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Abstract

Motivation: Microbiota analyses have important implications for health and science. These analyses make use of
16S/18S rRNA gene sequencing to identify taxa and predict species diversity. However, most available tools for
analyzing microbiota data require adept programming skills and in-depth statistical knowledge for proper
implementation. While long-read amplicon sequencing can lead to more accurate taxa predictions and is quickly
becoming more common, practitioners have no easily accessible tools with which to perform their analyses.

Results: We present MOCHI, a GUI tool for microbiota amplicon sequencing analysis. MOCHI preprocesses sequen-
ces, assigns taxonomy, identifies different abundant species and predicts species diversity and function. It takes
either taxonomic count table or FASTQ of partial 16S/18S rRNA or full-length 16S rRNA gene as input. It performs
analyses in real time and visualizes data in both tabular and graphical formats.

Availability and implementation: MOCHI can be installed to run locally or accessed as a web tool at https://mochi.
life.nctu.edu.tw.

Contact: dodochen@nctu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decades, researchers have revealed the critical role of
microbiota in ecology, agriculture, fishery, medicine and health
(Hacquard et al., 2015; Yang et al., 2020). In particular, numerous
studies have shown the association between microbiota and human
health, including obesity, infectious diseases and even mental hy-
giene (Honda and Littman, 2012; Ley et al., 2006; Valles-Colomer
et al., 2019). Dissecting the human microbiome hence provides a
new perspective for investigating biological topics. Traditional
approaches to bacterial species identification rely heavily on labora-
tory culturing, but the majority of bacteria are unculturable with
present-day laboratory techniques (Rappé and Giovannoni, 2003;
Stewart, 2012), and the profile of bacteria is likely distorted due to
environmental stress in the lab culture (Petti et al., 2005). With the
advent of next-generation sequencing (NGS), culture-independent

sequencing-based microbiota analysis has become the foremost
paradigm for microbiome analysis.

Two sequencing methods, amplicon sequencing and metage-
nomic shotgun sequencing, are commonly employed for microbiome
analysis. Metagenomic shotgun sequencing yields higher resolution
of microbial taxonomy (Brumfield et al., 2020), but it is relatively
expensive and requires more computational workload for data
processing. In contrast, amplicon sequencing, which is more
cost-effective, provides higher coverage and demands lower compu-
tational workload, is currently the most common method for micro-
biome analysis and the predominant method used in Human
Microbiome Project (HMP) (Huttenhower et al., 2012; NIH
Human Microbiome Portfolio Analysis Team, 2019). Traditionally,
amplicon sequencing targets at partial 16S/18S ribosomal RNA gene
and sequenced with NGS platform. The full-length microbial 16S
rRNA gene sequences have the potential for classification of
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taxonomy at the species level and strain level (Ben�ıtez-Páez et al.,
2016; Johnson et al., 2019; Kumar et al., 2019). Recently, third-
generation sequencing technology has been applied to generate full-
length 16S rRNA gene sequences from microbiota and provides
species-level resolution of microbiota (Quijada et al., 2020).

In general, microbiota sequence analysis consists of several
steps—sequence preprocessing, taxonomy classification, taxonomy
diversity comparisons, differential abundance analysis and function-
al analysis. A pivotal step is taxonomy classification for representa-
tive sequences. Because of PCR-induced errors or misincorporation
of nucleotides in sequencing, variants may be introduced randomly
in the sequence data. Because of the difficulty to distinguish between
biological variants and technical errors, two strategies—operating
taxonomic units (OTUs) and amplicon sequence variants (ASVs)—
have been developed to minimize the confusion.

The principle of OTUs is to align and cluster the 16S rRNA gene
amplicons with a defined threshold of sequence similarity, which is
set to 97% in several proposed methods (Edgar, 2018). Among the
published OTU clustering algorithms, QIIME (Caporaso et al.,
2010), MOTHUR (Schloss et al., 2009) and UPARSE (Edgar, 2013)
are most commonly used. In later algorithms, denoising is incorpo-
rated to eliminate artificial errors by constructing error rate models
with statistical methods, and the noiseless variants after denoising
are termed ASVs. Currently, there are three widely used algorithms,
DADA2 (Callahan et al., 2016), Deblur (Amir et al., 2017) and
UNOISE3 (Edgar, 2016). Using ASVs to represent the taxonomic
unit increases the possibility of detecting novel taxa and sharpens
taxonomy classification to single nucleotide resolution (Callahan
et al., 2017, 2019). The representative sequences are then used to
search against a reference database such as SILVA (Quast et al.,
2013), Greengenes (DeSantis et al., 2006) or PR2 (Guillou et al.,
2013), for taxonomy assignment. Even though no algorithm can
perfectly picture the microbial structure in natural conditions, the
denoising algorithms, i.e. ASVs, have become preferred to OTUs
(Callahan et al., 2017).

