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Ergonomics of human workers is one of the key elements in design and evaluation of

production processes. Human ergonomics have a major impact on productivity as well

as chronic health risks incurred by inappropriate working postures and conditions. In this

paper we propose a novel method for estimating and communicating the ergonomic

work condition called Binary Work-Condition Map, which provides a visualized feedback

about work conditions of different configurations of an arm. The map is of binary

nature and is derived by imposing the desired thresholds on considered ergonomic and

safety related criteria. Therefore, the suggested arm postures in the map guarantee

that all considered criteria are satisfied. This eliminates the ambiguity compared to

state-of-the-art maps that uses continuous scales derived from weighted sum of multiple

ergonomics criteria. In addition, to combine the advantages of both the binary map

and the continuous map, we additionally propose a Hybrid Work-Condition Map that

rules out unsuitable workspace with the binary map approach and renders the suitable

workspace with the continuous map approach. The proposed approach was tested

in simulation for various tasks and conditions. In addition, we conducted subjective

evaluation experiments to compare the proposed methods with the state-of-the art

method regarding the usability. The results indicated that the binary map is simpler to

use, while the hybrid map is a good tradeoff between the binary and the continuous map.

In selecting the map, strong points of each map should be considered with respect to

the requirements of a specific application and task.

Keywords: Work-Condition Map, ergonomic human arm posture, biomechanical model, graphical user interface,

interactive exploration

1. INTRODUCTION

Robots have successfully supplemented human workers in modern manufacturing processes.
Nevertheless, in many cases, robots did not replace the human workers, who are still an essential
element at various production stages. While robots can work safely and efficiently without getting
tired for extended periods of time, human workers are prone to productivity degradation when
ergonomics is not taken into account. This is true both when the humans work on their own and
when they work with machines, such as collaborative robots.

One of the major issues regarding human ergonomics are improper working postures, which
can produce excessive joint torques that are detrimental to the current task efficiency, as well
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as to health and safety of the human in the long run
(Keyserling and Chaffin, 1986; Kumar, 2001). Earlier methods
of evaluating ergonomics of working postures, like Rapid Upper
Limb Assessment (RULA) (McAtamney and Corlett, 1993) and
rapid entire body assessment (REBA) (Hignett and McAtamney,
2000), used predefined heuristic tables that indicate a score
of particular joint configuration. The combination of scores
for all joints then gives the final score for the entire working
configuration of an arm or a body. Recently, RULA and
REBA have been applied to determine ergonomic postures in
human-robot collaboration (Busch et al., 2017; Marin et al.,
2018; Shafti et al., 2019). Other methods (Snook and Ciriello,
1991; Waters et al., 1993) used tables or equations to provide
physical limits that should not be exceeded in terms of load
during lifting tasks. Nevertheless, tables are more difficult to be
personalized for a specific worker, and are more difficult to be
generalized for different tasks and conditions. In addition, there
are other important underlying indicators that affect the human
ergonomics beyond kinematic posture and lifting load.

More recent methods included other indicators to optimize
human working configuration, such as muscle comfort (Chen
et al., 2018), physical fatigue (Maurice et al., 2016; Peternel
et al., 2018b), energy consumption (Kim et al., 2010; Maurice
et al., 2016), and arm manipulability (Jacquier-Bret et al., 2012;
Gopinathan et al., 2017; Peternel et al., 2017; Petrič et al.,
2019). In addition, they used personalized human body models
(Maurice et al., 2014; Maurice et al., 2016; Kim et al., 2018a),
which can be more easily integrated into collaborative robot
controllers and generalized for many tasks. When a human is
collaborating with a robot, we can use the robot to optimize the
collaborative task execution based on the dynamical models of
the human worker. Methods in Vahrenkamp et al. (2016)and
Peternel et al. (2017) allowed the robot to plan the optimal
handover of tools and objects between humans and robots
by considering various factors, such as human dexterity and
joint torques. Methods in Kim et al. (2018a) and Peternel
et al. (2017) enabled the robot to detect the overloading joint
torques in human body and then physically guide the human to
change configuration online during the working process. Other
methods in Peternel et al. (2018b, 2019) let the robot to estimate
the human worker’s muscle fatigue and then minimized it by
reconfiguration of task execution. A similar method was also
employed for ergonomic reconfiguration of human operator’s
arm in teleoperation (Peternel et al., 2020).

In Mansfeld et al. (2018), the authors proposed a concept
called SafetyMap, which used the information about robot inertia
in different states of the workspace in combination with human
injury data, to give workers a visual representation about the
safety of interaction. Nevertheless, this map only examined safety
in terms of possible collisions and gave no consideration to other
major factors that affect the human ergonomics, such as joint
torque, posture, and fatigue. Several methods used either one
of these factors as ergonomics criterion (Kim et al., 2018a,b;
Lorenzini et al., 2019; Peternel et al., 2019; Petrič et al., 2019).
The method in Maurice et al. (2016) considered multiple criteria,
but did not provide a combined overall ergonomics index. The
methods in Peternel et al. (2017) and Chen et al. (2018) combined

two ormore criteria to derive the optimal arm posture, but lacked
a visual interface to convey the information about ergonomic
suitability of the whole workspace.

