Keuls or Dunnett’s T3 post hoc with a =0.01.
If no significant difference was obtained, data were ana-
lysed again with a =0.05.

Results

Solution composition

Chemical analyses showed three solutions maintaining
relatively constant calcium and phosphorus levels. The
fluoride concentration is constant between CaP-F/Zn
and CaP-F. Similarly, the zinc concentration is constant
between CaP-F/Zn and CaP-Zn (Table 2).

Physicochemical properties of treated cementum surfaces
As shown in Fig. 1, the cementum sections treated with
M/A-CaP solutions presented different amounts and
various morphologies of crystal deposits on the surfaces.
Cementum surfaces treated with CaP-F/Zn (Fig. 1a) and
CaP-F (Fig. 1b) were shown to be coated by compact
and homogenous fine crystal precipitates. In contrast, a

Table 2 Chemical compositions (in ppm) of the 3 solutions with
relatively constant Ca and P but varying F and Zn concentrations

Solutions F (ppm) Ca (ppm) P (ppm) Zn (ppm)
CaP-F/Zn 2721426 486+54 1025+33 141+£05
CaP-F 2741+£18 506+73 1108+27 0"

CaP-Zn 0" 526+3.1 1050+ 6.1 152+07

Element concentrations (F, Ca, P, Zn) were compared among solutions.
* p<0.05 n=3
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treated cementum

.

Fig. 1 Representative SEM images of cementum: (a) CaP-F/Zn; (b) CaP-F; (c) CaP-Zn; (d) DDW. Cementum treated with CaP-F/Zn showed the
greatest amount of crystal deposition followed by groups treated with either CaP-F or CaP-Zn. No crystal deposition was observed on DDW

loose crystal layer with heterogeneous precipitates was
observed on the cementum surfaces treated with CaP-
Zn (Fig. 1c). Notably, most of cementum cracks were
filled effectively by crystal precipitates formed in CaP-F/
Zn and CaP-F groups, although large cracks still could
be visualised under low magnification (data not shown).
The amount of crystals deposited on cementum surfaces
appeared to be dependent on the composition of miner-
alising solutions. No crystal deposition was observed on
cementum surfaces of negative control group treated
with DDW (Fig. 1d).

In this study, FT- IR was applied to further explore the
chemical features of treated cementum surfaces with
coated layers. As shown in Fig. 2, F* and Zn>* doped
apatite (CaP-F/Zn) or F alone doped apatite (CaP-F)
treated cementum induced a slight rise in the resolution
of the PO, absorption band (v3 P-O) at 1102, 1065,
1027 cm™, which indicates an increase in crystal size
and crystal perfection of the fluoride containing apatite
on the treated cementum surfaces.

To prevent or halt the pathophysiological process of
caries, the coating layers on the cementum would be

preferred to possess the acid resistance properties. Thus
in this study, dissolution experiments were carried out
by measuring the released calcium from coated cemen-
tum surfaces during the acid attack using inductively
coupled plasma (ICP) mass spectrometry. As shown in
Fig. 3, the amount of Ca®* ions released from cementum
sections treated by CaP-F/Zn was the least after 1 h
immersion in the acidic buffer (0.1 M KAc, pH 6, 37 °C).
Compared with the DDW treated group, cementum sur-
faces treated by CaP-F or CaP-Zn released significant
less Ca>* ions (p < 0.01). There was no statistical signifi-
cant difference between CaP-F and CaP-Zn with regards
to the released calcium level (p>0.05). To be more
specific, the total amount of Ca®* ions liberated from
treated cementum surfaces during the acidic attack was
determined using ICP (Table 3). The CaP-F/Zn treated
surfaces had the lowest amount of liberated Ca®* ions
(2.11 + 0.51 ppm) which was almost half of the Ca®* ions
liberated from DDW control group (3.84 +0.17 ppm).
The cementum surfaces treated by CaP-F and CaP-Zn
liberated similar amount of Ca®* ions responding to the
acidic attack with 3.01 +0.35 ppm and 3.26 + 0.31 ppm
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Fig. 2 FT- IR absorption spectra of cementum: (A) CaP-F/Zn; (B) CaP-F; (C) CaP-Zn; (D) DDW. Note the spectra between 1300 cm™ and 500 cm’”’
showing greater resolution of PO, absorption bands (at 1102 cm™, 1065 cm™!, 1027 cm™) in the spectra of materials scraped from cementum
surface treated with CaP-F/Zn and CaP-F
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Fig. 3 Comparative extent of Ca”" ions released from cementum surfaces in acidic buffer: (A) CaP-F/Zn; (B) CaP-F; (C) CaP-Zn; (D) DDW. The
amount of Ca** ions released in 60 min with acidic buffer challenge was the highest in the control group, and the lowest in CaP-F/Zn treated
cementum group. *No significant difference was observed in the extent of Ca’* ions released between cementum surfaces treated with CaP-F
and CaP-Zn (p > 0.05, n=3)
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Table 3 The amount of Ca®" ions released from cementum
surfaces after 66.7 min in acidic buffer