The next step following taxonomy classification is comparison
of microbiota profiles under different conditions. Two biodiversity
indexes, alpha diversity and beta diversity, are often used for com-
parison of microbiota biodiversities. Alpha diversity represents the
diversity within a sample, and beta diversity represents the diversity
between two samples (Whittaker, 1972). For example, Caporaso
et al. (2011) generated time series data from two individuals at four
body sites: gut, mouth, left and right palms. From beta diversity ana-
lysis, they found dynamic changes in the microbiota community at
the same body site over time but constantly distinct microbiota com-
positions between gut, oral and skin (left and right palms). Alpha
diversities of fecal samples also showed a rapid decrease in micro-
biota diversities after antibiotic therapy and a rapid return to similar
diversities after the termination of antibiotic treatment.

Characterizing the differences in microbial composition among
different samples is also a major focus of microbiome analyses. A
matrix of relative abundance is usually used for differential abun-
dance analysis. However, several challenges arise when handling the
microbiome relative abundance matrix. First, the matrix is usually
sparse, meaning that almost 90% of features are zero (Paulson et al.,
2013), making it difficult to detect rare species. Second, the micro-
biome data are compositional (Chen and Li, 2016; Gloor and Reid,
2016; Gloor et al., 2017; Xia et al., 2013), which implies that fluctu-
ations in one taxon change the relative abundance of other taxa
even if the absolute quantities remain the same. Sparse and compos-
itional data make standard statistical methods inapplicable to
microbiota analyses (Weiss et al., 2017).

Several algorithms have been devised to deal with the problems
that raise in microbiome analysis (Lin and Peddada, 2020; Morton
et al., 2019; Weiss et al., 2017). Although these tools are powerful,
they generally demand basic programming skills by the user. Here
we present a user-friendly tool, MOCHI (Microbiota amplicOn
CHaracterization Implement), designed for microbiome analyses
based on 16S and 18S rRNA gene sequencing. The framework of
MOCHI is powered by the R package of Shiny, and it is built on the
Docker platform to achieve cross-platform compatibility. Users may

decide whether to run the analysis on our web server or download a
local stand-alone version to accelerate the process with multithread-
ing in their own computational resource. Compared with other GUI
microbiota analysis tools, MOCHI supports analysis from the raw
data of partial and full-length ribosomal amplicon sequencing and
provides the most comprehensive analysis function. Overall,
MOCHI encompasses a variety of popular microbiota-analysis-
specific tools and enables the user to complete microbiome analysis
all on one webpage.

2 Availability and implementation

2.1 Design
MOCHI is developed using the bioinformatic tool QIIME2 and the
R language. Specifically, QIIME2 is used to process the sequence
data, including denoising, taxonomy classification and calculation
of phylogenetic diversity. R is used for the statistical analysis for bio-
diversity indexes. Most of the microbiota diversity indexes are calcu-
lated with the R package vegan (Dixon, 2003) except for Faith PD
and UniFrac, which are calculated with QIIME2. The R package
Shiny is used to construct the user interface and interactive plots.

MOCHI was built on the Docker platform (Merkel, 2014). It is
available as a web server (https://mochi.life.nctu.edu.tw/ with a se-
quence upload limit of up to 20 Mb per file). MOCHI is also down-
loadable as a stand-along Docker image (https://hub.docker.com/
repository/docker/dockerjjz/mochi_local), for implementation on a
local computer running Linux, Windows or MacOS with at least 16
GB of RAM and 8 CPUs. The source code of MOCHI is available at
https://github.com/v0369012/mochi_web_service.

2.2 Data analysis modules
MOCHI utilizes modules in QIIME2 (Bolyen et al., 2019) and sev-
eral microbiota R packages and presents the results with R Shiny.
The analysis workflow of MOCHI is shown in Figure 1. MOCHI
consists of three modules—Sequence Preprocessing, Taxonomy
Analysis and Function Analysis which may be used sequentially or
independently. Sequence Preprocessing includes sequence quality
check, sequence summary, sequence filtering/denoising and tax-
onomy assignment. In Taxonomy Analysis, microbiota statistical
analyses are conducted, and the results are presented in different

Fig. 1. The workflow of MOCHI. MOCHI comprises with three analysis modules

which may be used either sequentially or independently. The first module, Sequence

Preprocessing, accepts sequence raw data as input and conducts sequence quality

checks, sequence denoising and taxonomy assignments. The output files from the

first module are ASVs tables, taxonomy tables and representative sequences. The se-

cond and third modules, take ASVs tables, taxonomy tables, representative sequen-

ces and sample metadata as input. Taxonomy Analysis yields taxonomy tables,

taxonomy plots, alpha diversity, beta diversity and offers statistical tests. Users may

identify samples having higher alpha diversity or determine taxa having significantly

different abundance. The third module, Function Analysis, predicts potential func-

tions for taxonomy classification results based on Functional Annotation of

Prokaryotic Taxa (FAPROTAX), a function database. All the tables and figures gen-

erated by MOCHI on the webpage are interactive. For some analysis, MOCHI pro-

vides options for users to customize the resulting plots
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interactive plots, e.g. relative abundance bar plots, alpha diversity
boxplots, beta diversity Principal Coordinates Analysis (PCoA) plots
and ANCOM volcano plots. Function Analysis focuses on predict-
ing metabolically or ecologically relevant functions. Each of the
modules provides parameters that may be customized or adjusted by
users to generate interactive table/charts to help them explore the
dataset extensively (see below).

