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A single transcript for the prognosis 
of disease severity in COVID‑19 
patients
Hongxing Lei

With many countries strapped for medical resources due to the COVID-19 pandemic, it is highly 
desirable to allocate the precious resources to those who need them the most. Several markers have 
been found to be associated with the disease severity in COVID-19 patients. However, the established 
markers only display modest prognostic power individually and better markers are urgently needed. 
The aim of this study is to investigate the potential of S100A12, a prominent marker gene for bacterial 
infection, in the prognosis of disease severity in COVID-19 patients. To ensure the robustness of the 
association, a total of 1695 samples from 14 independent transcriptome datasets on sepsis, influenza 
infection and COVID-19 infection were examined. First, it was demonstrated that S100A12 was a 
marker for sepsis and severity of sepsis. Then, S100A12 was found to be a marker for severe influenza 
infection, and there was an upward trend of S100A12 expression as the severity level of influenza 
infection increased. As for COVID-19 infection, it was found that S100A12 expression was elevated 
in patients with severe and critical COVID-19 infection. More importantly, S100A12 expression at 
hospital admission was robustly correlated with future quantitative indexes of disease severity 
and outcome in COVID-19 patients, superior to established prognostic markers including CRP, PCT, 
d-dimer, ferritin, LDH and fibrinogen. Thus, S100A12 is a valuable novel prognostic marker for COVID-
19 severity and deserves more attention.

The COVID-19 pandemic has caused major destruction to the entire world. There have been over 160 million 
cases and 3 million deaths reported so far (https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​coron​avirus-​2019). 
Although the vast majority of COVID-19 patients have only mild or even no symptoms and require little medical 
attention, the sheer volume of hospitalized patients have put an unprecedented stress on the medical systems 
worldwide. To improve the survival rate, it is urgently needed to have better stratification of the patients admitted 
to the hospitals based on promising biomarkers.

Blood-derived prognostic biomarkers for COVID-19 infection have been heavily investigated. Inflamma-
tory and immune factors were among the most widely studied, including serum IL-6 and TNF-α1, IFN-α2, 
d-dimer3, S100A8/A9 and HMGB14, TNFR1 and TNFR25, acetylated K676 TGFBIp6, progranulin (GRN)7, and 
sphingosine-1-phosphate8. Other factors include serum GDF-159, calcium10, and fasting blood glucose11. Mark-
ers for myocardial injury12, endothelial cell and platelet activation13,14 have also been proposed. Higher antibody 
production has also been observed in severe COVID-19 patients15. Dynamic pattern of IL-6, C-reactive protein 
(CRP), fibrinogen, lactate dehydrogenase (LDH), platelet count and CD45 count may also be informative16–18.

Immune cell profiling uncovered the prognostic value of T cell subset counts19, neutrophil to lymphocyte 
ratio20,21 and immature neutrophil to VD2 T cell ratio22. Other observations include aberrant activation and 
dysregulation of CD8 + T cells23, CoV-2-specific CD4 + T helper cell24, and higher level of adaptive natural killer 
(NK) cells25. Additional factors include red blood cell distribution width26, PD-L1 expression in basophils and 
eosinophils27, and quantitation of plasma SARS-CoV-2 RNA28–30.