Groups The amount of Ca’* released after 66.7 min (ppm)
A 2.11+051

B 30140357

C 326+0317

D 384017 #0

Group A, B, C or D treated with solutions CaP-F/Zn, CaP-F, CaP-Zn or DDW
respectively. Compared with A, ** p < 0.01; compared with B, * p <0.01;
compared with C, ** p<0.01.n=3

respectively. It indicated that CaP-F/Zn provided the
most durable cementum coating surfaces regarding the
dissolution and acidic resistance over time.

Resistance against cariogenic bacterial colonization

Colonization of material surfaces by cariogenic bacteria
is a causal event which produces acid, initiates the tooth
structure demineralisation, and eventually leads to caries
cavitation. Hence, bacterial adherence and growth on
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M/A-CaPs treated surfaces were investigated using SEM
to evaluate the resistance against cariogenic S. mutans
colonization. As shown in Fig. 4, there was no significant
increase of S. mutans population on CaP-F/Zn treated
cementum from 6 to 24 h. In contrast, a dramatic prolif-
eration of the bacterial population was observed on the
cementum surfaces treated by DDW. Similar findings
were also noticed on the CaP-F and CaP-Zn treated ce-
mentum surfaces (data not shown). To further quantify
the bacterial colonization on various treated surfaces,
the bacterial cell numbers were counted in defined re-
gions of interest (ROIs) under SEM. As illustrated in
Fig. 5, there was no significant difference between CaP-F
and DDW treated groups at the 6 h and between CaP-F
and CaP-Zn treated groups at 12 h or 24 h time points
regarding the mean number of bacteria colonizing the
cementum surfaces. However, the number of the bac-
teria colonized on CaP-F/Zn, CaP-F or CaP-Zn treated
cementum surfaces was significantly less than DDW
control group at 3 different time points. This may be

CaP-F/Zn-6h

CaP-F/Zn-12h

n

6,12 and 24 h

Fig. 4 Representative SEM images of bacterial colonization on CaP-F/Zn or DDW treated cementum surfaces after Streptococcus mutans culturing

Qum
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Fig. 5 The mean number of Streptococcus mutans ATCC 25175 colonized on cementum surfaces were determined by average bacterial cells in
ten randomly selected fields from each section (six sections in each group) and six SEM images for each section were captured. This experiment
was independently repeated three times [41]. (A) CaP-F/Zn; (B) CaP-F; (C) CaP-Zn; (D) DDW (**p < 0.01; ”#p <001; **p<001)

explained by the fact that M/A-CaPs coating layers on
the treated cementum surfaces release bacteriostatic
and/or bactericidal ions such as Zn>* and F, thus inhi-
biting S. mutans growing on the M/A-CaPs treated
cumentum surfaces. Among the three M/A-CaPs, the
CaP-F/Zn treated cementum surfaces showed the best
inhibiting effect against the colonization of S. mutans
which indicated that the Zn>* and F~ could have synergic
effect.

Discussion
Cementum is a calcified avascular mesenchymal tissue
that covers the dentine and forms the outer layer of the
anatomic root. There are two classes of cementum: Cel-
lular cementum which contains cementocytes within the
matrix and is mainly found in the apical area overlying
the root; acellular cementum which is the one without
any cells in its matrix and is located in the cervical and
middle third of the root regions. Clinically, gingival re-
cession and root surface exposure leads to the exposure
of acellular cementum which predisposes the tooth to
the development of root caries. In this study, only the
mineralised ground acellular cementum was examined.
Treatment of cementum sections with three M/A-CaP
solutions resulted in (a) deposition of a crystal precipitates
coating layer on the cementum surface, (b) increasing re-
sistance against acid dissolution, and (c) minimizing bac-
terial colonization. These effects were demonstrated to be
dependent on the supplementation of F~ and/or Zn** in
M/A-CaP solutions. In the presence of both F~ and Zn**
in CaP-F/Zn, the treated cementum presented an im-
proved performance in acid resistance and anti-bacterial
property. Although the CaP-F coated the cementum with

