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ABSTRACT A long-standing effort in biology is to precisely define and group phenotypes that characterize a
biological process, and the genes that underpin them. In Saccharomyces cerevisiae and other organisms,
functional screens have generated rich lists of phenotypes associated with individual genes. However, it is
often challenging to identify sets of phenotypes and genes that are most closely associated with a given
biological process. Here, we focused on the 166 phenotypes arising from loss-of-function and the 86 phe-
notypes from gain-of-function mutations in 571 genes currently assigned to cell cycle-related ontologies in
S. cerevisiae. To reduce this complexity, we applied unbiased, computational approaches of correspondence
analysis to identify a minimum set of phenotypic variables that accounts for as much of the variability in the
data as possible. Loss-of-function phenotypes can be reduced to 20 dimensions, while gain-of-function ones
to 14 dimensions. We also pinpoint the contributions of phenotypes and genes in each set. The approach we
describe not only simplifies the categorization of phenotypes associated with cell cycle progression butmight
also potentially serve as a discovery tool for gene function.
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The generation of systematic mutant collections in a variety of model
systems enables large-scale phenotypic screens, which are now
standard in academic and commercial settings. The first organism
for which such mutant collections became available is the budding
yeast Saccharomyces cerevisiae (Giaever andNislow 2014). As a result,
there is a wealth of phenotypes associated with most genes in that
organism, displayed in easily accessible databases (Engel et al. 2009;
Cherry et al. 2012). Gene Ontology (GO) techniques accurately
specify the semantic relationships between terms, and they are
indispensable for representing and organizing the accumulating bi-
ological knowledge (Ashburner et al. 2000). Curations of the literature

and computational approaches have given rise to the systematic
categorization of individual genes to biological processes.

However, given the numerous phenotypes often associated even
with a single gene, the more genes involved in a biological process, the
larger the number of phenotypes associated with that process. Hence,
despite the plethora of phenotypic information on a per-gene basis,
there is a loss in clarity and priority to the phenotypes most pertinent
to the biological process in question. For example, at the time of
preparing this report, based on the information on the Saccharomy-
ces Genome Database (Cherry et al. 2012), there were at least
571 S. cerevisiae genes assigned to cell cycle related processes (see
next Section). Collectively, there were 166 loss-of-function pheno-
types associated with these genes, with additional qualifiers raising
that number to 371 phenotypes. Among this bewildering set, iden-
tifying the phenotypic variables that cluster together in different
groups and the genes that drive this classification may offer new
insights into phenotype-phenotype and gene-phenotype associations
within this biological process.

Network-based approaches have been used to link diseases with
disease genes in humans, revealing common genetic origins of several
conditions (Goh et al. 2007). Widely used multivariate statistical
techniques can simplify related variables. Measuring the degree that
the observed variables correlate with each other, provides the basis for
the number of variables in a dataset to be reduced. If two or more
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phenotypic variables share some features, then based on the mag-
nitude and direction of the relationship, the observed complexity
may be simplified. Techniques implementing the above principles
include factor analysis and principal component analysis (Child
1990). For categorical data (e.g., the presence or absence of a
phenotype), a related approach is that of correspondence analysis
(Benzećri 1992).

Here, we identified 571 genes associated with cell division and cell
cycle progression. We applied correspondence analysis to examine
the numerous phenotypes associated with these genes, resulting both
from loss- and gain-of-function mutations. Some phenotypic asso-
ciations were generic, with mutations affecting vegetative and re-
spiratory growth, or resistance to toxins, pH, and metals. In other
cases, the clustering of some phenotypes and the gene associations
was consistent with the literature. For example, loss-of-function
mutations that affect shmoo formation andmating efficiency together
contributed most significantly in one of the dimensions. Likewise,
gain-of-function mutations affecting cellular morphology, size, and
budding index together contributed significantly in another dimen-
sion. Hence, systematic phenotypic associations provide a useful
dissection of biological processes and gene functions.