Since individual factors only displayed modest prognostic power, some groups attempted to derive com-
posite models based on factors such as age, sex, lymphocyte counts, neutrophil counts, CRP, and procalcitonin 
(PCT)31,32. Others applied proteomics, metabolomics, and lipidomics to construct predictive panels of serum 
proteins, metabolites and lipids33–36. However, these models are difficult to interpret and have rarely been vali-
dated by independent groups.
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Since none of the currently proposed prognostic markers have satisfactory performance, it is highly desirable 
to discover novel factors with better prognostic power. Certain factors may be unique to COVID-19 infection, 
but some factors are likely universal to all kinds of severe infection. Sepsis is a severe form of infection. Therefore, 
it is conceivable that certain prognostic markers for sepsis may be transferable to COVID-19 infection. In fact, 
viral sepsis was proposed as a mechanism for severe COVID-19 infection37,38. It has also been found that the most 
severe cases (including death) of COVID-19 infection indeed all had sepsis39. Among COVID-19 patients, septic 
patients had significantly abnormal immune profile including higher serum IL-640. Many features were similar 
between bacterial sepsis and SARS-CoV-2 sepsis, although cytokine storm was generally milder in the latter 
case41. In addition, COVID-19 infection is a type of respiratory viral infection. So certain prognostic markers 
for other types of respiratory viral infection such as influenza infection may also be transferable to COVID-19 
infection. The rationale of using datasets encompassing sepsis, influenza infection and COVID-19 infection is 
that common factors may exist in different types of infection and certain common factors may be transferable 
from one type of infection to another.

In our previous works on host response to infection, we proposed several genes as the signature for bacterial 
infection, among which S100A12 was the most prominent marker42–44. To investigate the potential prognostic 
power of S100A12 in COVID-19 infection, a three-step approach was applied. First, using RNA-Seq data from 
three independent studies on sepsis, I demonstrated that S100A12 was a marker for sepsis and severity of sepsis. 
Then, using microarray data from six independent studies on influenza infection, I demonstrated that S100A12 
was a marker for severity of influenza infection. Finally, using RNA-Seq data from five independent studies on 
COVID-19 infection, I demonstrated that S100A12 was indeed a valuable prognostic marker for COVID-19 
severity.

Materials and methods
RNA‑Seq datasets for sepsis.  All three datasets were downloaded from NCBI gene expression omni-
bus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/). All three datasets were derived from whole blood. Dataset 
GSE154918 contains 105 samples, including 40 samples from healthy controls, 12 samples from patients with 
uncomplicated infection, 39 samples from sepsis patients, and 14 samples from follow-up of sepsis (no refer-
ence available yet). Dataset GSE63042 contains 129 samples, including 23 samples from patients with systemic 
inflammatory response syndrome (SIRS), 24 samples from patients with uncomplicated sepsis (no disease pro-
gression), 21 samples from patients with severe sepsis (severe status at day 0 through day 3), 33 samples from 
patients with septic shock, and 28 samples from patients with sepsis death45. Sepsis is essentially SIRS plus infec-
tion. In addition, sepsis is highly heterogeneous due to the pathogen types, site of infection and many other fac-
tors. Dataset GSE131411 contains 96 samples from 21 septic shock patients and 11 cardiogenic shock patients, 
where each patient was sampled at three time points46. Septic shock is caused by overwhelming systemic inflam-
mation, while cardiogenic shock is caused by heart problem. In total, 328 samples were included in these three 
RNA-Seq studies on sepsis.

Microarray datasets for respiratory viral infection.  Six datasets were downloaded from GEO. All 
six datasets were derived from whole blood. Dataset GSE27131 contains 21 samples, including 7 samples from 
healthy controls, 7 samples from patients with severe H1N1 infection at day zero, and 7 samples from patients 
with severe H1N1 infection at day six47. The severe H1N1 infection was defined as having bilateral chest X-ray 
infiltrates and requiring mechanical ventilators. Dataset GSE21802 contains 40 samples, including 4 samples 
from healthy controls, 6 samples from patients with mechanical ventilation at the early course of severe H1N1 
infection, 6 samples from patients without mechanical ventilation at the early course, 14 samples from patients 
with mechanical ventilation at the late course, and 10 samples from patients without mechanical ventilation at 
the late course48. All of the H1N1 patients were ICU patients with acute respiratory stress. Dataset GSE40012 
contains 150 samples, including 36 samples from healthy controls at day one and day five, 61 samples from 
patients with severe bacterial pneumonia at day one through day five, 39 samples from patients with severe 
H1N1 pneumonia at day one through day five, and 14 samples from patients with severe pneumonia caused 
by mixed bacterial and viral infection at day one through day five49. All of the pneumonia patients were ICU 
patients.