2.2.1 Sequences Preprocessing

Sequences Preprocessing further includes three steps: Sequence
Summary, Sequence Denoising and Taxonomy Classification.
Sequence Summary summarizes sequencing quality and the number
of reads for each sample from raw FASTQ files and presents the
results in tables and figures (Supplementary Fig. S1a and b).
Sequence Denoising takes the primer sequences as input and per-
forms sequence quality filtering, merging paired reads and chimera
removal based on the DADA2 protocol (Callahan et al., 2016).
Users may customize the criteria for trimming and chimera remov-
ing. To ensure the sequencing depth is sufficiently high for a repre-
sentative microbiota profile, a rarefaction curve is usually drawn to
find a minimum library size (Gotelli and Colwell, 2001). Therefore,
MOCHI also presents a rarefaction plot based on randomly sampled
reads to show correlation between the identified number of ASVs
and the sequencing library size (Supplementary Fig. S1c). Taxonomy
Classification assigns taxonomy to the denoised-sequences based on
SILVA (Quast et al., 2013), Greengenes (DeSantis et al., 2006) and
the PR2 (Guillou et al., 2013) reference sequence database. This
final step generates an ASVs table, taxonomic table and ASVs repre-
sentative sequences, which provide input files for the second
module.

In Sequences Preprocessing, all the parameters used, computing
time used, analysis date and relevant information are placed under
the ‘Log’ tab. MOCHI assigns a unique random number as the job
ID for the sequences uploaded to the MOCHI website. Users may
use the job ID to retrieve results and parameters in their analyses.

2.2.2 Taxonomy Analysis

Taxonomy Analysis takes the sample metadata, taxonomy table and
ASVs table as inputs to produce visualizations and statistical analy-
ses. For taxonomy information, MOCHI integrates the sample
metadata and taxonomy table and presents taxonomy information
in tables and figures. Samples may be grouped based on conditions
specified in the metadata file uploaded. The single-end 16S rRNA
gene sequencing dataset from Caporaso et al. (2011) will be used as
an example here. The taxonomic table displays the read counts of
each taxon in the sample (Fig. 2a). The taxonomic bar plot and heat-
map show relative abundance of taxa and log-transform relative
abundance in an interactive bar plot and heatmap, respectively
(Fig. 2b and c). For the heatmap, a small value of 0.01 is added be-
fore log-transformation to prevent taking logarithms of zero. Users
may select the taxonomic level (kingdom, phylum, class, etc.) for
display. Users may also show the top abundant taxon by choosing a
value from top N scroll bar. By selecting a value of N, the union of
the top N abundant taxa in each sample will be shown in the taxo-
nomic bar plot. Additionally, MOCHI provides interactive multi-
layered pie charts for each sample generated with Krona (Fig. 2d)
(Ondov et al., 2011).

In Taxonomy Analysis, MOCHI also provides alpha/beta diver-
sity indexes and comparisons between samples. MOCHI is equipped
with seven alpha diversity indexes: Abundance-based Coverage
Estimators (ACE) (Chao and Yang, 1993), Shannon diversity
(Shannon and Weaver, 1964), Simpson diversity (Simpson, 1949),
InvSimpson diversity (Hill, 1973), Shannon evenness (Keylock,
2005), Simpson evenness (Mulder et al., 2004) and Faith’s phylo-
genetic diversity (Faith PD) (Faith, 1992). With the desired diversity
index selected, MOCHI shows the distribution of alpha indexes
across the samples in a grouped boxplot. Users may choose sample
grouping in the metadata file for MOCHI to determine whether the
differences between alpha diversities in different groups are statistic-
ally significant. Common parametric and nonparametric statistical

methods, i.e. analysis of variance (ANOVA) and the Kruskal–Wallis
test, and their corresponding post hoc tests, the Tukey and Dunn
tests are offered for group comparisons.