MATERIALS AND METHODS

Datasets
All the individual phenotypic reports for each genewere downloaded from
the Saccharomyces Genome Database (https://www.yeastgenome.org/).
Loss-of-function phenotypes included not only those reported for
‘null’ alleles, but also ‘conditional’, ‘repressible’, and ‘reduction of
function’ ones. Gain-of-function phenotypes included ‘activation’,
and ‘overexpression’. Phenotypes that arose from ‘unspecified’ alleles
were excluded from the analysis. To assemble the individual files into
a single spreadsheet, we used R language packages. The files were read
using the readr package. For example, for the loss-of-function files,
the command was: lof_files = list.files(path = ‘. . .’, pattern = “�.txt”,
full.names = TRUE). Then, the individual files were assembled into a
list, with the command: lof_list = lapply(lof_files, read_tsv). The list
components were combined into a dataframe with the following
command from the dplyr package: lof_parent_child ,- bind_
rows(lof_list, .id = NULL). The resulting spreadsheet is in
File2/sheet ‘lof_parent_child’. There were 371 loss-of-function
phenotypes associated with 561 genes. However, in many cases, the
phenotypic terms included qualifiers. For example, for the parent term
‘vegetative growth’ there were qualifiers, such as ‘increased’, ‘increased
rate’, etc. To simplify the analysis, we removed these qualifiers and
focused only on the 161 parent, loss-of-function phenotypic terms.
To split the parent terms from their qualifiers, we used the following
command from the tidyr package: lof_parent,- separate(data = lof_
parent_child, col = phenotypes_lof, into = c(“parent_ontology”,
“child_ontology”), sep = “:”, remove = TRUE, convert = FALSE,
extra = “warn”, fill = “warn”). The resulting spreadsheet is in File2/
sheet ‘lof_parent’. For the gain-of-function phenotypes, the analogous
spreadsheets are in File3/sheet ‘gof_parent_child’ and ‘gof_parent’.

To gauge whether phenotypic profiles for genes in the loss-of-
function dataset (lof_parent.txt) associate with functions, for each
gene pair, we calculated the semantic similarity based on Gene
Ontology annotations (Yu et al. 2010). For this analysis, the R
language package infotheo was used to calculate the mutual infor-
mation-based similarity metric for all pairs of genes. Then, the R
language package GOSemSim was used to calculate the semantic
similarity between gene pairs based on the GO annotations of either

molecular function, biological process or cellular component (Yu
et al. 2010). Significantly higher semantic similarity was indeed
observed between genes that have more similar phenotypic profiles
(Figure S1).

Factor analysis
Multiple correspondence analysis (MCA) was performed with the R
language package FactoMiner, and the related ones factoextra, and
FactoInvestigate. For the loss-of-function phenotypes, we used the
lof_parent spreadsheet as input (File2/sheet ‘lof_parent’), after it was
transposed, so that the phenotypic variables were columns and the
genes rows. Then we used the command: lof_MCA ,- MCA(lof_
parent, method = “Burt”). All the Eigen values associated with the
analysis are in File2/sheet ‘lof_eigen’. To identify the number of the
most significant dimensions, we used the command: dimRestrict(lof_
MCA), which identified 20 dimensions as the most significant. We
then re-run the MCA function for 20 dimensions, as follows: lof_
MCA ,- MCA(lof_parent, method = “Burt”, ncp = 20). The cosine
values from the correspondence analysis represent the correlation
coefficients (Child 1990). The cos2 values for the phenotypic variables
were obtained with the command ‘get_mca_var(lof_MCA)’ and listed
in File2/sheet ‘lof_var_cos2_20dim’. The cos2 values for the individ-
uals (genes) were obtained with the command ‘get_mca_ind(lof_
MCA)’ and they are listed in File2/sheet ‘lof_ind_cos2_20dim’. Based
on this analysis, each of the genes was assigned to one of the 20 most
significant dimensions (shown in File2/sheet ‘lof_gene_20dim’).

To interpret the dimensions, we used the ‘dimdesc’ function of
the FactoMiner R language package. For each dimension (the
example is for dimension 1), we run the command: res1_dimdesc
= dimdesc(lof_MCA, axes = 1:1, proba = 1). The results for each
dimension, with the R2 values for each phenotype and the associated
p-value, are in the sheets of File2 (e.g., ‘res1_dimdesc’ for dimension
1, and so on).

The analogous analysis was done for the gain-of-function phe-
notypes, and all the data are in File3.

Network visualization
For the networks shown in Figures S2-S4, we used the GeneMANIA
Cytoscape plugin (Montojo et al. 2010; Warde-Farley et al. 2010;
Montojo et al. 2014; Franz et al. 2018).