Dataset GSE68310 contains 488 samples from patients with mild influenza infection in a community moni-
toring study where people were sampled at baseline, day zero through day twenty one of the symptom onset, 
and the next spring50. These individuals had influenza-like illness but did not have severe respiratory disease. 
Dataset GSE101702 contains 159 samples, including 52 samples from healthy controls, 63 samples from patients 
with moderate influenza infection, and 44 samples from patients with severe influenza infection51. All of the 
patients had influenza-like illness. Case assignment was done retrospectively. Moderate infection was defined as 
having emergency department visit but requiring no invasive respiratory support. Severe infection was defined 
as having significant respiratory failure requiring mechanical ventilation. Dataset GSE111368 contains 200 
samples, including 130 samples from healthy controls, 29 samples from patients with H1N1 infection at tier one 
severity, 22 samples from patients with H1N1 infection at tier two severity, and 19 samples from patients with 
H1N1 infection at tier three severity52. All of the patients had influenza-like illness. Tier 1 severity was defined 
as having no substantial respiratory compromise and > 93% blood oxygen saturation. Tier 2 was defined as hav-
ing < 93% blood oxygen saturation and requiring non-invasive oxygen support. Tier 3 was defined as respiratory 
compromise requiring invasive mechanical ventilation. In total, 1058 samples were included in these six datasets 
on influenza infection.

https://www.ncbi.nlm.nih.gov/geo/
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RNA‑Seq datasets for COVID‑19.  Three datasets were downloaded from GEO. Dataset GSE152641 con-
tains 86 samples derived from whole blood, including 24 samples from healthy controls and 62 samples from 
patients with COVID-1953. Dataset GSE161731 contains 47 independent COVID-19 samples derived from 
whole blood, including 12 samples from hospitalized patients and 35 samples from non-hospitalized patients54. 
Dataset GSE152418 contains 34 samples derived from peripheral blood mononuclear cells (PBMC), including 
17 samples from healthy controls, 4 samples from patients with moderate COVID-19, 8 samples from patients 
with severe COVID-19, 4 samples from ICU patients with COVID-19, and one sample from a convalescent 
patient with COVID-1955. Dataset GSE157103 contains 126 samples derived from leukocyte, including 100 
samples from patients with COVID-19 and 26 samples from patients with other diseases56. All of the patients 
had symptoms compatible with COVID-19 infection. Additionally, another RNA-Seq study contains 16 samples 
derived from leukocytes, including 4 samples from healthy controls, 6 samples from patients with moderate 
COVID-19, and 6 samples from patients with severe COVID-19 (data at individual level not available yet)57. The 
disease severity in this study was based on WHO guideline. In total, 309 samples were included in these four 
RNA-Seq studies on COVID-19.

Data analysis.  The expression values of S100A12 were extracted from the processed GEO data. For RNA-
Seq data, the normalized counts were log transformed. For microarray data, the normalized expression values 
were also log transformed when necessary. The group comparison for each dataset was done in R (https://​www.r-​
proje​ct.​org/) using t-test. The figures were also drawn with R.

We shall note that the quality control of the data is intrinsic to the original study design (please refer to the 
original peer-reviewed publications for more details). For example, in the COVID-19 dataset GSE157103, only 
adult patients 18 years or older were enrolled, all of which had symptoms compatible with COVID-19 infection. 
Patients with imminent death were excluded. In addition, there were equal number of patients in the ICU group 
and non-ICU group, the mean age, mean BMI and proportion of male patients were similar in both groups, and 
so on. Blood collection and RNA-Seq experiment and data processing followed standard protocols, and two 
samples were excluded due to poor sequencing quality. In addition, we have found that S100A12 expression is 
not affected by age or sex in our previous data analysis. The S100A12 expression is also not significantly altered 
in non-infectious illness in our previous work.