a similar smooth fine mineral precipitates layer to that of
CaP-F/Zn, CaP-F performed poorly in acid resistance and
bacterial inhibition. Notably, the CaP-Zn was not able
to form a homogeneous fine layer of crystal precipi-
tates whilst which could be seen on the cementum
surfaces treated by CaP-F/Zn or CaP-F. It could be
attributed to the larger crystalline formed in the presence
of Zn**leading to bulky crystal precipitates formation.

Under acidic condition with pH 5.5, the presence of F°
and Zn>* in the traditional CaP solutions significantly af-
fected the mineralisation status of cementum surfaces
[19]. The carbonate hydroxyapatite on the cementum
surface was partially dissolved to release Ca®*, Mg*",
HPO,*, and CO,* ions. These irons subsequently com-
bined with the Ca?*, Zn?*, HPO,?, and F ions which
were provided by the acid mineralising solutions, to
form fluorapatite and/or Zn-doped apatite apatitic.
Fluorapatite precipitates possessed lower solubility than
the original cementum minerals which had a higher
CO3* ion level and lower F ion level [28-30]. Similarly,
the formed Zn-doped apatite also presented a reduced
mineral solubility in acidic environment [22, 31]. One
limitation of the current study was that the durability of
the CaP-F/Zn precipitates on root surface was not deter-
mined. Future studies will be carried out to further
investigate the stability and wearability of CaP-F/Zn pre-
cipitates under strong acidic environment and mechan-
ical challenge.

The decrease in the prevalence and severity of dental
caries has been attributed to the widely application of
fluoride-containing dentifrices [32]. Although fluoride
could affect the cariogenic ability of Streptococcus mutans
by reducing carbohydrate metabolism and inhibiting
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certain enzymes activities, it has been demonstrated that
fluoride cannot effectively kill oral streptococci in the bio-
films [33-35]. Hence, other antimicrobial chemicals such
as Zn>" has been drawn a great deal of attention. Liber-
ated Zn>* ions can bind to essential metabolic enzymes in
bacteria to achieve the bactericidal or bacteriostatic effects
[36, 37]. Recently, McDevitt et al found that zinc bound
to the manganese transport protein in human pathogen
Streptococcus pneumoniae and inhibited the uptake of
essential nutrient manganese for this bacterium [38]. Pre-
vious studies also demonstrated that zinc phosphate
mineralised membranes effectively inhibited the Actinoba-
cillus actinomycetemcomitans ATCC 29522 to colonize on
root surface of the tooth [21]. In this study, we showed
that CaP-F/Zn coating layer was more effective in minim-
izing bacterial growth and colonization compared with
CaP-F or CaP-Zn. Liberated ions from CaP-F/Zn solution
promoted the formation of F~ substitution and/or Zn**
substitution apatite on the interface of coating layer and
cementum underneath. Given the similarity of chemical
components to human teeth hydroxyapatite, the M/A-
CaP crystal precipitates coating layer processes promising
biocompatibility. Furthermore, when bacteria attach on
the cementum surface treated with CaP-F/Zn, acid pro-
duced by bacteria can dissolve the F~ substitution and/or
Zn** substitution apatite leading to the release of F~ and
Zn**. The liberated F~ and Zn>* ions could act synergistic-
ally in inhibition of bacterial colonization on the treated
cementum surfaces. These results are in agreement with
previous reports which have demonstrated that the com-
bination of Zn** and F ions presented potential bacteri-
cidal effects [39, 40]. To further confirm the antimicrobial
properties of CaP-F/Zn solution, the viable cell counts of
adherent bacteria on cementum will be performed in fu-
ture study.

Conclusions

Clinically, different types of fluoride-containing agents
such as varnish, solution or dentifrices have been applied
to prevent and manage the root caries. The modified
CaP mineralising solution supplemented with Zn**and
F has been demonstrated to be able to form an acid re-
sistance shield with anti-cariogenic bacteria colonisation
capacity in the current study. This new mineralisation
solution could contribute to the development of a novel
dentifrice to prevent and treat root cementum caries for-
mation and progression.
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