In Vahrenkamp et al. (2016), the authors proposed a concept
called Interaction Workspace, which provided a visual color map
of the workspace that indicated what arm postures are most
suitable for task execution. Each posture had an index value
that depended on a combination of several ergonomics criteria,
such as human joint torque and dexterity. The index values were
represented by color spectrum (i.e., one side of color spectrum
for unfavorable values and the other side for favorable values).
Nevertheless, the overall index for each posture was calculated by
a weighted sum of all involved criteria (Vahrenkamp et al., 2016),
therefore the contribution of each individual criterion may be
unclear to users. Specifically, it may not be intuitive to a casual
worker (and even experts) what a specific overall index value
and its assigned color mean in terms of individual ergonomics
factors. Moreover, due to the weighted sum, the overall index
cannot guarantee that a given working posture does not exceed
ergonomic thresholds of any individual criteria. These problems
are also shared with RULA (McAtamney and Corlett, 1993)
and REBA (Hignett and McAtamney, 2000), which provide a
combined score from individual scores of different joints.

To resolve the above-mentioned issue, we propose a novel
concept called Binary Work-Condition Map. Unlike methods
that use weighted sum of various criteria (Vahrenkamp et al.,
2016), the proposed method uses a threshold based approach for
various criteria to obtain the overall ergonomics index at different
positions of the workspace. This index is therefore binary and
can potentially be more intuitive and easier to understand. For
example if the index is one (logical true) in a given position, it
means that all ergonomics criteria comply with the respective
thresholds, which can be defined by the established safety and
health standards and set by experts. If it is zero (logical false),
then it is clear to a casual worker that a given working position
does not satisfy all the standards and thresholds set by experts.
In multi-color map (Vahrenkamp et al., 2016), this is not clear,
because even in the safest "green" area, one of the thresholds
might be exceeded, if the other factors are predominately satisfied
due to the weighted-sum nature of derivation.

An additional contribution of the proposed work-condition
map method is a novel display feature that can indicate
ergonomic states of multiple arm postures sharing the same
endpoint position for human arms, which possess such intrinsic
kinematic redundancy. Such a feature is missing in the state-of-
the-art work-condition map methods.

2. METHODS

An interactive Binary Work-Condition Map guides human
workers to place their arms in appropriate postures for
performing quasi-static manipulation tasks in an ergonomic and
safe way. The method takes into account multiple task-related
parameters and upper limb dynamic model (Saul et al., 2015)
to create and if necessary update the binary map of suitable and
non-suitable working postures. This map can be used to provide

Frontiers in Neurorobotics | www.frontiersin.org 2 January 2021 | Volume 14 | Article 590241

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Peternel et al. Binary and Hybrid Work-Condition Maps

SPECIFICATION OF TASK

AND WORKER PARAMETERS 

SPECIFICATION OF

THRESHOLDS

EXPERT

INPUTS

ENDPOINT

POSE

JOINT

CONFIGURATION

OFFLINE

CALCULATION 

ONLINE

EXPLOITATION

LIBRARY OF TASK TYPES

DRILLING ASSEMBLY CUTTING

LIBRARY OF ERGONOMICS CRITERIA

ENDURANCE
JOINT

TORQUE

SCALAR

MANIP.

LIFTING CARRYING

INTERACTIVE EXPLORATIONGRAPHICAL USER

INTERFACE (GUI)

GREEN/RED POINTS INDICATE

IF WORKING POSE SATISFIES

SPECIFIED THRESHOLDS 

DEFINED BY EXPERT

ERGONOMIC TASK

EXECUTION

NO MEASUREMENTS ARE

REQUIRED DURING THIS

STAGE

SELECTED

TASK TYPE

SELECTED

CRITERIA

BINARY WORK-CONDITION

MAP GENERATOR

PARAMETERISED WORK CONDITION

OPERATED BY WORKER

VECTOR

MANIP.

FIGURE 1 | An overall diagram of the generation and usage of the proposed interactive task-oriented Binary Work-Condition Map.

human workers with posture guidance for accomplishing tasks
independently. Alternatively, it can be shared with collaborative
robots that are working together with human co-workers in order
to optimize the collaboration. The workflow framework of the
proposed interactive Binary Work-Condition Map is shown in
Figure 1.

When a human worker is assigned to perform a specific task
within the manufacturing process, the method categorizes the
task by its type. The type of the task is associated with either a
single criterion or multiple ergonomics criteria, which are used to
evaluate various ergonomics and safety related work conditions
during manipulation (e.g., joint torque, posture, fatigue, etc.).
Different task types have different sets of associated criteria
(see the top-right corner of Figure 1) and are represented in a
library that is predefined based on the task knowledge provided
by experts. For instance, in a task that requires a large force
production for a short duration (e.g., lifting an object), the key
criteria are joint torque and posture due to the large force,
while fatigue is not dominant due to the short duration. In a
task that requires a small force production for a long duration,
fatigue becomes dominant and instantaneous joint torques play
a lesser role.