In the original publication of the dataset GSE157103, the authors chose hospital free days at day 45 of hospital 
admission (HFD-45) as the disease severity index for COVID-19 infection for the following reasons, (1) being 
a single metric, (2) universally applicable to patients with different severity, (3) more suitable for COVID-19 
infection, (4) compatible with COVID-19 development. Death was assigned as 0 HFD-45 value to reflect the 
disease severity.

Results
S100A12 expression is an indicator of severe infection.  First, I examined whether S100A12 expres-
sion can be a marker for severe infection especially sepsis. The dataset GSE654918 included samples from healthy 
controls, uncomplicated infection, sepsis and sepsis follow-up (Fig. 1A). It was evident that S100A12 expres-
sion was significantly elevated in the uncomplicated infection group compared to healthy controls (p = 1.95e-8), 
where 11 of the 12 patients had higher S100A12 expression than the highest value in the control group. The 
S100A12 expression was further elevated in the sepsis group compared to the uncomplicated infection group 
(p = 0.0074), where 16 of the 39 sepsis patients (41%) had higher S100A12 expression than the highest value in 
the uncomplicated infection group. In addition, S100A12 expression was not significantly different between the 
sepsis follow-up group and the uncomplicated infection group (p = 0.26). Thus, S100A12 expression is a clear 
indicator of severe infection.

The next question is whether S100A12 expression is correlated with sepsis severity. The dataset GSE63042 
included samples from SIRS, mild sepsis, severe sepsis, septic shock and sepsis death (Fig. 1B). It was evident that 
S100A12 expression was significantly elevated in the mild sepsis group compared to the SIRS group (p = 0.027), 
further validating S100A12 as a marker for infection. The S100A12 expression was further elevated in the severe 
sepsis group compared to the mild sepsis group (p = 0.042). Additionally, no significant difference was found 
between severe sepsis and septic shock or septic death (p > 0.05 for both comparison). Therefore, S100A12 expres-
sion is an indicator of severity in sepsis.

As a marker of disease severity, the dynamic pattern is also worth of investigation. The dataset GSE131411 
included samples from three time points of septic shock and cardiogenic shock (Fig. 1C). It was evident that 
S100A12 expression was significantly elevated in the septic group compared to the cardiogenic shock group at 
the first time point (p = 2.99e-7), again validating S100A12 as a marker for infection. Interestingly, the S100A12 
expression was significantly decreased from T1 to T2 (p = 0.002) and also from T2 to T3 (p = 0.023) for patients 
with septic shock. In fact, 19 of the 21 patients with septic shock had this downward trend during the treatment 
process, while the other two patients had the lowest expression at the first time point (probably within the normal 
range). Thus, S100A12 expression is an indicator of treatment progress in sepsis.

S100A12 expression is an indicator of severe influenza infection.  Next, I examined whether 
S100A12 expression can be a marker for severe respiratory viral infection especially influenza infection. The 
dataset GSE27131 included samples from healthy controls and patients with severe H1N1 infection (defined as 
requiring mechanical ventilation) at day 0 and day 6 of ICU admission (Fig. 2A). It was evident that S100A12 
expression was significantly elevated in the H1N1 group compared to the control group at both time point 
(p = 9.85e-5 and 4.50e-5). In addition, all of the samples in the patient group had higher S100A12 expression than 
the highest value in the control group.