Data availability
The authors affirm that all data necessary for confirming the con-
clusions of the article are present within the article, figures, and tables.
All datasets (Files1-3) and Supplementary Figures (S1-S4) have been
deposited via a public repository (figshare): https://doi.org/10.6084/
m9.figshare.12234695.v1

RESULTS

Gene set
Before analyzing any phenotypes associated with cell division and cell
cycle progression, it is essential to identify the genes related to these
processes. At the time of writing this report, the biological process
‘cell cycle’ (GO:0007049) was defined as: “The progression of bio-
chemical and morphological phases and events that occur in a cell
during successive cell replication or nuclear replication events. Ca-
nonically, the cell cycle comprises the replication and segregation of
genetic material followed by the division of the cell . . .” (https://
www.yeastgenome.org/go/7049). There were 307 genes annotated to
the ‘cell cycle’ biological process (File1). However, we noticed that
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some genes that govern vital cell cycle events were not in this set. For
example, SIC1, encoding a cyclin-dependent kinase inhibitor that
must be destroyed for DNA replication to begin. Destruction of Sic1p
is the only essential function of G1 cyclins (Schneider et al. 1996).
Another gene that was not in the computationally annotated ‘cell
cycle’ genes was MPS1, which encodes a conserved kinase that is
essential for spindle pole body duplication (Liu and Winey 2012).

Consequently, we looked at additional biological processes (File1),
such as ‘DNA replication’ (GO:0006260), ‘chromosome segregation’
(GO:0007059), ‘cell division’ (GO:0051301). All the genes in the ‘cell
division’ process were annotated computationally and were also in
the ‘cell cycle’ set (Figure 1). However, several genes in the ‘DNA
replication’ and ‘chromosome segregation’ processes, were not an-
notated as ‘cell cycle’ genes (Figure 1). We also noted that there was
incomplete overlap between the genes that were annotated compu-
tationally or by manual curation within the ‘DNA replication’
and ‘chromosome segregation’ processes themselves (File1, sheets
0006260 and 0007059). To ensure that our list of cell cycle genes is as
comprehensive as possible, we started with all the genes in the ‘cell
cycle’ (GO:0007049), ‘DNA replication’ (GO:0006260), ‘chromosome
segregation’ (GO:0007059), and ‘cell division’ (GO:0051301) cate-
gories, and also included all the genes in all the ‘children’ categories to
the above gene ontology nodes. These additional categories (n = 100)
are listed in File1/sheet ‘categories’ (see also the individual sheets
numbered as the corresponding gene ontologies), and they were grouped
as ‘OTHER’ (see File1/sheet ‘sets_Figure 1’). The overlap between the ‘cell
cycle’ (GO:0007049), ‘DNA replication’ (GO:0006260), ‘chromosome
segregation’ (GO:0007059), ‘cell division’ (GO:0051301), and
‘OTHER’ sets is shown in Figure 1. A total of 185 genes were
unique to the ‘OTHER’ set. Overall, there were 571 unique genes in
all these, gene ontology-based, biological processes related to cell
division, and cell cycle progression (File1/sheet: ‘genes’).

Before proceeding to more detailed categorization of the distinct
phenotypes among cell cycle genes, we asked a more general question:
Is it reasonable to expect that genes with similar function(s) will also
have similar phenotypes? Indeed, we found that there is a significantly
higher semantic similarity between genes that have more similar
phenotypic profiles (Figure S1, and Materials and Methods). In the

rest of this study, we analyzed the loss- and gain-of-function phe-
notypes associated with each of these 571 genes.

Loss-of-function phenotypes
To analyze the 166 phenotypes associated with loss-of-function
mutations in 561 genes, we tabulated them as we describe in the
Materials and Methods. Correspondence analysis was performed
with the R language package FactoMiner, and the related ones
factoextra and FactoInvestigate (see Materials and Methods). We
found that there were 20 significant dimensions, accounting for�2/3
of the observed variance (Figure 2, bottom). The percentage of the
561 genes associated with each of these 20 dimensions is shown in
Figure 2, top. A detailed list is in File2/sheet ‘lof_gene_20dim’.