The major types of criteria that we considered are joint
torque, endurance, and manipulability. Instantaneous joint
torque is important in terms of safety, as it can lead to various
short-term and long-term injuries (Keyserling and Chaffin,
1986; Kumar, 2001; Kim et al., 2018a). On the other hand,
integrated joint torque over time will lead to muscle fatigue
(Peternel et al., 2018a,b, 2019), which can degrade the human
worker’s performance and endurance (De Luca, 1984; Enoka
and Duchateau, 2008; Ma et al., 2009). The fatigue therefore

translates to endurance time, after which the worker cannot
perform the required task production forces. The posture affects
the manipulability of the human arm, which defines how well
it can produces motion or forces at the endpoint (i.e., hand) in
various directions of Cartesian space (Yoshikawa, 1985a,b; Petrič
et al., 2019). The manipulability measure can be either scalar or
vector. Scalar manipulabilitymeasure indicates how well the arm
endpoint can produce both motion and force in all directions.
For example, this measure is useful when the worker has to
perform complex assembly tasks, where both motion and force
are important in various directions to complete them. On the
other hand, vector manipulabilitymeasure indicates how easy the
arm endpoint can produce either motion or force in a specific
direction of Cartesian space. For example, this measure is useful
when the worker has to lift or carry a heavy object, where a
good force production capability is necessary in the direction of
the gravity.

Table 1 shows a library of considered tasks and criteria. For
this study we considered five common manipulation tasks and
four ergonomics criteria that are most relevant for manipulation
tasks. Drilling task usually requires holding a heavy tool and
producing relatively large forces for a prolonged time, therefore
joint torque and endurance time are critical. Furthermore, the
drilling force is in a specific direction, thus vector manipulability
should be considered. Cutting and lifting require large effort as
well, but only for a shorter time compared to drilling, therefore
endurance time is not as important. On the other hand, carrying
is typically a longer action than lifting and therefore requires
endurance time consideration. Finally, a typical part assembly
might not demand a lot of joint torque effort, however it may take
a while thus endurance time is important. In addition, complex
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TABLE 1 | A library of common manipulation tasks and ergonomics criteria that

are considered in this study.

Joint

torque

Endurance

time

Scalar

manipulability

Vector

manipulability

Drilling ✔ ✔ ✗ ✔

Assembly ✗ ✔ ✔ ✗

Cutting ✔ ✗ ✗ ✔

Lifting ✔ ✗ ✗ ✔

Carrying ✔ ✔ ✗ ✗

The marks ✔ and ✗ indicate whether a specific criterion is relevant for a specific task or

not, respectively.

assembly tasks require producing forces and motion in various
directions, therefore scalar manipulability is more important
than vector manipulability. Note that this is a general framework
and the considered tasks and criteria can be expanded. Certain
criteria may become relevant or irrelevant depending on the
specifics. For example, if an assembly task takes a lot of time,
endurance time is relevant, while if it can be done quickly, it
becomes irrelevant. When new tasks are added, a conceptual
analysis is necessary to determine which ergonomics criteria
are relevant.

When all the relevant criteria are determined according to
the associated task type, the experts can set the thresholds for
each ergonomics criteria. For example, if a certain amount torque
is known to cause injuries and long-term health problems, the
threshold is set conservatively below such limit. We should
stress again that thresholding approach is the key difference
compared to the existing methods that use weighted sum of
criteria (Vahrenkamp et al., 2016). The proposed approach can
guarantee that the preset thresholds for individual criteria will
not be exceeded when the worker maintain the posture in the
prescribed ergonomic area, while the continuous-conditionmaps
obtained by a weighted sum cannot guarantee that.

The threshold can be set as a fixed limit below or above which
the working arm posture is ergonomic as

ci =

{

1 if vi(q,P) < vth,i

0 if vi(q,P) ≥ vth,i
, (1)

where ci is the binary index of i-th criterion, vi is the i-th variable
(e.g., joint torque, endurance time, etc.), and vth,i is the respective
threshold. Variable vi depends on arm posture that is defined
by joint angles q and input parameters P, which include task
production force fref and other conditions. Note that inequality
signs in (1) can be reversed, depending whether the more
ergonomic state is below or above threshold. For example, in case
of joint torque, the more ergonomic state is naturally below the
threshold torque. In case of scalar manipulability, it is above the
threshold since the larger manipulability is more ergonomic.

Alternatively, the threshold can be set as a range when the
variable should be within some interval as

ci =

{

1 if vmin,i < vi(q,P) < vmax,i

0 if else
, (2)

where vmin,i and vmax,i are minimum and maximum threshold
of the range, respectively. For example, (2) can be used instead
of (1) when we want to make sure the joint torque does not
exceed the safe limits (upper threshold vmax), but on the other
hand, we do not want the worker to become too inactive (lower
threshold vmin).

The parameters are passed on to the Binary Work-Condition
Map generator that creates a workspace map for a given task by
calculating a binary ergonomic state for each arm posture within
the workspace as

ebink (qk) = c1 ∧ c2 ∧ ...cn, (3)

where ebin
k

is the combined overall binary index for k-th human
arm configuration qk, calculated by a logical AND operation ∧

among the individual binary indices of various criteria ci, i =

(1, 2, ...n). The considered criteria (joint torque, endurance
time, and scalar and vector manipulability) and Binary Work-
Condition Map generator are defined and described in the
following subsections.

For comparison, the proposed threshold based approach is in
contrast to the weighted-sum based approach in (Vahrenkamp
et al., 2016), which produces a continuous ergonomic state for
each arm posture as

econk (qk) = c1w1 + c2w2 + ... cnwn, (4)

where in this case criteria ci have continuous values and wi are
their respective weights.