https://www.r-project.org/
https://www.r-project.org/
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Figure 1.   S100A12 as a marker for the severity of infection. (A) upper left, comparison of S100A12 expression 
in healthy controls, patients with uncomplicated infection, patients with sepsis, and follow-up of sepsis patients. 
(B) upper right, comparison of S100A12 expression in patients with SIRS, mild sepsis, severe sepsis, septic shock 
and sepsis death. (C) lower panel, comparison of S100A12 expression in patients with cardiogenic shock and 
septic shock at three time points.
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Figure 2.   S100A12 as a marker for the severe influenza infection. (A) upper left, comparison of S100A12 
expression in healthy controls and patients with severe H1N1 infection at two time points. (B) upper right, 
comparison of S100A12 expression in healthy controls and patients with severe H1N1 infection at two time 
points (early and late course of the infection). Patients with severe H1N1 infection were further divided into two 
groups (with or without mechanical ventilation). (C) lower panel, comparison of S100A12 expression in healthy 
controls and patients with severe bacterial pneumonia, severe influenza pneumonia and severe pneumonia with 
mixed infection at five time points.
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observed in the dataset GSE21802 which also included samples from healthy controls and patients with severe 
H1N1 infection (Fig. 2B). Compared to the control group, patients with mechanical ventilation had significantly 
elevated S100A12 expression at both time points (p = 0.019 and 0.014), and even patients without mechanical 
ventilation also had significantly elevated S100A12 expression at both time points (p = 0.0086 and 0.031).

The elevation of S100A12 expression in severe influenza infection can be compared to that in severe bacterial 
infection. The dataset GSE40012 included samples from healthy controls and patients with severe community-
acquired pneumonia at day 0 through day 5 of ICU admission (Fig. 2C). Compared to the control group at both 
time points, the patients with severe bacterial pneumonia had significantly elevated S100A12 expression at day 
one (p = 5.74e-13 and 1.79e-12). All of the samples in this group had higher S100A12 expression than the highest 
value in the control groups, again validating S100A12 expression as a prominent marker for bacterial infection. 
During the next four days, S100A12 expression stayed high (p < 4.15e-8 for all the comparison against the con-
trol group). Compared to the control group at both time points, the patients with severe H1N1 pneumonia also 
had significantly elevated S100A12 expression at day one (p = 2.58e-5 and 3.62e-5). During the next four days, 
S100A12 expression also stayed high (p < 1.10e-5 for all the comparison against the control group). In addition, 
the patient group with mixed bacterial and viral infection also had significantly elevated S100A12 expression 
compared to the control group (p < 0.046 for all the comparison). Thus, the three studies described above dem-
onstrated that S100A12 expression is a marker for severe influenza infection.

Elevation of S100A12 expression and the severity of influenza infection.  Then, I further exam-
ined how S100A12 expression is elevated at different severity levels of influenza infection. The dataset GSE68310 
included samples from a prospective study of community monitoring, likely all with mild influenza infection. 
Although small fluctuation was observed in the S100A12 expression, it stayed relatively constant throughout the 
whole year (p = 0.11 between day 0 of influenza infection and the next spring) (Fig. 3A). This is consistent with 
previous findings where the marker genes for respiratory viral infection are mainly interferon-stimulated genes 
(ISGs) such as IFI27 and RSAD2. Thus, S100A12 expression is not elevated in mild influenza infection.

As the severity level of influenza infection increases, we can observe higher level of S100A12 expression. 
The dataset GSE101702 included samples from healthy controls and patients with influenza infection. Patients 
with moderate flu had significantly elevated S100A12 expression compared to the control group (p = 1.03e-6) 
(Fig. 3B). In addition, patients with severe flu also had significantly elevated S100A12 expression compared to the 
moderate flu group (p = 1.91e-13). This demonstrated a step-wise increase of S100A12 expression as the severity 
level of influenza infection increased.

This trend was further supported by the dataset GSE111368 which included samples from healthy controls and 
patients with various severity levels of H1N1 infection, some of which had known status of bacterial co-infection. 
For patients at tier 1 severity level, they did not have significantly different S100A12 expression compared to the 
controls unless they had confirmed bacterial co-infection (Fig. 3C). In contrast, patients at tier 2 and tier 3 levels 
had significantly elevated S100A12 expression compared to the controls (p = 0.025, 0.0093 and 0.0029 for the 
patient groups at tier 2 level, and p = 0.00043 and 2.93e-7 for the patient groups at tier 3 level). This also validated 
the upward trend of S100A12 expression as the severity of influenza infection increases.

