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ABSTRACT Arcobacters are routinely recovered from marine environments, and
multiple Arcobacter species have been isolated from shellfish. Arcobacter bivalviorum
was recovered from mussels collected in the Ebro Delta in northeastern Spain. This
report describes the complete whole-genome sequence of the A. bivalviorum type
strain LMG 26154 (� F4T � CECT 7835T).

Members of the genus Arcobacter have been isolated from a wide range of hosts
and environments (1–3). While many Arcobacter species are routinely isolated

from terrestrial food animals, at least seven Arcobacter species have been recovered
from shellfish (4–13). Arcobacter bivalviorum is a catalase-positive, urease-negative
arcobacter that was isolated originally from mussels collected in the Ebro Delta in
Catalonia, Spain (6). The A. bivalviorum type strain LMG 26154 (� F4T � CECT 7835T)
was isolated in March 2007 from mussels of the Ebro Delta. In this study, we report the
first closed genome sequence of the A. bivalviorum type strain LMG 26154.

Arcobacter bivalviorum was grown at 28°C aerobically for 48 h on anaerobe basal
agar (Oxoid) amended with 5% horse blood, and genomic DNA was extracted as
described (14) from a 5-�l loop of cells. Shotgun and paired-end Roche 454 reads were
generated as described (14) and assembled into 40 contigs using Newbler (version 2.6)
with default parameters. A single chromosomal scaffold was produced from 21 unique
contigs and closed into a circular, contiguous sequence by using the 19 remaining
contigs that represent repeat regions, the Perl script contig_extender3 (14), and
directed PCR amplification followed by Sanger sequencing. PacBio sequencing was
performed as described (14), generating a single circular chromosomal sequence which
was inserted into a SeqMan version 8.0.2 (DNASTAR, Madison, WI) assembly comprised
of 454 and Sanger reads, creating a composite 454/PacBio chromosomal sequence and
assembly, and additionally verifying the order of the 454 contigs within the original
assembly. Base calls within this composite 454/PacBio chromosomal sequence were
verified using Illumina HiSeq reads (SeqWright, Houston, TX), as follows. The HiSeq
reads were also assembled within Newbler as described above; the resulting trimmed
contigs, with a per-base quality score of �40, were assembled onto the SeqMan
454/PacBio assembly. Sequences between the Illumina contigs were queried for single
nucleotide polymorphisms (SNPs) using the HiSeq reads and the “find variations/SNPs”
module within Geneious version 11.0.2 (Biomatters Ltd., Auckland, New Zealand). The
final coverage across the closed genome (i.e., a single circular chromosome with no
gaps or ambiguous bases) was 1,327�. Chromosomal assembly was also validated
using an optical restriction map (restriction enzyme XbaI; OpGen, Gaithersburg, MD).

A summary of the LMG 26154T genome features is presented in Table 1. A.
bivalviorum strain LMG 26154T has a circular genome of 2,684,688 bp with an average
GC content of 28.1%. Protein-, rRNA-, and tRNA-encoding genes were identified and
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TABLE 1 Sequencing metrics and genomic data for A. bivalviorum strain LMG 26154T

Feature Value(s)a

Sequencing metrics
454 (shotgun) platform

No. of reads 117,700
No. of bases 65,973,662
Average length (bases) 560.5
Coverage (�) 24.6

454 (paired end) platform
No. of reads 89,211
No. of bases 28,498,539
Average length (bases) 319.5
Coverage (�) 10.6

Illumina HiSeq platform
No. of reads 18,785,810
No. of bases 1,878,581,000
Average length (bases) 100
Coverage (�) 699.8

PacBio platform
No. of reads 356,337
No. of bases 1,588,024,540
Average length (bases) 4,456.5b

Coverage (�) 591.5

Genomic data
Chromosome

Size (bp) 2,684,688
G�C content (%) 28.11
No. of CDSc 2,584

Assigned function (% CDS) 961 (37.2)
General function annotation (% CDS) 1,018 (39.4)
Domain/family annotation only (% CDS) 180 (7.0)
Hypothetical (% CDS) 425 (16.4)
Pseudogenes 16

Genomic islands/CRISPRs
No. of genetic islands 4
No. of CDS in genetic islands 49
No. of CRISPR-Cas loci 0

Gene content/pathways
Signal transduction

Che proteins cheABCDRVW(Y)2

No. of methyl-accepting chemotaxis proteins 23
No. of response regulators 55
No. of histidine kinases 67, [1]
No. of response regulator/histidine kinase fusions 6
No. of diguanylate cyclases 30, [1]
No. of diguanylate phosphodiesterases (HD-GYP, EAL) 9, 5
No. of diguanylate cyclase/phosphodiesterases 12
No. of other 10

Motility
Flagellin genes flaAB

Restriction/modification
No. of type I systems (hsd) 0
No. of type II systems 1
No. of type III systems 0

Transcription/translation
No. of transcriptional regulatory proteins 64, [1]
Non-ECFd � factor �70

No. of ECF � factors 2
No. of tRNAs 47
No. of ribosomal loci 4

Nitrogen fixation (nif) No
Osmoprotection ectABC, proVWX
Pyruvate ¡ acetyl-CoA

Pyruvate dehydrogenase (E1/E2/E3) Yes
Pyruvate:ferredoxin oxidoreductase por

Urease No
Vitamin B12 biosynthesis Yes

aNumbers in brackets indicate pseudogenes or fragments.
bMaximum length, 29,273 bp.
cNumbers do not include pseudogenes. CDS, coding sequences.
dECF, extracytoplasmic function.
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annotated as described (15), with the exception that the composite proteome used
here for comparison included proteins derived from all currently completed Campylo-
bacter and Arcobacter genomes. The genome is predicted to encode 2,584 putative
protein-coding genes and 16 pseudogenes. Additionally, the LMG 26154T genome
contains 4 rRNA operons and 47 tRNA-encoding genes. Four genomic islands were
identified in the LMG 26154T chromosome. Two of these genomic islands are approx-
imately 10 kb in size, and two are approximately 15 kb in size. No plasmids were
identified in strain LMG 26154T.

Strain LMG 26154T contains 25 of the 30 genes necessary for de novo biosynthesis
of adenosylcobalamin (coenzyme B12) via the oxygen-independent (anaerobic) path-
way (16). Orthologs of cbiJ, cobA, cobC, fre, and pduX were not identified; however,
these enzymatic functions could be provided by other proteins or by orthologs with
low similarity to proteins currently in the NCBI nr database.

Data availability. The complete genome sequence of A. bivalviorum strain LMG

26154T has been deposited in GenBank under the accession number CP031217. Illu-
mina HiSeq, 454, and PacBio sequencing reads have been deposited in the NCBI
Sequence Read Archive (SRA) under the accession number SRP154993.
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