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OBJECTIVE: The aim of this study was to determine the influence of polymorphisms in some key gene actors of the vitamin D (vitD)
metabolic pathway on supplementation efficacy.
METHODS: In total, 245 healthy participants were recruited from occupational medicine service in Sahloul University Hospital with vitD
deficiency [25(OH)D≤ 30 ng/ml]. After giving an informed consent, all participants were asked to complete a generalized questionnaire
and to follow a detailed personalized supplementation protocol. Genetic study was performed by PCR-RFLP for 15 single nucleotide
polymorphisms (SNPs) belonging to DBP, CYP2R1, CYP27B14, CYP24A1 and VDR genes. Statistical study was carried out with SPSS23.0.
RESULTS: Among the studied SNPs, non-response was significantly associated with variant alleles of rs4588 (OR*= 11.51; p < 0.001),
rs10766197 (OR*= 6.92; p= 0.008) and rs12794714 (OR*= 5.09; p= 0.004). These three SNPs contributed in 18.8% in response variability
with rs4588 being the most influential (10.3%). There was a significant linear negative correlation between baseline 25(OH)D and post
supplementation 25(OH)D concentration (r=−0.437; p< 0.001) as well as a linear negative association between the increase in 25(OH)D
concentration and GRS (GRS: genetic risk score= the sum of risk alleles) (r=−0.149; p= 0.033).
CONCLUSIONS: DBP-rs4588, CYP2R1-rs10766197 and rs12794714 variants are associated with variations in serum 25(OH)D
concentrations and efficacy of response to vitD supplementation in Tunisian adults. Taking into account these variations can help to
better adapt vitD intake to ensure a higher response to supplementation.
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INTRODUCTION
Vitamin D (vitD) is a fat soluble secosteroid vitamin with multiple
functions extending beyond the regulation of intestinal calcium
absorption. In recent years, research articles investigating associa-
tions between vitD status and health have reached an all-time
high, and an increase in supplementation studies has followed
[1, 2]. Given the pleiotropic effects of vitD, the scientific focus has
gone beyond its known classic benefits on skeletal health to
include multiple pathologies such as hyperglycemic disorders,
cardiovascular, neurological and liver diseases [3–5].
The global prevalence of hypovitaminosis D appears to be

increasing, and it is estimated that more than 1.5 billion people
worldwide have vitD deficiency including healthy community-
living people, and even patients receiving medical treatment for
osteoporosis, which makes this disorder one of the most common
nutritional deficiencies in the world affecting all segments of the
population [6, 7].
The spectrum of vitD status across the population in Tunisia

resembles that in Southern European countries rather than in
Middle Eastern ones. Although Tunisia is a sunny country, sun

exposure was reported to be insufficient and dietary vitD intake
did not achieve the dietary reference intakes. In fact, about 47.6%
had vitD deficiency with an approximate daily vitD intake under
200UI/daily [8].
In recent years, awareness about vitD deficiency has increased

greatly, and vitD supplementation is currently considered as one
of the best approaches for achieving adequate serum 25(OH)D
concentrations. However, changes in serum 25(OH)D relative to
vitD supplementation vary widely among individuals. Determi-
nants of change in serum post supplementation 25(OH)D
concentration can be explained by demographic, genetic, and
environmental factors [9]. In fact, recent genome-wide association
studies have uncovered associations of 25(OH)D concentration
with proteins involved in the metabolism action and transport of
vitD. SNPs in these genes have been linked to vitD deficiency in
the general population and to the high variability in response to
supplementation [10, 11].
Studies that investigate the effect of genetic variants in vitD

metabolic related gene polymorphisms on serum 25(OH)D
concentrations are lacking in the Tunisian population. Therefore,
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we aimed to investigate the influence of non-genetic and genetic
determinants of change in serum 25(OH)D levels and their effect
on response efficacy to vitD supplementation, in healthy
individuals.

METHODS
All methods used in this study are described in the Supplementary
Materials and Methods file.

RESULTS
Post supplementation serum 25(OH)D concentration
Based on serum 25(OH)D concentrations dosed at baseline and
considering 30 ng/ml as “cut off”, we subdivided our population
into two subgroups: vitD deficient (25(OH)D < 30 ng/ml; 205
(83.7%)) and vitD non-deficient (25(OH)D ≥ 30 ng/ml; 40 (16.3%)).
In deficient subjects (n= 205), mean serum 25 (OH)D concentra-

tions increased from baseline concentration of 13.8 ± 5.56 ng/ml to
35.74 ± 9.55 ng/ml after supplementation; Δ=+21.94 ± 10.57 ng/ml.
In this deficient group, 23 deficient subjects (11.2%) did not respond
to supplementation, while 182 subjects (88.8%) increased their vitD
status above 30 ng/ml. Sixty-two (30.2%) had low response, 59
(28.8%) had an average response and 61 (29.8%) had the highest
response to supplementation.