The advantage of the binary map is to be able to guarantee that
the thresholds are met for all ergonomics criteria, however it has
only binary states and better configurations among the good ones
cannot be distinguished. On the other hand, the continuous map
has more states and can therefore distinguish between different
levels of good configurations, however it cannot guarantee that
the thresholds for all criteria are met, even if the configuration is
in the green section. That is because weighted-sum approachmay
produce a high score whenmajority of criteria are high, while one
of them is very low and below a threshold.

In order to exploit the advantages of both the binary map
and the continuous map, we also propose a novel hybrid map.
In this approach, the binary map is used as a mask over the
continuous map in order to filter out all configurations that do
not meet the thresholds of all criteria. The remaining suitable
sections of workspace are then colored by the continuous map
in order to provide the user with a distinction between different
levels of good configurations. The proposed hybrid map can be
mathematically formalized as

e
hyb

k
(qk) = ebink (qk) · e

con
k (qk), (5)

In practice, the section of workspace that is red in the binary map
remains red, while the green section can be recolored with a color
scale to indicate multiple levels of goodness. Note that if applying
very strict thresholds in the binary map, the border of the mask
might be already in the green sections of the continuous map. To
exploit the full color spectrum and better to distinguish different
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levels of goodness for different points, the continuous sections of
the hybrid map can be rescaled; for example, so that yellow color
will start at the border instead of green color.

2.1. Joint Torque
The quasi-static relation between the human arm joint torques
and endpoint force related to the task production is defined as

τ = JT(q)f+ g(q), (6)

where τ is the joint torque vector of the human arm, f is the
endpoint force vector, J is the geometric Jacobian matrix of the
human arm, qh is the joint angle vector, and gh is the gravity
torque vector of the arm. As it can be seen from (6), the joint
torque is affected by the force that is actively produced as a result
of task performance, and the gravity of the human arm itself. The
joint torque is calculated by using a human arm biomechanical
model from Fang et al. (2018), which is based on the model
developed in Holzbaur et al. (2005).

2.2. Endurance Time
Endurance time in which the human can perform the task with
a specified force f is related to physical fatigue. We estimated the
fatigue based on the model proposed in (Peternel et al., 2018b),
which follows first-order system dynamics as other established
models from the literature (Ma et al., 2009). Here we used joint
torque as an effort estimation parameter as in (Maurice et al.,
2016; Lamon et al., 2019). The fatigue model for each joint is
defined as a first-order system of differential equations as

dui(t)

dt
=

{

(

1− ui(t)
) |τi(q,t)|

λi
if |τi(t)| ≥ τth,i

−ui(t)
R
λi

if |τi(t)| < τth,i
, (7)

where ui ∈ [0 1] is the i-th joint fatigue index, τi is calculated
from (6) for a given time t and configuration q, λi is a
capacity parameter that determines the joint-specific fatigue
characteristics. The parameters λ are dependent on individual
human and joint. The higher the λ is, the more effort τ over time
it takes for the fatigue to occur. The parameterR is a recovery rate,
which determines the speed of fatigue reduction after the arm is
relaxed. In our experiments we used a conservative value R = 0.5,
as in (Peternel et al., 2018b) for all the joints. Other recovery
rates can be found in literature (Ma et al., 2010). We used the
threshold τth,i to determine when the arm joint is relaxed. When
the joint torque is larger than this threshold, the model is in
fatigue increasing mode, otherwise it is in recovery mode.

The values of fatigue capacity parameters λ of individual arm
joints can be estimated by themethod proposed in (Peternel et al.,
2018b). In this procedure, the human produces several reference
joint torques τcalib for the amount of time Tcalib, after which
the human cannot endure it anymore or feels uncomfortable. In
other words, one chooses τcalib and measures respective Tcalib.
Capacity λ for each reference torque τcalib is then derived by

λ = −
|τcalib| · Tcalib

ln(1− 0.993)
, (8)

where the full capacity is assumed to be reached after five time
constants, i.e., u = 0.993. The mean value of λ parameters,
calculated by (8) for different reference forces, is then used as the
final estimation of fatigue capacity for each joint separately.

The maximum endurance time T for an arbitrary joint torque
τ is then obtained by,

T = −
λ · ln(1− 0.993)

|τ |
. (9)

2.3. Scalar Manipulability
The scalar manipulability measures how well the arm endpoint
can produce both motion and force in all direction of Cartesian
space, and can be derived as Yoshikawa (1985b)

w =

√

det(J(q)J(q)T), (10)

where the higher value means more capacity to produce both
motion and force at the endpoint. If the task requires complex
manipulation that involves movements and force of the endpoint
in various directions (e.g., complex assembly), it should be
performed around the configuration where the manipulability w
is the highest.

2.4. Vector Manipulability
The manipulability can also be examined on a vector level by
using Eigen decomposition or singular value decomposing of arm
Jacobian matrix (Yoshikawa, 1985b). Velocity manipulability is
derived as

U6VT = J(q)J(q)T , (11)

where 6 are singular values, while U and V are left and right
singular vectors, respectively. 6 and U determine the size and
shape of velocity manipulability ellipsoid, respectively. The size
of a vector from the center of the ellipsoid to its surface in
any direction tells how well the arm endpoint can move in that
direction. Force manipulability is derived as

U6VT =

(

J(q)J(q)T
)−1

, (12)

where singular values and vectors have similar roles as in velocity
manipulability. The force manipulability ellipsoid is able to tell
how well the arm endpoint can produce or sustain forces in a
certain direction.