S100A12 expression is an indicator of severe COVID‑19 infection.  The more direct question is 
whether S100A12 expression is elevated in patients with severe COVID-19 infection. The dataset GSE152641 
included samples from healthy controls and hospitalized COVID-19 patients (Fig.  4A). It was evident that 
S100A12 expression was significantly elevated in the COVID-19 infection group compared to the healthy con-
trol group (p = 1.02e-7). More specifically, 31 of the 62 hospitalized COVID-19 patients (50%) had S100A12 
expression above the highest value in the control group. Another dataset GSE161731 included samples from 
both hospitalized and non-hospitalized COVID-19 patients (Fig. 4B). It was evident that S100A12 expression 
was significantly elevated in the hospitalized COVID-19 group compared to the non-hospitalized COVID-19 
group (p = 0.00039). Thus, S100A12 expression is elevated in a subgroup of hospitalized COVID-19 patients.

Another dataset GSE152418 included samples from healthy controls and COVID-19 patients with various 
severity (Fig. 4C). The S100A12 expression was not significantly different between the moderate COVID-19 
infection group and the healthy control group (p = 0.51). However, S100A12 expression was significantly elevated 
in the severe COVID-19 infection group (p = 0.0066) and ICU group (p = 0.0054) compared to the moderate 
COVID-19 infection group. Similar results were found in another study with similar experimental design57. 
In that study, S100A12 expression was not significantly different between the moderate cases and the healthy 
controls, but it was significantly elevated in the severe cases compared to the moderate cases (log2FC = 3.58, 
q = 0.00034). Therefore, S100A12 expression is indeed elevated in patients with severe COVID-19 infection.

S100A12 expression is correlated with future disease severity indexes in COVID‑19 infec‑
tion.  To go one step further, it will be interesting to find out whether S100A12 expression at hospital admis-
sion is correlated with future quantitative indexes of disease severity in COVID-19 patients (assessed retrospec-
tively). The dataset GSE157103 included samples from COVID-19 patients with various severity using hospital 
free days at day 45 of hospital admission (HFD-45) as a disease severity index (Fig. 5A). It was evident that 
S100A12 expression was robustly correlated with disease severity as measured by HFD-45 (r = 0.625), which was 
much better than the established prognostic markers such as CRP, PCT, ferritin, d-dimers, LDH and fibrinogen 
(r between 0.009 and 0.35, Fig. 5D). In contrast, the expression of ISGs displayed extremely weak correlation 
with HFD-45 (r = 0.025 for IFI27 and r = 0.11 for RSAD2).