Effect of non-genetic factors in response to vitD
supplementation
The study of various non-genetic factors as potential causes of
variability in the responses to supplementation showed that
among the studied characteristics, season, baseline vitD,
number of vitD ampoules, physical activity and albumin were
considered as potential confounding factors (p < 0.25) to which
we adjusted all genotypic analysis so that we only obtain the
specific effect of the studied SNPs (Supplementary Table 1).
However, the diagnosis of the potential presence of multi-
collinearity in regression analysis, showed a moderate correla-
tion between two confounders (baseline vitD and number of
vitD ampoules) with a variance inflation factor: VIF= 5.39.
Therefore, only season, baseline vitD, physical activity and
albumin were considered as potential confounding factors. The
new VIF for these variables were lower than two which proves
the absence of multicollinearity.
As for the goodness of fit of the regression model, it was

assessed by the Hosmer–Lemeshow test. The chi2 goodness-of-fit
test provided no reason to reject the model as poorly fit
(goodness of fit chi2= 5.92, p= 0.656).

Effect of genotype in response to vitD supplementation
There was a significant difference in vitD increase according to
genotype for three SNPs: DBP-rs4588 (p= 0.011), CYP2R1-rs10766197
(p= 0.006) and rs12794714 (p= 0.024) (Supplementary Table 2).
Similarly, there were significant differences according to response
level in genotype frequencies of these three SNPs (Table 1).
By binary logistic regression and after adjustment to potential

confounding factors, we noted that the risk (OR) of non-response
associated to the three SNPs (rs4588, rs10766197 and rs12794714)
increased between 3.45 and 11.51 depending on the SNPs
(rs4588, rs10766197 or rs12794714) and zygocy (homozygous
major/minor or heterozygous) (Table 1).
In order to study the possible synergy between the three

significant polymorphisms and their combined effects, we
established a composite weighted genetic risk score (wGRS)
defined by the following mathematical equation from the binary
logistic regression model:

wGRS ¼ 100 ´ 1=1þ e� 36:35þ4:8 ´ rs4588þ2:17 ´ rs12794714þ1:49 ´ rs10766197ð Þ

Where wGRS predictive score values ranged from 1.31 to 75.34
with a cutoff value of 12.03. By comparing responder and non-
responder to vitD supplementation groups, we noted a significant
difference in the scores (8.68 ± 10.88 versus 32.8 ± 25.7; p < 0.001).
The sensitivity, specificity, accuracy and area under the ROC curve
values for this model were 75%, 73.5%, 75.8% and 0.807
(p < 0.001), respectively using the SPSS software.
There were no associations between wGRS and baseline 25(OH)

D concentration (r=−0.175; p= 0.06). However, a linear negative
association was observed between post supplementation 25(OH)D
concentration and wGRS (r=−0.232; p= 0.001) and between vitD
increase Δ and wGRS (r=−0.152; p= 0.029).
In order to simplify this score, we opted for the use of simple count

method by establishing a simplified GRS as the sum of risk alleles
(0–6). At baseline, there were no associations between GRS and
baseline 25(OH)D concentrations (p= 0.074). Nevertheless, there was
a linear negative association between post supplementation 25(OH)D
concentration and GRS (r=−0.149; p= 0.033). We have also noted
that subjects with GRS= 6 had the lowest increase
(Δ= 12.46 ± 6.1 ng/ml) compared to those with GRS= 0
(Δ= 24.61 ± 11.8 ng/ml); p= 0.041 (Fig. 1A). Overall, there was a
mean difference in 25(OH)D concentrations of 12.15 ng/ml between
carriers of no risk alleles and carriers of all 6 risk alleles. Consequently,
the risk of non-response to supplementation increases from 1.2 (1 risk
allele) to 20.3 (6 risk alleles) (Fig. 1B).
Furthermore, there was a significant linear negative correlation

between baseline 25(OH)D and Δ (r=−0.437; p< 0.001) meaning

Table 1. Response to vitD supplementation according to SNPs genotypes.