The major axes of force and velocity manipulability are
orthogonal; therefore if the arm in a given configuration can
produce large velocities in a certain direction, then a large
force cannot be produced in that direction, and vice-versa. For
example, if the task requires to produce or sustain high forces in
a certain direction (i.e., lifting a heavy object), the highest force
manipulability vector should be aligned with that direction [i.e.,
(12) should be used]. If we need to move the manipulated object
fast in a certain direction, the highest velocity manipulability
vector can be aligned with that direction [i.e., (11) should be
used]. In connection to the scalar manipulability from (10), high
w tends to make velocity and force manipulability ellipsoids
closer to a sphere.
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FIGURE 2 | Discretization of arm posture in terms of hand position in the proposed Binary Work-Condition Map by using human biomechanical model.

2.5. Binary Work-Condition Map Generator
To evaluate all possible arm postures, subject to selected
workspace and joint limits, the whole configuration space of
human arm is discretized in terms of the Cartesian-Posture-
Swivel-Angle (CPSA) representation of human arm configuration
(Fang et al., 2019). In this CPSA representation, a human arm
configuration is expressed by a 3-degrees-of-freedom (DoF)
position and 3-DoF orientation of human hand, plus 1-DoF
swivel angle of the elbow, which is determined by the angle
between a shoulder-elbow-wrist human arm plane and a vertical
plane (Tolani et al., 2000).

Figure 2 provides an example of the discretization of arm
posture in terms of hand (endpoint) position and Figure 3

provides two examples of the discretization of the arm posture in
terms of swivel angle. A hand position and swivel angle step sizes
are predefined in advance. Every possible arm posture is tested
under the desired external force required to produce the task
(e.g., F shown in Figure 2). This is done automatically through an
individual simulation using an OpenSim biomechanical model
(Saul et al., 2015; Seth et al., 2018). The collected data for each
posture is analyzed by (3) according to all the associated criteria
and predefined thresholds. If all the criteria are satisfied and
ek(qk) = 1, the arm posture qk will be labeled as a feasible
configuration, otherwise it will be labeled as an infeasible posture.

After the offline calculation stage, the tested hand positions are
visually presented to a worker through the developed graphical
user interface (GUI) as a binary map of Cartesian points, where
ergonomically feasible points are displayed by green color and
infeasible by red color. Prior to the interactive exploration
stage, the human worker attaches a set of pose-measurement
markers on the anatomical landmarks of his/her arm. During
the interactive exploration stage, the current arm posture is then
captured by an optical motion capture system and reconstructed
in a graphical user interface (GUI) in real time (Fang et al., 2018).
This enables the worker to interactively explore the workspace

in real time through the GUI and generated map in the online
exploitation stage.

Since there is a redundancy in the human arm, there are
multiple possible configurations for a single hand position. The
hand position is displayed as feasible (green color), if there is at
least one feasible configuration within that hand position. The
worker can then move the hand into that point and explore it by
changing the configuration through swivel angle and redundant
DoF in real time. If the configuration satisfies the criteria, the
elbow point of the simulated human arm on the interactive
map turns green, if not it turns red. Note that redundancy
was not considered in (Vahrenkamp et al., 2016), therefore the
proposed redundancy-display approach is novel in terms of
interactive maps.

The examples of maps created for two arms of different
dimensions are illustrated in Figure 3. Through interactive self-
supervised exploration manner, the worker is able to establish
an intuitive sense of how he/she should place the arm in
appropriate configurations for performing the specified task. This
self-supervised exploration can be further divided into practicing
in the air and practicing with the real tool to help the user
memorize the desirable arm configuration step by step. When
a feasible arm posture is selected and memorized after the
interactive exploration, the worker can execute the actual task
without the assistance of the GUI and motion capture system.

3. EVALUATION AND RESULTS

The evaluation was separated into concept demonstration
and experiments. The concept demonstration included
demonstration of all aspects that does not include subjective
factors of human worker (i.e., parts outside of blue area
in Figure 1). These included technical calculation of work-
condition maps taking a combination of different task
parameters and criteria into account. The additional experiments
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FIGURE 3 | A series of Binary Work-Condition Maps generated for five different tasks and two different human arm dimensions. Arm 1 had upper arm and forearm

lengths 0.250 and 0.266 m, repetitively. Arm 2 had upper arm and forearm lengths 0.323 and 0.232 m, repetitively. X-axis point right of the body, y-axis points in front

of the body and z-axis point vertically. The frame origin is at the right shoulder position. Green colored point indicates that if the endpoint is placed in it, at least one

arm configuration exist where all criteria are within thresholds. Red colored point indicates that there are no ergonomic configurations in that position.

then evaluated aspects that involve subjective perception of
human worker, i.e., usability factors of the developed binary and
hybrid maps compared to the existing continuous map.