Regarding beta diversity, MOCHI provides user-interactive
heatmaps to show the Bray–Curtis dissimilarity matrix (Bray and
Curtis, 1957) and UniFrac (Lozupone and Knight, 2005). Three
widely used dimension-reduction methods, Principal Component
Analysis (PCA), PCoA and nonmetric multidimensional scaling
(NMDS), are implemented for visualization of the microbiota
composition similarities. Notably, MOCHI provides both 2D and
3D plots for PCA and PCoA, with the top six PCs listed for users
to select as axes. MOCHI also offers three methods for beta diver-
sity comparison—PERMANOVA (Permutational Multivariate
Analysis of Variance) (Anderson, 2005), ANOSIM (Analysis of
similarities) (Clarke and Green, 1988) and MRPP (Multiple
Response Permutation Procedure) (Mielke et al., 1976)—fol-
lowed by pairwise tests and Benjamini–Hochberg multiple test
corrections (Benjamini, 1995) to obtain corrected P values. In
addition to diversity comparisons, users may also identify taxa
with significantly different abundance with ANCOM, which
detects significantly abundant taxa from microbial compositional
data (Mandal et al., 2015). Users may choose the taxonomic level
of interest for this analysis (Mandal et al., 2015).

2.2.3 Function Analysis

Function Analysis predicts the metabolically or ecologically relevant
functions of the microbiome based on the reference database
FAPROTAX (Louca et al., 2016). MOCHI presents the prediction
results in a table and a user-interactive bar plot. The relative percen-
tages are calculated from the read counts of a function type divided
by the total read counts in the sample. Just like other analysis func-
tions in MOCHI, the user may group the relative function abundan-
cies from the samples using the conditions defined in the uploaded
metadata file.

2.3 Input file formats
Users may start their analysis using the Sequence Preprocessing
module by uploading sequence files and metadata information for
the samples. The demultiplexed sequence files (FASTQ files) must
be provided in the gzip compressed format. The metadata of samples
must be provided in tab-separated values (TSV) format. For users
who have already performed the taxonomy classification, they may
start Taxonomy Analysis by uploading metadata information, the
ASVs file and the taxonomy table. The latter two files are generated

Fig. 2. User-interactive table and plots generated for taxonomy profiles with

MOCHI. (a) A taxonomic table shows the taxonomic read counts and numbers of

taxonomic levels. (b) A bar plot shows relative abundance for the union of the top

five most abundant taxa identified in four body sites. (c) A heatmap shows log-trans-

formed relative abundance. For bar plot and heatmap, the user may regroup samples

with group information provided in metadata. Also, MOCHI offers different tax-

onomy levels for users to explore the taxonomy profiles. By selecting the level of

interest, the user can readily get an updated plot on the fly. (d) A multilayered pie

chart for exploring taxonomy composition in each sample. The pie chart is adapted

from Krona
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by sequence preprocessing and taxonomy assignment tools such as
QIIME2. For the Function Analysis, users may upload the metadata
and taxonomy table file for functional prediction of the microbiota.

For each analysis step, MOCHI provides demo files, which users
may download so as to inspect the input file format.

3 Results

3.1 Demonstration of MOCHI using public datasets
To demonstrate MOCHI, we conducted microbiome analysis of
four public datasets (Caporaso et al., 2011; Hernández et al., 2018;

Quijada et al., 2020; Suenami et al., 2019). If available, the same
denoising method, taxonomy database and parameters as the one

used in the original dataset research articles were used for raw reads
processing and taxonomy assignment in MOCHI. The dataset infor-
mation, taxonomy database and computation time usage are sum-

marized in Table 1. After identifying taxonomy from the four
datasets, we explored the most abundant taxa among the results
obtained from MOCHI and the original studies (Supplementary

Tables S1–S4). The top abundant taxa in each dataset were consist-
ent. Moreover, differences between the number of identified ASVs

were <3%.
We further explored the alpha and beta diversity in Suenami et

al., 2019, which compared the gut microbiota from two hornets—
Vespa mandarinia and Vespa simillima. The alpha diversity boxplots
(Fig. 3a) showed that the Shannon diversities in the two species are

significantly different. The PCoA plot of beta diversity evaluated by
Bray–Curtis dissimilarity distances showed similarity/dissimilarity

between the microbial composition from the two species (Fig. 3b).
Statistical tests by PERMAONVA, ANOSIM and MRPP show that
the microbial composition in the two species differs significantly.

These results are consistent with the findings of Suenami et al.
(2019). These results demonstrated that MOCHI can perform the
same analyses and lead to the same conclusions without the need for

advanced programming and statistical skills.
In addition, MOCHI offers detection of differential abundant

taxa and prediction of functional profiles in microbiota. To demon-
strate, we used the dataset Quijada2020, which includes full-length

16S rRNA gene amplicon sequences from microbiota sampled at dif-
ferent times during cheese ripening (Quijada et al., 2020). ANCOM
identified Lactobacillus as the only significantly populated genus

among all samples collected at different times. This provides statis-
tical evidence supporting the observation made by Quijada et al.
(2020) (Fig. 4a). Furthermore, MOCHI predicted at least one func-
tion for 72.5% out of all the identified taxa. Figure 4b shows wide
variations in relative abundance of fermentation-capable taxa on

different days during cheese ripening. The high abundance at Day 0
(about 4�10 times as much as at Days 14, 30, 90 and 160) is pre-

sumably due to the starter cultures (Lactobacillus and
Streptococcus) added at the beginning of the process. Our results
demonstrate that MOCHI provides not only a basic of amplicon

microbiota exploration but also functional prediction and advanced
statistical analysis.