SNP Non-Responders
23 (11.2%)

Response level in responders p ORa 95% CI p

Low 62
(30.2%)

Medium 59
(28.8%)

High 61
(29.8%)

rs4588 GG 5 (21.7%) 42 (67.8%) 41 (69.5%) 45 (73.8%) <0.001* 1 – –

GT 10 (43.5%) 17 (27.4%) 16 (27.1%) 16 (26.2%) 7.58 [1.97–27.7] 0.002*

TT 8 (34.8%) 3 (4.8%) 2 (3.4%) 0 (0%) 11.51 [3.36–39.4] <0.001*

rs10766197 GG 1 (4.4%) 21 (33.9%) 21 (35.6%) 22 (36.1%) 0.037* 1 – –

AG 12 (52.1%) 25 (40.3%) 27 (45.8%) 29 (47.5%) 5.31 [1.21–35.7] 0.011*

AA 10 (43.6%) 16 (25.8%) 11 (18.6%) 10 (16.4%) 6.92 [1.70–28.31] 0.008*

rs12794714 GG 1 (4.4%) 24 (38.7%) 23 (38.9%) 24 (39.4%) 0.022* 1 – –

AG 13 (56.5%) 26 (41.9%) 27 (45.8%) 30 (49.2%) 3.45 [1.49–7.99] 0.014*

AA 9 (39.1%) 12 (19.4%) 9 (15.3%) 9 (11.4%) 5.09 [1.70–24.08] 0.004*

*p < 0.05.
aOR of non-response associated to genotypes and adjusted for potential confounders (season, baseline 25(OH)D, physical activity and albumin).
Bold values indicates statistically significant p values less than 0.05.
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that lower baseline vitD status was associated with higher response to
supplementation (Fig. 2). This negative correlation remains valid only
for low GRS (0, 1 and 2). However in the presence of several variations
meaning for higher GRS (more than 3), this correlation becomes non-
significant. Similarly, when we adjust for the polymorphisms affecting
post supplementation 25(OH)D status, this correlation becomes non-
significant, thus the presence of polymorphisms alters this correlation.

Genetic and non-genetic factors contribution on response
variation
Multiple linear regression revealed that genetic factors predicted
15.6%, while non-genetic factors predicted 3.5% of variability in
response to vitD supplementation. Cumulative R2 was up to 18.8%.
rs4588 by itself was responsible for 10.3% of the response
variability (Table 2).

DISCUSSION
In our population, 83.7% were deficient and required vitD
supplementation. The mean 25(OH)D concentration in supple-
mented subjects increased from 13.8 ng/ml ±5.56 to 35.74 ng/ml

±9.55 (Δ=+21.94 ng/ml ±10.57). Our supplementation protocol
corrected hypovitaminosis in 82.8% of the deficient subjects, yet
there were still 11.2% whose 25(OH)D concentrations did not
reach 30 ng/ml. This highlights a major variability of response to
vitD supplementation between subjects. Our results were similar
to those reported by Rouillon et al. and Yao et al. in various
populations [12, 13]. Indeed, there was always a number of
subjects who did not reach the desired concentration, which may
be related to genetic or non-genetic factors [12]. Genetic
differences in production, transportation and degradation of
25(OH)D resulting in differences in 25(OH)D at baseline seem to
affect the handling of additional vitD supplements. Thus, different
SNPs significantly influenced the response to vitD supplementa-
tion [1, 7, 14]. Three SNPs (rs4588, rs10766197 and rs12794714;
p < 0.05), have shown to be significantly involved in response
variation to vitD supplementation.
The rs4588 minor allele was associated with lower response to

vitD supplementation, as 34.8% minor allele (TT) carriers remained
vitD deficient versus the 70.4% major allele (GG) carriers who
reached the desired post supplementation vitD value. In like
manner, 73.8% GG carriers in the responders group had
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the highest response compared to only 4.8% TT carriers who had
the lowest response. After adjustment for confounding factors, we
noted that compared to homozygous major genotype, minor
allele carriers were 11.51 and 7.58 times more likely to be non-
responders respectively for homozygous and heterozygous. This
low response associated with T allele was also reported by Al-
Daghri et al. who demonstrated that the overall increase in 25(OH)
D concentrations was 70.5% in homozygous major genotype
group versus 56.9% in the heterozygous genotype group and that
carriers of minor risk allele were 3.7 times more likely to be non-
responders to vitD supplementation [15]. Nissen et al. demon-
strated that carriers of rs4588 risk alleles had the smallest increase
in serum 25(OH)D among Danes receiving vitD fortified bread and
milk or ultraviolet B treatment [16]. Similar results were observed
in a Chinese population supplemented with 2000 IU/day [12], as
well as in a Thais study given 400 IU/day vitD and calcium [17].
DBP gene encodes the 52 to 59 kDA DBP protein, which