3.1. Concept Demonstration
To evaluate the offline part of the method, we calculated a Binary
Work-Condition Map for each of the five considered tasks from
the library in Table 1. For each map, the associated relevant
ergonomics criteria were used to determine whether the available
arm postures within the workspace are suitable or not. A 0.16
x 0.12 x 0.16 m cuboid in front of the body was selected as the
workspace, with its center at (x, y, z) = (0.0, 0.3, 0.0) m with
respect to a base frame located at the right shoulder center. The
positive x-axis of the base frame points rightwards from the
shoulder, while the positive y-axis and z-axis points forwards
and upwards, respectively. The condition was calculated for every
point within the cuboid with resolution of 0.02 m. Note that
the workspace and resolution can be adjusted depending on
the scenario.

To demonstrate the effect of different arm dimensions on the
calculation of the map, we generated five maps for two right
arms of different dimensions. For the first human, the arm upper

arm length was 0.250 m and the forearm length was 0.266 m.
For the second human, the arm upper arm length was 0.323
m and the forearm length was 0.232 m. We used one average
and one extreme arm dimensions in order to highlight the
conceptual differences.

Ten maps are produced based on the calculated results shown
in Figure 3. By observing the maps on the figure, we can see that
tasks have major influence on the map layout. For instance, the
more demanding tasks in terms of physical effort, e.g., lifting and
carrying (fourth and fifth rows), have very few arm configurations
in green state that satisfy all selected ergonomics criteria. On the
other hand, tasks that require less physical effort, like cutting
(third row), have more arm configurations in green state. While
complex assembly (second) is not a physically demanding task,
it does have requirements from high manipulability; therefore
areas, where the arm has to be extended, are in red state. Note
that in order to highlight the differences between the tasks, we
intentionally used relatively strict thresholds.

The influence of arm dimensions is also clearly visible by
comparing the two columns. Different arm dimensions produced
noticeably different values of scalar manipulability for assembly
task (second row), and different values of velocity manipulability
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FIGURE 4 | A closer look at two of the maps from Figure 3 with the same human arm displayed in different configurations. The examples show the arm in the same

endpoint position (x, y, z) = (0.0, 0.28, 0.08) m, with four different configurations, for two different tasks. The shoulder is located at (x, y, z) = (0, 0, 0) m and is displayed

by a large black sphere. The elbow is displayed by either green or red sphere, which indicates whether the configuration satisfies the ergonomics criteria. Hand

(endpoint) is displayed by either green or red star, where there is at least one ergonomics configuration when it is colored in green.

for the cutting task (third row). In addition, the maps for the
drilling task were also considerably different because of a different
combination of force manipulability and joint torque results due
to different arm dimensions.

Figure 4 shows a closer look at two maps of the same
human arm for two different tasks from Figure 3. Four arm
configurations of evenly spaced swivel angles with the same
endpoint position are displayed on each map (the resolution of
swivel angle is 30 degrees). Since the work conditions are different
because of the different tasks, the ergonomic states are different.
In the cutting task (left plot) the endpoint position is in a green
state, since there are two out of four configurations that satisfy
all ergonomics criteria. Whether the configuration is ergonomic
or not is indicated by green or red elbow, respectively. On the
other hand, in the drilling task (right plot) the same endpoint
position is in a red state, since there are no configurations that
satisfy all ergonomics criteria. Therefore, all four configurations
have red elbow.

Note that in this example we used four configurations
for every endpoint position within the selected workspace.
The amount of configurations per endpoint can be arbitrarily
increased or decreased, depending on the use cases.

3.2. Experiments
The conceptual differences and advantages of the binary map
compared to the continuous map were highlighted in section 2,
and the main features of the proposed method were shown in
section 3.1. Additionally, we performed experiments to compare

the different types of maps in terms of usability factors. The
goal of the experiment was to evaluate subjective aspects of
the proposed binary and hybrid-condition maps, compared to
the continuous-condition map. We chose the continuous map
as a benchmark in the comparison since it is a state-of-the-
art method. Unlike the proposed method, the continuous map
method (Vahrenkamp et al., 2016) did not consider redundant
DoF of human arm and did not have any visualization solution
for the redundant DoF. Therefore, in order to make a fair
comparison, the experiments were performed using degenerate
maps constrained on a 2D vertical plane, which is parallel
to the human body sagittal plane and passes through the
shoulder center.

We used 15 male participants in the experiment with age
27.60±8.88 years, upper arm length 32.23±1.85 cm and forearm
length 27.93 ± 1.30 cm. The participants were briefed about
the experiment procedure and the purpose of the experiment,
and gave an informed consent to participation. We adapted the
biomechanical model and parameters based on each individual
participant during the calibration stage prior to the experiment.

The experiment setup (see Figure 5) included a motion
capture system (Optitrack) that measured human arm
configuration in real-time and a display (GUI) that showed
the ergonomics maps with respect to the virtual copy of the
human arm. The virtual copy of the arm moved in the same
manner as the real arm according to the measured configuration.