3.2 Comparison with existing tools
Most microbiome amplicon analysis tools are available in the form
of a website (Chong et al., 2020; Dhariwal et al., 2017; Huse et al.,
2014; Keegan et al., 2016; Mitchell et al., 2020; Zakrzewski et al.,
2017). MOCHI, in addition to being available as a website, may
provide a stand-alone GUI tool (Table 2). Stand-alone MOCHI
allows users to process data locally, which avoids restrictions
imposed by network communication and concerns about data
breach. Additionally, given the time and computational power
needed for processing the raw sequencing data, all existing tools
capable of dealing with raw data, i.e. MGnify, MG-RAST and
VAMPS, require registration. The webserver version of MOCHI
provides a platform for quick explorations by users to analyze small
datasets without registration. For users with large datasets, the
stand-alone version allows users to investigate their datasets without
waiting in a queue. Moreover, MOCHI is the only web-based tool
known that can handle long-read, full-length 16S rRNA produced
by third-generation sequencing, and it has gained increasing popu-
larity in microbiota studies (Ben�ıtez-Páez et al., 2016; Kumar et al.,
2019).

MOCHI simplifies the procedures of sequence preprocessing and
estimates default parameters for users to conduct the analysis with-
out prerequisite knowledge. MOCHI also provides the most com-
prehensive biodiversity indexes and statistical methods—
substantially more than MGnify, MG-RAST and VAMPS (Table 2).

While MicrobiomeAnalyst provides ANOVA for comparing
alpha diversities between groups, it does not offer post hoc tests for
pairwise comparisons. Calypso provides one alpha diversity index,
Shannon, but no statistical comparisons. On the contrary, MOCHI
provides seven alpha diversity indexes and offers both the ANOVA/
K-W test and post hoc test to compare the differences between alpha

Table 1. Features of the datasets analyzed and computation time used in MOCHI

Dataset Sample size Sequence type Number of reads Variable region Taxonomy database Computation timea

SS SD TC

Caporaso2011 34 Single-end 263 878 V4 GREENGENES (16S rRNA) 1.78 m 1.9 m 1.4 m

Suenami2019 17 Paired-end 2 197 558 V4 SILVA (16S rRNA) 2.33 m 3.0 m 2.3 h

Hernández2018 65 Paired-end 14 474 241 V3–V4 SILVA (16S rRNA) 16.2 m 41.3 m 3.3 h

Quijada2020 10 Long-read 1 102 834 V1–V9 SILVA (16S rRNA, full-length) 46.0 s 35.9 m 1.2 h

aComputation time for Sequence Summary, Sequence Denoising and Taxonomy Classification is tabulated in that order. The analyses were executed on a

Linux server with eight CPUs (3.70 GHz) and 64 GB RAM.

Fig. 3. Boxplot and PCoA analysis for microbiota diversity in Suenami et al. (2019)

dataset. Suenami et al. (2019) compared the gut microbiota originating from two hor-

nets, Vespa mandarinia and Vespa simillima, which are shortened to Vman and Vsim

in the figures. (a) The boxplots show the alpha diversity for microbiota identified in

two groups. Four different alpha diversity indexes: ACE, Shannon diversity, Faith’s

PD and Shannon evenness are shown as examples. MOCHI performed statistical tests

on the alpha diversities between the two groups. The KW tests and P values are

shown at the bottom. (b) The PCoA plot presents beta diversity and Bray–Curtis

distances for 17 samples. Samples from Vman and Vsim are labeled with blue and

red, respectively. MOCHI also revealed a significant difference in Bray–Curtis

distance between these two groups, using the three statistical tests: PERMANOVA,

ANOSIM and MRPP, for which the P values were 0.006, 0.002 and 0.003, respect-

ively (A color version of this figure appears in the online version of this article.)
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diversity indexes. Similarly, even though MicrobiomeAnalyst,
Calypso and MOCHI provide PERMANOVA, ANOSIM and
MRPP/PERMDISP to compare beta diversity, only MOCHI presents
pairwise tests for beta diversity.

As regards differential abundant taxa detection, MOCHI provides
ANCOM, which is specifically developed for sparse and compositional
microbiota data. ANCOM utilizes the inter-taxa ratio to identify differ-
entially abundant taxa from compositional tables (Mandal et al.,
2015). Among all existing tools, MicrobiomeAnalyst and Calypso pro-
vide different abundant taxa identification with metagenomeSeq
(Paulson et al., 2013), edgeR (Robinson et al., 2010), DESeq2 (Love
et al., 2014), ANCOM and ALDEx2 (Fernandes et al., 2014). Among
these, metagenomSeq and ANCOM are designed for sparse high-
throughput sequencing data while edgeR, DESeq2 and ALDEx2 were
originally developed for RNA-seq data. Among the existing tools,
MGnify, MicrobiomeAnalyst and MG-RAST also provide function
prediction/annotation, like MOCHI, but they are based on different

Fig. 4. Differential abundance analysis and function prediction results for the

Quijada2020 dataset. Quijada2020 took microbiota from different time points dur-

ing cheese ripening. (a) MOCHI identified Lactobacillus as the only significantly dif-

ferent abundant taxon among different days during cheese ripening with ANCOM.