regulates bioavailability and plays a key role in transporting vitD
and its metabolites. Given its biological role, it is therefore not
surprising that several previous studies [15, 18] have shown that
DBP polymorphism contributes to variability in total circulating
25(OH)D concentrations and has more recently been strongly
linked to the response to supplementation [16, 17, 19]. The
specific effect of rs4588-G might largely be attributed to its raising
DBP level, as well as a higher binding affinity for 25(OH)D.
Additionally, vitD bound to DBP might have relatively long half-life
by avoiding being catabolized to inactive metabolites and
therefore, increasing 25(OH)D concentrations [12, 17, 20].
Although the association between CYP2R1 genotypes and

serum 25 (OH)D concentration was already identified in several
studies [10, 21], few have examined the effects of these genotypes
in terms of efficacy of response to vitD supplementation.
In rs10766197, only 4.4% carriers of major alleles were non-

responders versus 43.6% carriers of minor alleles. After adjustment
for confounding factors, the risk of non-response was 6.92 times
higher for homozygous minor allele and 5.31 times higher for
heterozygous. Thus, we speculate that individuals with these
polymorphisms may be at higher risk for vitD deficiency. The

differences we have found between major and minor homo-
zygous alleles for this SNP are similar to those reported by several
studies [22, 23]. Bahrami et al. reported an OR of 25(OH)D increase
associated to G allele two-fold higher compared to A allele
(OR= 2.1; p= 0.03) [22] after supplementing healthy school girls
with 50,000 IU of vitD for 9 weeks.
For the rs12794714, we noted that 39.1% AA carriers did not

respond to supplementation versus only 4.4% GG carriers. The risk
of non-responsiveness was 5.09 fold higher in genotypic variant
AA and 3.45 folds higher in heterozygous.
Tomei et al. [24] and Slow et al. in the VIDARIS randomized

controlled trial [20] did not report any significant association
between these two SNPs and serum 25(OH)D concentrations
neither at baseline nor in post supplementation. However, Barry
et al. showed similar results with an estimated percentage
difference of 3.8% for rs1279414 and 4.7% for rs10766197 per
variant allele, after adjustment for sex, season and age [23].
These two SNPs seem to impair the biological role of CYP2R1

which is a member of the CYP2 family encoding cytochrome P450
proteins generating 25-hydroxy vitamin D in the liver. Therefore,
reduced 25 hydroxylase activity may influence 25(OH)D concen-
trations even after supplementation [25].
Notably, individual SNPs confer little risk increments and explain

a small portion of disease heritability, while the GRS can aggregate
the contribution of multiple SNPs to evaluate the additive genetic
effects on the risk of non-response to supplementation [26]. Our
results indicate that the GRS from DBP and CYP2R1 variants can
predict variability in response to vitD supplementation. In fact, the
risk of non-response to vitD supplementation, increases from 1.2
(1 risk allele) to 20.3 (6 risk alleles). As the GRS increased, the
individual’s risk of maintaining a 25(OH)D concentration below the
required value increased. Genetically predisposed individuals
carrying all 6 risk alleles had the lowest baseline 25(OH)D
concentration and the smallest increase. This indicates that in
order to achieve a targeted 25(OH)D concentration, those at the
highest risk of deficiency have the greatest vitD requirement.
The suggestion from the present study is that beneficial effects

of vitD supplementation occur when baseline 25(OH)D concen-
trations are <30 ng/ml, and that deficient subjects would
ultimately achieve better health outcomes. Williams et al. reported
a greater change in deficient subjects supplemented with
sublingual and capsular vitD [27]. Yet, Sluyter et al. demonstrated
that vitD supplementation significantly decreased central blood
pressure in subjects with poor vitD status at baseline [28]. A similar
threshold is suggested for vitD effects on other putative vitD
targets, such as reduction of exacerbations of chronic obstructive
pulmonary disease [29].
When both genetic and non-genetic determinants were

considered, genetic factors exerted stronger impact in response
to vitD supplementation. Indeed, genetic factors explained up to
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Table 2. Genetic and non-genetic factors contribution on response
variation.