Before the actual experiment, the participant conducted a
familiarization experiment in order to get familiar with the
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MOTION CAPTURE SYSTEM

GRAFICAL USER INTERFACE

OPTICAL

MARKER

TOOL

BINARY MAP

CONTINUOUS MAP HYBRID MAP

FIGURE 5 | Experiment setup consists of a motion capture system (Optitrack) for tracking the human posture in real time and a graphical user interface (GUI) on a

monitor that provides on-line guidance for locating ergonomic arm postures to a human worker. Examples of binary, continuous and hybrid maps rendered by the GUI

are shown on the right side. Note that the difference between the maps arises from two completely different underlying concept of calculating the maps. The binary

map uses thresholding and binary AND operation between different criteria [i.e., (3)]. The continuous map uses weighted sum of those criteria [i.e., (4)]. The hybrid

map uses a combined approach [i.e., (5)].

setup and the methods. The experimenter explained to the
participant the implications of the different colors of the map
in layman terms (e.g., the green color indicates good arm
working posture and red indicates bad arm working posture).
During the actual experiment the participant was instructed
to explore workspace and to select an arbitrary suitable arm
working posture. After their selection, the participant had to
then produce the actual task, i.e., holding a heavy drilling
tool at the selected position for 1 min. This procedure was
sequentially done for all three maps. The order of maps as they
were performed in the experiments was randomized between
the participants.

After the experiments, we performed the subjective evaluation
by a Likert-type of questionnaire, where the participant had to
report the degree of agreement with the given statements:

• S1: The binary map is not ambiguous to indicate a good
working posture.

• S2: The continuous map is not ambiguous to indicate a good
working posture.

• S3: The hybrid map is not ambiguous to indicate a good
working posture.

• S4: I feel it took effort to place my arm in a good configuration
by binary map.

• S5: I feel it took effort to place my arm in a good configuration
by continuous map.

• S6: I feel it took effort to place my arm in a good configuration
by hybrid map.

• S7: I felt comfortable with the configuration selected by the
binary map.

• S8: I felt comfortable with the configuration selected by the
continuous map.

• S9: I felt comfortable with the configuration selected by the
hybrid map.

There were five possible levels of agreement (score is in the
brackets): strongly agree (2), agree (1), neutral (0), disagree (–
1), strongly disagree (–2). S1–S3 evaluate the initial phase of the
method, where the user has to visually search for and select a
suitable configuration on a given map. S4–S6 evaluate the middle
phase of the method, where the user has to explore and navigate
to the selected configuration. S7–S9 evaluate the final phase of the
method, where the user has to perform the task in the selected
configuration. Additionally, we asked the participants to rank the
methods according to their overall preference, where 3 points
were given to the best and 1 point the worse method in terms
of preference.

To check for significance of the differences between subjective
scores for the three methods, we performed a statistical analysis
using paired sample t-tests. The statistical significance was set to
0.05 and statistical power to 0.8. Power analysis indicated that
sample number of 14 was sufficient under the given parameters.
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FIGURE 6 | Results of subjective evaluation for usability. The statements are listed on x-axis, while the level of agreement in terms of score is shown on y-axis. Blue

color is associated with the statements related to the binary map, magenta color is associated with the statements related to the continuous map and cyan color is

associated with the statements related to the hybrid map. The dot represents mean score and the vertical line represents standard deviation. The individual data

points are marked by crosses. In essence, positive scores for S1–S3 indicate that the method was not ambiguous. On the other hand, negative scores for S4–S6

indicate that the method took less effort to use. Finally, positive scores for S7–S9 indicate that the task execution in the selected configuration was comfortable.

TABLE 2 | Results of subjective analysis of usability.

Aspect Statement Agreement

S1 (binary) 0.13±1.20

S2 (contin) -0.27±1.00

Not ambiguous to

indicate a good

working posture. S3 (hybrid) 0.73±1.06*

S4 (binary) -1.07±1.00*

S5 (contin) 0.27±0.93

It took effort to

place my arm in a

good configuration. S6 (hybrid) –0.20±1.33

S7 (binary) 1.00±0.97*

S8 (contin) 0.00±1.10
Comfortable with the

selected configuration.
S9 (hybrid) 0.13±1.09

The values represent the mean degree of agreement to the statements S1–S9 and

respective standard deviation. Positive value indicates agreement, while negative indicates

disagreement with the statement for a given map. Symbol * indicates whether there is a

significant difference with respect to the continuous map (benchmark).

The datasets were checked for normality by performing the
Shapiro-Wilk test. If the dataset did not pass this test, non-normal
distributed data was corrected by a rank-transformation before
the main test.

The results of the subjective evaluation for usability are shown
in Figure 6. Additionally, the average degree of agreement to

the statements S1–S9 is shown is Table 2. On average, the
participants rated the binary map less ambiguous compared to
the continuous map. However, the difference was not statistically
significant (p = 0.442). The hybrid map was also rated less
ambiguous compared to the continuous map. The difference was
statistically significant (p = 0.030).

On average, the participants felt that by using the continuous
map it took much more effort to explore and navigate to
the selected configuration compared to the binary map. The
difference was statistically significant (p = 0.006). The same
was true for the hybrid map when compared to the continuous
map. However, the difference was not statistically significant (p =

0.389).
On average, the participants felt that performing the task

in the selected configuration, by using the binary, was more
comfortable compared to the one selected by the continuous
map. The difference was statistically significant (p = 0.038).
The same was true for the hybrid map when compared to the
continuous map. However, the difference was statistically not
significant (p = 0.784).