(b) Bar plot of one predicted function, fermentation, showing the relative abundance

of fermentation-capable taxa at different days. The bar plot shows the abundance of

taxa carrying genes involved in fermentation at Days 0, 14, 30, 90 and 160, with

average relative abundances 29%, 3%, 7%, 4% and 6%, respectively. Each error

bar represents one standard deviation

Table 2. Comparison of MOCHI with other GUI tools for microbiota analysis

Tools MOCHI MGnify (2020) MicrobiomeAnalyst

(2017, 2020)

Calypso (2017) MG-RAST (2016) VAMPS (2014)

Platform Website,

stand-alone

Website Website Website Website Website

Registration No Yes No No Yes Yes

Input data type 16S rRNA, 18S

rRNA

16S rRNA, 18S

rRNA

16S rRNA 16S rRNA 16S rRNA, 18S

rRNA

16S rRNA, 18S

rRNA

File format Sequence/count

table

Sequences Count table Count table Sequences Sequences

Full-length 16S

rRNAa

Supported No Not applicable Not applicable No Supported

(VAMPS2)

Taxonomy database SILVA,

GREENGENES,

PR2

SILVA, ITSoneDB,

UNITE

No No SILVA,

GREENGENES,

RDP, ITS

SILVA

Rarefaction plot Yes No Yes Yes Yes No

Abundance

heatmap

Yes No Yes Yes Yes Yes

Alpha diversityb Multiple (7) No Multiple (6) Multiple (8) Shannon Multiple (5)

Alpha diversity testc ANOVA/K-W test No ANOVA ANOVA No No

Post hoc test for

alpha diversityd

Tukey test/Dunn

test

No No No No No

Beta diversity Bray–Curtis,

unweighted

unifrac, weighted

unifrac

No Bray–Curtis,

Jensen–Shannon

divergence,

Jaccard,

unweighted

unifrac, weighted

unifrac

Unifrac, Bray–

Curtis, Jaccard,

Yue and Clayton,

Chao, Bionomial,

Manhattan,

Euclidean,

Pearson’s cor,

Spearman cor,

Hamming

Bray–Curtis,

Euclidean,

Manhattan, max-

imum,

Minkowski

Morisita-Horn

Distance heatmap Yes No No No No Yes

Dimension

reduction (beta

diversity)

PCA, PCoA, NMDS No PCoA, NMDS PCA, PCoA,

NMDS, CCA,

RDA

PCoA PCoA, NMDS

Beta diversity test PERMANOVA,

ANOSIM, MRPP

No PERMANOVA,

ANOSIM,

PERMDISP

PERMANOVA,

ANOSIM,

PERMDISP

No No

Post hoc test for

beta diversity

Yes No No No No No

Differential abun-

dant taxa

identification

ANCOM No metagenomeSeq,

edgeR, DESeq2

ANCOM, DESeq2,

ALDEx2

No No

Function prediction/

annotation

FAPROTAX KEGG, Pfam PICRUSt, Tax4Fun No SEED, KEGG,

COG, EggNOG

No

aMicrobiomeAnalyst and Calypso take count table as input instead of raw sequences. VAMPS2 supports full-length 16S rRNA analysis.
bNumber within parentheses indicates how many alpha diversity indexes were provided.
cThe statistical test methods between multiple group for parametric and nonparametric data are ANOVA and K-W test, respectively.
dThe post hoc test for parametric and non-parametric data are Tukey test and Dunn test, respectively.
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databases: KEGG (Kanehisa et al., 2017), Pfam (Finn et al., 2016),
SEED (Overbeek et al., 2014), COG (Galperin et al., 2019), EggNOG
(Huerta-Cepas et al., 2016; Jensen et al., 2008), PICRUSt (Langille

et al., 2013) and Tax4Fun (Aßhauer et al., 2015). Among these,
PICRUSt and Tax4Fun are specifically developed for function predic-

tion of microbiota.

4 Discussions and conclusions

MOCHI is a microbiota amplicon analysis platform equipped with
comprehensive analytical and statistical tools for data processing

and presentations. It may be used as a web service or implemented
locally as a secure and efficient stand-alone operation. The three

modules in MOCHI may be used independently and both the raw
sequences or processed count tables may be used as input. In the fu-
ture, approaches for differential abundance analysis and demultiplex

modules will be considered incorporating to MOCHI. In summary,
MOCHI offers a comprehensive analytical pipeline from raw

sequences to statistical visualization.
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Ben�ıtez-Páez,A. et al. (2016) Species-level resolution of 16S rRNA gene ampli-

cons sequenced through the MinIONTM portable nanopore sequencer.