Variable p R2 R2 cumulative

Genetic
factors

rs4588 <0.001 10.3% 15.6% 18.8%

rs10766197 0.045 4.5%

rs12794714 0.053 5.3%

Non-
genetic
factors

Albumin 0.032 1.9% 3.5%

Physical
activity

0.048 1.5%
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18.8% of variability in response to vitD supplementation, while
non-genetic factors (albumin and physical activity) had only 3.5%
of the response-modifying effect. Similar results were reported by
the randomized trial of Yao et al. suggesting that the joint effect of
DBP-rs7041, VDR-rs2228570, and CYP2R1-rs10741657 measured
by GRS, could explain a larger portion than the combined non-
genetic factors (baseline value, BMI, and gender) in response to
vitD supplementation [12]. Arabi et al. confirmed that genetic
polymorphisms in CYP2R1 explained between 4.8 and 9.8% of
variability in 25(OH)D levels but failed to detect any effect on
changes of post supplementation vitD [30].
For non-genetic factors, the implication of albumin concentra-

tion might be explained by the fact that about 90% of total vitD is
bound with DBP, 10–15% is loosely bound with albumin, and
about 0.1% is present as free-circulating fraction. Therefore, the
availability of 25(OH)D depends not only on the total 25(OH)D
concentration but also on the concentration of DBP and albumin
[31]. As for the physical activity influence, it might be explained by
adiposity and that VitD could be sequestered by adipose tissue
after supplementation [32]. A systematic review by Zittermann
et al. indicated that variations in serum 25(OH)D levels after
supplementation could be explained by body weight (34.5%), type
of supplement (9.8%), age (3.7%), calcium supplements (2.4%) and
baseline 25OHD levels (1.9%) [33]. Ekwaru et al. recommended
vitD supplementation to be 2–3 times higher for obese subjects
and 1.5 times higher for overweight subjects to achieve the same
25(OH)D values [34].
Recent studies have reported that the use of intermittent high-dose

bolus, introduced to achieve high adherence, rather than regular daily
maintenance was ineffective at preventing rickets, tuberculosis, acute
respiratory infections [35] and may increase the risk of falling in
elderly subjects [36]. There is a plausible biological explanation for
this, since high-dose bolus supplementation induces the suppression
of vitD activation by the expression of long-term catabolic enzyme 24-
hydroxylase and fibroblast growth factor 23, both of which have vitD
inactivating effects. It has been recognized that the increased 24-
hydroxylase activity, as a feedback control response to a large bolus of
vitD, may itself have a long half-life [37]. This means that a single high-
dose bolus of vitD could paradoxically lead to intracellular deficiency
of activated vitD as a rebound phenomenon. This might be
particularly important in immune cells such as the dendritic cells
that are probably central to the hyperinflammatory state seen in
severe COVID-19 [35]. Overall, taking into account the rs4588 minor
allele frequency (0.21%) (Supplementary Table 3) and the implication
of this polymorphism on the poor response to vitD supplementation
by modifying its binding affinity, it seems that modest doses and daily
provision of vitD supplementation is more effective rather than
intermittent high-dose boluses.
Furthermore, one of the major obstacles contributing to vitD

deficiency is the lack of foods naturally rich in vitD. Therefore, food
fortification programs seem to be a very promising strategy to
curb vitD deficiency. Evidence from a long-term population-based
Finnish study documented improvement of 25(OH)D concentra-
tion after 11 years of fortification [38]. VitD requirements might
even be higher amongst high risk groups with genetically
determined reduction in responsiveness to vitD. Therefore,
applying food fortification programs on individuals with specific
genetic background would be very promising for provision of
personalized health care.
Our study has several strengths including its being the largest

analysis of vitD status among healthy adults in Tunisia, the
personalized supplementation protocol which was adapted to
baseline vitD value and the availability of detailed personal data.
Nevertheless, it has some limitations too; firstly, the decision for a
mega dose of vitD intake is a very controversial choice; surely, it
remarkably simplifies our study design but it induces self-
regulatory mechanisms that may last for months. Secondly, the
decision to focus on deficient subjects with serum 25(OH)

D < 30 ng/ml) rather than deficient (<20 ng/ml) could be argued.
Although concentrations >20 ng/ml may be adequate for bone
health and used in most supplementation protocols, concentra-
tions above 30 ng/ml are needed for many other health outcomes
[39].
The current study provides novel insight that helps further

define the complex relationship between genetic and environ-
mental factors that affect vitD levels. It is also important for public
health recommendations and vitD food fortification programs
because it showed that the genetic predisposition in the DBP and
CYP2RI genes may have large impact on 25(OH)D concentrations
and that even after a personalized high doses supplementation
protocol, vitD deficiency persisted in some groups. Further
information on the effects of such factors on the self-regulatory
mechanisms induced by interval bolus dosing would be valuable
in planning programs for correcting vitD deficiency.

DATA AVAILABILITY
The datasets generated and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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