The results of the subjective evaluation for overall preference
of maps are shown in Figure 7. The participants generally
preferred the binary map to either the hybrid map or the
continuous map, and most of them gave the binary map
the highest score. However, the preference difference between
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FIGURE 7 | Results of subjective evaluation for preference. The maps are listed on x-axis, while the preference score is shown on y-axis. Blue color is associated with

the statements related to the binary map, magenta color is associated with the statements related to the continuous map and cyan color is associated with the

statements related to the hybrid map. The dot represents mean score and the vertical line represents standard deviation. The individual data points are marked by

crosses. Score 3 is the best and score 1 is the worse in terms of preference.

the binary map and the continuous map was statistically not
significant (p = 0.077). Neither was significant the difference
between the hybrid map and the continuous (p = 0.433).

4. DISCUSSION

The main strength and advantage of the binary map compared
to the continuous map is that it can guarantee the thresholds for
all criteria are satisfied. This is not the case with the continuous
map, since it uses weighted sum to derive the overall index for
a given position. For example, the continuous map does not
guarantee that all criteria are within the ergonomic thresholds,
even in the high-value points (green color). This is a conceptual
advantage which was highlighted in the section 2. The hybrid
map uses the binary map concept to rule out the configurations
that do not satisfy all the thresholds; therefore it exploits the main
conceptual advantage of the binary map. On the other hand,
it uses continuous map concept to indicate the different levels
of ergonomy among the suitable ones in order to increase the
resolution for the user.

The results of experiments and subjective evaluation showed
that the participants found the binary map and the hybrid map
less ambiguous, compared to the continuous map. This can be
mostly likely attributed to the binary nature of the map, since
the map gives two distinct states and therefore it is clear to

the user whether the posture is either ergonomic or not (i.e.,
whether the thresholds set by the expert are satisfied or not).
On the other hand, the continuous map has multiple states and
gives a range of ergonomic values, which can be ambiguous.
Medium value (yellow color) in the continuous map can be
achieved by different combinations of criteria conditions, for
example: non-ergonomic torque and ergonomic manipulability,
or ergonomic torque and non-ergonomic manipulability, or
borderline ergonomic for both torque and manipulability. Just
by looking at the map, it is impossible even for an expert to
know for sure which combination produced the given color, let
alone a casual worker. However, the hybrid map was rated even
less ambiguous which might be attributed to the exploitation of
advantages of both the binary and the continuous map; a clear
division between unsuitable and suitable configurations areas,
but a continuous pattern within the suitable ones that permits
more resolution in the selection of the best among the good ones.
Therefore, this hints that the hybrid map and the binary map
might be more suitable for casual workers that are not experts
in ergonomics.

The results of subjective evaluation also showed that the
participants felt it took less effort to use the binary map to
explore and navigate to the selected configuration, compared
to the continuous map. This could potentially be attributed to
the binary map concept that rules out a considerable number
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of configurations for not satisfying all the thresholds. The
continuous map concept has continuous states across all the
workspace and therefore more options to navigate through. In
addition, more continuous states can take more attention from
the user in order to distinguish between the different tones of
color while exploring through the map. As the results showed,
the difference in perceived effort between hybrid map and the
continuous map is not as large, which can be attributed to hybrid
map taking aspects from both the binary map and the continuous
map. Based on this, we recommend using the binary map when
new working configurations are changing quickly in order to
minimize the perceived workload on the user. If that is not the
case, we recommend using the hybrid map in order to exploit
also the advantage of the continuous map.

The perceived better comfort in the configurations selected
by the binary map can be attributed to the binary map
guaranteeing that all ergonomic thresholds are being met
through the underlying thresholding approach. On the other
hand, the continuous map uses weighted-sum approach and
does not guarantee that all ergonomic thresholds are satisfied,
even for highly rated configurations. We recommend using
the binary map when satisfying thresholds for all criteria is of
primary importance.

Surprisingly, the participants did not perceive the same
comfort difference for the hybrid map. Different participants
might subjectively weigh different relevant criteria in different
ways (not equally), however equal weights among different
criteria were assumed in the experiments for the hybrid and
continuous maps. By using the binary map, the participants
could choose the configuration, which they felt it is the most
ergonomic, among several options in the green area. This implies
that they might have potentially used their "embedded" non-
equal weights to explore and search for their own customized best
configuration in the binary map. On the other hand, when using
the hybrid map, the equal weights among different criteria were
hard-coded and inherited from the continuous map.

Finally, the participants on average preferred the binary map
in overall sense. This might be attributed to the clear and easy-
to-read distinction between the suitable and unsuitable working
configurations by the binary states. Nevertheless, the differences
for the preference were not statistically significant; therefore
we recommend that subjective preference should be examined
individually for a specific user.

5. CONCLUSION

In conclusion, we recommend that the selection of map should
be primarily based on the different advantages of the maps with
respect to the specific requirements of a given application. If
maintaining the thresholds strictly is important, we recommend
using the binary map. Subjective aspects can be considered
as secondary reason for selection. For example, if easy-to-use
aspect is important, we recommend the binary map. If higher
resolution of states is require, the continuous map provides such
intrinsic advantage. Nevertheless, in such case we recommend
using the hybrid map instead of the pure continuous map,
since it combines the advantages of the binary and continuous
maps, at a slight expense of complexity compared to the
binary map.
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