A major objective is to identify which phenotypic variables the
20 dimensions are the most linked to, in other words which pheno-
types describe the best each dimension. For the loss-of-function
phenotypes, this is shown graphically in Figure 3 (detailed lists for
each phenotype and dimension are in File2). The phenotypes that
were most significantly associated (an arbitrary cutoff was chosen at
R2 $ 0.2) with the most populous dimension (#1; 24% of all genes),
were very general, and not particularly informative (Figure 3):
chemical compound accumulation, respiratory or vegetative growth,
metal resistance, etc (see File2/sheet ‘res1_dimdesc’). The only other
cell cycle-related phenotype in this group was ‘cell size’. Cell size
changes are often interpreted as perturbations in the normal coupling
of cell growth with cell division (Jorgensen et al. 2002), albeit there is
not a strong correlation between cell size and the length of the G1
phase of the cell cycle (Hoose et al. 2012; Blank et al. 2018). In other
dimensions, interesting and expected associations were evident. For
example, ‘shmoo formation’, ‘bud neck morphology’, and ‘phero-
mone induced cell cycle arrest’ were associated with Dimension
2 (Figure 3). Secretory processes with the phenotypes affecting
‘endoplasmic reticulum distribution’, ‘peroxisomal morphology’,
‘Golgi distribution’ were associated heavily with Dimension 4,.
Similarly, ‘vesicle distribution’ and ‘vacuolar transport’ were associ-
ated with Dimension 15. The constellation of phenotypes associated
with loss-of-function mutations in TOR2 is unique. TOR2 is the only
gene in Dimension 16, with ‘metabolism and growth’ and ‘osmotic

Figure 1 Gene ontologies related to
cell cycle progression and cell division.
Matrix layout for all intersections of the
sets of genes we interrogated. Each
red bar represents the number that are
in the groups dotted black but not
gray. The biological processes were
‘cell cycle’ (GO:0007049), ‘DNA repli-
cation’ (GO:0006260), ‘chromosome
segregation’ (GO:0007059), ‘cell divi-
sion’ (GO:0051301). In ‘OTHER’ there
were genes grouped together from
various cell cycle-related ontologies,
as described in the text and in Mate-
rials and Methods. The size of the sets
is shown on the bar plot to the left. The
number of genes unique to the indi-
cated intersections is shown separately
on the bar plot to the right. The names
of all genes in each set are shown in
File1/sheet ‘sets_Fig1’. The graph was
drawn with the UpSet R language
package.
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stress resistance’ being the most prominent phenotypes. The
remaining dimensions were defined by phenotypes that were only
weakly (R2 $ 0.2) associated with cell cycle progression.

Gain-of-function phenotypes
There were 86 phenotypes associated with gain-of-function muta-
tions in 368 genes (from a total of 571 genes). The phenotypic
matrix was organized and analyzed as for the loss-of-function
mutations (see Materials and Methods). Based on correspondence
analysis we found that there were 14 significant dimensions (Figure
4, bottom), with the vast majority of genes grouped in just one
dimension (#2; see Figure 4, top). A detailed list is in File3/sheet
‘gof_gene_14dim’.

We next identified the phenotypic variables for the gain-of-func-
tion mutants describe the best each dimension (Figure 5, detailed lists
for each phenotype and dimension are in File3). Most genes (�60%)
were grouped in Dimension 2. The phenotypes that contributed most
significantly (R2 $ 0.2) to Dimension 2 were: ‘cellular morphology’,
‘budding index’ (a proxy for altered cell cycle progression), ‘cell size’,
and ‘cell cycle progression in G2 phase’ (Figure 5).

The clustering of relevant phenotypes was also evident in
other dimensions. For example, ‘chromosome segregation’, ‘spindle

morphology’, ‘position of spindle pole body’, and ‘cell cycle
progression in M phase’ were all strongly associated with Di-
mension 5. On the other hand, ‘pheromone induced cell cycle
arrest’, ‘mating efficiency’, ‘pheromone sensitivity’, ‘shmoo for-
mation’ were all clustered together in Dimension 1. In the same
Dimension, we also noticed the phenotypes ‘size of nucleus’ and
‘critical cell size at START – G1 cell size checkpoint’. These are
phenotypes associated with over-expression of the G1 cyclin
Cln3p. The CLN3 gene is most closely associated with Dimen-
sion 1 (see File 3/sheet ‘gof_gene_14dim’). We note that CLN3
was originally identified not only on the basis of reduced cell size
when over-expressed (Sudbery et al. 1980; Nash et al. 1988), but
also because it can bypass the pheromone-induced cell cycle
arrest (Cross 1988).