GigaSci., 5, 4.

Benjamini,Y. (1995) Controlling the false discovery rate: a practical and

powerful approach to multiple testing. J Royal Stat Soc Ser B., 57, 289–300.

Bolyen,E. et al. (2019) Reproducible, interactive, scalable and extensible

microbiome data science using QIIME 2. Nat. Biotechnol., 37, 852–857.

Bray,J.R. and Curtis,J.T. (1957) An ordination of the upland Forest commun-

ities of Southern Wisconsin. Ecol. Monogr., 27, 325–349.

Brumfield,K.D. et al. (2020) Microbial resolution of whole genome shotgun

and 16S amplicon metagenomic sequencing using publicly available NEON

data. PLoS One., 15, e0228899.

Callahan,B.J. et al. (2016) DADA2: high-resolution sample inference from

Illumina amplicon data. Nat. Methods., 13, 581–583.

Callahan,B.J. et al. (2017) Exact sequence variants should replace operational

taxonomic units in marker-gene data analysis. ISME J., 11, 2639–2643.

Callahan,B.J. et al. (2019) High-throughput amplicon sequencing of the

full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids

Res., 47, e103.

Caporaso,J.G. et al. (2010) QIIME allows analysis of high-throughput com-

munity sequencing data. Nat. Methods., 7, 335–336.

Caporaso,J.G. et al. (2011) Moving pictures of the human microbiome.

Genome Biol., 12, R50.

Chao,A. and Yang,M.C.K. (1993) Stopping rules and estimation for recapture

debugging with unequal failure rates. Biometrika, 80, 193–201.

Chen,E.Z. and Li,H. (2016) A two-part mixed-effects model for analyzing lon-

gitudinal microbiome compositional data. Bioinformatics, 32, 2611–2617.

Chong,J. et al. (2020) Using MicrobiomeAnalyst for comprehensive statistical,

functional, and meta-analysis of microbiome data. Nat. Protoc., 15,

799–821.

Clarke,K. and Green,R. (1988) Statistical design and analysis for a “biological

effects” study. Mar. Ecol. Prog. Ser., 46, 213–226.

DeSantis,T.Z. et al. (2006) Greengenes, a chimera-checked 16S rRNA gene

database and workbench compatible with ARB. Appl. Environ. Microbiol.,

72, 5069–5072.

Dhariwal,A. et al. (2017) MicrobiomeAnalyst: a web-based tool for compre-

hensive statistical, visual and meta-analysis of microbiome data. Nucleic

Acids Res., 45, W180–W188.

Dixon,P. (2003) VEGAN, a package of R functions for community ecology.

J. Veg. Sci., 14, 927–930.

Edgar,R. (2016) UNOISE2: improved error-correction for Illumina 16S and

ITS amplicon sequencing. bioRxiv, 081257. Preprint at, https://www.bio

rxiv.org/content/10.1101/081257v1.full.

Edgar,R.C. (2013) UPARSE: highly accurate OTU sequences from microbial

amplicon reads. Nat. Methods, 10, 996–998.

Edgar,R.C. (2018) Updating the 97% identity threshold for 16S ribosomal

RNA OTUs. Bioinformatics, 34, 2371–2375.

Faith,D.P. (1992) Conservation evaluation and phylogenetic diversity. Biol.

Conserv., 61, 1–10.

Fernandes,A.D. et al. (2014) Unifying the analysis of high-throughput

sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing

and selective growth experiments by compositional data analysis.

Microbiome, 2, 15.

Finn,R.D. et al. (2016) The pfam protein families database: towards a more

sustainable future. Nucleic Acids Res., 44, D279–D285.

Galperin,M.Y. et al. (2019) Microbial genome analysis: the COG approach.

Brief. Bioinformatics, 20, 1063–1070.

Gloor,G.B. and Reid,G. (2016) Compositional analysis: a valid approach to

analyze microbiome high-throughput sequencing data. Can. J. Microbiol.,

62, 692–703.

Gloor,G.B. et al. (2017) Microbiome datasets are compositional: and this is

not optional. Front. Microbiol., 8, 2224.

Gotelli,N.J. and Colwell,R.K. (2001) Quantifying biodiversity: procedures

and pitfalls in the measurement and comparison of species richness. Ecol.

Lett., 4, 379–391.

Guillou,L. et al. (2013) The Protist Ribosomal Reference database (PR2): a

catalog of unicellular eukaryote small sub-unit rRNA sequences with cura-

ted taxonomy. Nucleic Acids Res., 41, D597–604.

Hacquard,S. et al. (2015) Microbiota and host nutrition across plant and ani-

mal kingdoms. Cell Host Microbe., 17, 603–616.