Comparisons with networks of genetic and
other interactions
How does the grouping of the cell cycle genes we described above
compare to other approaches? Functional interaction networks, based
on genetic or physical interactions among gene products, provide the
means to visualize the organization of cellular pathways. However,
when we displayed the network of all the reported genetic (Figure S2)

Figure 2 Phenotypic variance and gene associations
with the 20 dimensions from the multiple correspon-
dence analysis of the loss-of-function phenotypes of
cell cycle-related genes. Top, The percentage of
genes (x-axis) most closely associated with each
of the dimensions (y-axis). Bottom, The percentage
of the variance (x-axis) explained by each of the
dimensions shown (y-axis).
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or physical (Figure S3) interactions among all the cell cycle genes
(shown in File1/sheet: ‘genes’), there were no obvious higher-order
classifications. Co-localization of different proteins in the cell pro-
vides another means of gaining insight into higher-order classifica-
tion of gene products. By that co-localization measure, many cell

cycle genes were clearly organized in distinct clusters (Figure S4).
Nonetheless, there was no overlap between the gene products that
were co-localized, and the genes that belonged to the groups we
identified by phenotypic clustering. These results suggest that the
phenotype-based approach we described provides new information

Figure 4 Phenotypic variance and gene associations
with the 14 dimensions from the multiple correspon-
dence analysis of the gain-of-function phenotypes of
cell cycle-related genes. Top, The percentage of
genes (x-axis) most closely associated with each
of the dimensions (y-axis). Bottom, The percentage
of the variance (x-axis) explained by each of the
dimensions shown (y-axis).

Figure 3 Loss-of-function phenotypes associ-
ated significantlywith oneof the 20dimensions
identified by MCA. Each box corresponds to a
dimension for which one or more phenotypes
were significantly (R2 $ 0.2) associated with
that dimension, as described in the Methods
and listed in File2, in the ‘dimdesc’ sheets. The
wordclouds were generated with the word-
cloud R language package, using the R2 value
as the frequency value for each phenotype in
each dimension shown. The percentage values
shown in each case represent the variance
explained by that dimension, from the values
shown in File2/sheet ‘lof_eigen’.
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and expands the efforts to reveal the higher-order organization of cell
cycle gene products.

DISCUSSION
The results we presented are significant for several reasons:
First, the multitude of phenotypes associated with genes in-
volved in cell cycle progression can be grouped in a smaller
number of categories, simplifying their analysis and the gene
contributions to each category. Second, the phenotype-based
categorization we described provides a separate, independent
view of the biological process in question, which is not captured
by the network of the genetic or physical interactions among
the genes analyzed. Third, the approach we described ought to
apply to any biological process.

When testing gene function, the old maxim “when in doubt
knock-it out” took a more expansive turn with the availability of
genome-wide deletion sets. For several model systems, and especially
S. cerevisiae, these sets enable large-scale, often automated, pheno-
typic assays (Giaever et al. 2002; Giaever and Nislow 2014). As the
phenotypes associated with each gene increase, it becomes less clear
which of the phenotypes associated with each gene are the most
pertinent to the biological process in question. A key component in
addressing this issue is high-quality annotation from the available
databases. Gene Ontology (GO) categories standardize gene product
annotations with regards to molecular function, biological process,
and cellular component. S. cerevisiae is probably better annotated
than most other experimental organisms, with computational and
human-based approaches (Cherry et al. 2012). Yet, even in this
organism, as we showed for the cell cycle genes (Figure 1), there
is not a complete overlap among the different approaches, under-
scoring the need for continued efforts to improve systematic anno-
tation (Siegele et al. 2019).

Other approaches have also been developed that look for patterns
in existing annotations, with the objective to correct or improve those
annotations (Khatri et al. 2005). This is not the general objective of
the approach we described. We use current annotations from curated
databases to reduce the apparent complexity of the observed phe-
notypes to fewer, more manageable groups, revealing associations
between individual phenotypes and the genes that drive these asso-
ciations. The relative simple approaches we used here to cluster the
diverse phenotypes reported in the literature are scalable to other
biological processes and genomes.
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