Hernández,M. et al. (2018) Fecal microbiota of toxigenic Clostridioides diffi-

cile-associated diarrhea. Front. Microbiol., 9, 3331.

Hill,M.O. (1973) Diversity and evenness: a unifying notation and its conse-

quences. Ecology, 54, 427–432.

Honda,K. and Littman,D.R. (2012) The microbiome in infectious disease and

inflammation. Annu. Rev. Immunol., 30, 759–795.

Huerta-Cepas,J. et al. (2016) EGGNOG 4.5: a hierarchical orthology frame-

work with improved functional annotations for eukaryotic, prokaryotic and

viral sequences. Nucleic Acids Res., 44, D286–D293.

Huse,S.M. et al. (2014) VAMPS: a website for visualization and analysis of mi-

crobial population structures. BMC Bioinformatics, 15, 41.

Huttenhower,C. et al. (2012) Structure, function and diversity of the healthy

human microbiome. Nature, 486, 207–214.

Jensen,L.J. et al. (2008) eggNOG: automated construction and annotation of

orthologous groups of genes. Nucleic Acids Res., 36, D250–D254.

Johnson,J.S. et al. (2019) Evaluation of 16S rRNA gene sequencing for species

and strain-level microbiome analysis. Nat. Commun., 10, 1–11.

Kanehisa,M. et al. (2017) KEGG: new perspectives on genomes, pathways,

diseases and drugs. Nucleic Acids Res., 45, D353–D361.

Keegan,K.P. et al. (2016) MG-RAST, a metagenomics service for analysis of mi-

crobial community structure and function. Methods Mol. Biol., 1399, 207–233.

Microbiome amplicon analysis platform 4291

https://www.biorxiv.org/content/10.1101/081257v1.full
https://www.biorxiv.org/content/10.1101/081257v1.full


Keylock,C.J. (2005) Simpson diversity and the Shannon-Wiener index as spe-

cial cases of a generalized entropy. Oikos, 109, 203–207.

Kumar,V. et al. (2019) Long-read amplicon denoising. Nucleic Acids Res., 47,

e104.

Langille,M.G.I. et al. (2013) Predictive functional profiling of microbial com-

munities using 16S rRNA marker gene sequences. Nat. Biotechnol., 31,

814–821.

Ley,R.E. et al. (2006) Microbial ecology: human gut microbes associated with

obesity. Nature, 444, 1022–1023.

Lin,H. and Peddada,S.D. (2020) Analysis of microbial compositions: a review

of normalization and differential abundance analysis. NPJ Biofilms

Microbiomes., 6, 60.

Louca,S. et al. (2016) Decoupling function and taxonomy in the global ocean

microbiome. Science, 353, 1272–1277.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol., 15, 550.

Lozupone,C. and Knight,R. (2005) UniFrac: a new phylogenetic method

for comparing microbial communities. Appl. Environ. Microbiol., 71,

8228–8235.

Mandal,S. et al. (2015) Analysis of composition of microbiomes: a novel

method for studying microbial composition. Microb. Ecol. Health Dis., 26,

27663.

Merkel,D. (2014) Docker: lightweight Linux containers for consistent devel-

opment and deployment. Linux J., 2014, 2.

Mielke,P.W. et al. (1976) Multi-response permutation procedures for a priori

classifications. Commun. Stat. Theory Methods, 5, 1409–1424.

Mitchell,A.L. et al. (2020) MGnify: the microbiome analysis resource in 2020.

Nucleic Acids Res., 48, D570–D578.

Morton,J.T. et al. (2019) Establishing microbial composition measurement

standards with reference frames. Nat. Commun., 10, 2719.

Mulder,C.P.H. et al. (2004) Species evenness and productivity in experimental

plant communities. Oikos, 107, 50–63.

NIH Human Microbiome Portfolio Analysis Team. (2019) A review of 10

years of human microbiome research activities at the US national institutes

of health, fiscal years 2007–2016. Microbiome, 7, 31.

Ondov,B.D. et al. (2011) Interactive metagenomic visualization in a Web

browser. BMC Bioinformatics, 12, Article number: 385.

Overbeek,R. et al. (2014) The SEED and the rapid annotation of microbial

genomes using subsystems technology (RAST). Nucleic Acids Res., 42,

D206–D214.

Paulson,J.N. et al. (2013) Differential abundance analysis for microbial

marker-gene surveys. Nat. Methods, 10, 1200–1202.

Petti,C.A. et al. (2005) The role of 16S rRNA gene sequencing in identification

of microorganisms misidentified by conventional methods. J. Clin.

Microbiol., 43, 6123–6125.

Quast,C. et al. (2013) The SILVA ribosomal RNA gene database project:

improved data processing and web-based tools. Nucleic Acids Res., 41,

D590–D596.

Quijada,N.M. et al. (2020) Austrian raw-milk hard-cheese ripening involves

successional dynamics of non-inoculated bacteria and fungi. Foods, 9, 1851.
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