For more detailed examination, the samples were equally divided into four groups based on the S100A12 expres-
sion (25 patients in each group). Using the Q1 group as the reference, the Q2 group was only marginally different from 
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Figure 3.   S100A12 as an indicator of the severity in influenza infection. (A) upper panel, comparison 
of S100A12 expression in patients with mild influenza infection throughout a whole year of community 
monitoring (prior to and after the infection onset, and follow-up in the next spring). (B) lower left, comparison 
of S100A12 expression in healthy controls and patients with moderate or severe influenza infection. (C) lower 
right, comparison of S100A12 expression in healthy controls and patients with influenza infection at three 
severity levels. Some of the patients have known status of bacterial infection (Yes or No) while others don’t (NA).
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Figure 4.   S100A12 expression elevated in severe and critical COVID-19 patients. (A) upper left, comparison 
of S100A12 expression in healthy controls and COVID-19 patients. (B) upper right, comparison of S100A12 
expression in hospitalized and non-hospitalized COVID-19 patients. (C) lower panel, comparison of S100A12 
expression in healthy controls and patients with COVID-19 at three severity levels (moderate, severe and ICU).
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Figure 5.   S100A12 expression highly correlated with future disease severity in COVID-19 patients. (A) upper 
left, scatter plot, correlation of S100A12 expression with severity index HFD-45 in COVID-19 patients. (B) 
upper left, histogram plot, comparison of severity indexes in four groups of COVID-19 patients based on the 
S100A12 expression. The severity indexes include the status of admission to ICU, use of mechanical ventilation, 
and small or large HFD-45 values. (C) upper right, distribution of HFD-45 scores in four groups of COVID-19 
patients based on the S100A12 expression. (D) lower panel, correlation of established markers with HDF-45.
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(p = 0.062), while the other two groups were significantly different from the Q1 group (p = 4.25e-6 for the Q3 
group, and p = 2.23e-11 for the Q4 group) (Fig. 5C). More specifically, the Q1 group had only one patient with 
HFD-45 less than 15 days, while it was 4, 13 and 15 patients in the Q2, Q3, and Q4 groups, respectively (Fig. 5B). 
This can be considered as having fourfold, 13-fold and 15-fold increased risk of having severe patients in the 
Q2, Q3, and Q4 groups, respectively. On the other hand, the Q1 group had 21 patients with HFD-45 more than 
30 days, while it was 14, 7 and 1 patients in the Q2, Q3, and Q4 groups, respectively (Fig. 5B).

As additional assessment of disease severity, information on ICU admission and mechanical ventilation were 
included in this study. There were 4 patients admitted to ICU in the Q1 group, while it was 9, 19 and 18 patients 
in the Q2, Q3 and Q4 groups, respectively (Fig. 5B). In addition, there were only 2 patients using mechanical 
ventilation in the Q1 group, while it was 7, 13 and 21 patients in the Q2, Q3 and Q4 groups, respectively.

The same study included 26 non-COVID-19 patients. Due to the limited sample size, these patients were only 
divided into two groups based on the S100A12 expression (H1 and H2 groups). The H1 group had 4 of the 13 
patients admitted to ICU, while the H2 group had 12 of the 13 patients admitted to ICU. None of the patients in 
the H1 group used mechanical ventilation, while 9 of the 13 patients in the H2 group used mechanical ventila-
tion. Thus, S100A12 expression seems to be a more general indicator of disease severity, which deserves further 
investigation.

Discussion
A variety of biomarkers have been proposed for the prognosis of disease severity in COVID-19 patients, and 
some of the more accessible ones have been validated in many independent studies. However, all of the reported 
biomarkers only have modest prognostic power. In the current study, it has been demonstrated that S100A12 
expression in the whole blood is a robust marker for severe infection and severe respiratory viral infection. Not 
surprisingly, it is also a marker for severe COVID-19 and is robustly correlated with future quantitative indexes 
of COVID-19 severity, much better than the established prognostic biomarkers. Due to limited data availability 
specifically for COVID-19, relevant data on severe infection and severe respiratory viral infection has been 
extensively investigated in this study. The intention of this study is to find a biomarker universally applicable to 
infection in general and more specifically to respiratory viral infection. If the purpose is find biomarkers unique 
to COVID-19, a lot more data on COVID-19 will be required for the conclusion to be convincing.

I shall further clarify that the aim of this work is to find novel prognostic markers for COVID-19, not diag-
nostic markers. The field of COVID-19 diagnosis is quite mature. There are dozens of commercial kits available 
with high sensitivity and specificity. There are also commercial kits available with fast and convenient detection of 
COVID-19. Additionally, there are commercial kits for simultaneous detection of dozens of common pathogens 
including COVID-19. As for host response to different types of infection, people have also derived gene panels 
to differentiate common infection types53,54. However, it may not be practical to clinical use because hundreds 
of genes are required.

The reason for the selection of S100A12 expression in this study is that it stands out to be the most prominent 
marker for bacterial infection in our previous works. Since most genes including immune-related genes are multi-
functional, it is conceivable that the function of S100A12 is not limited to the response to bacterial infection. 
It has been well-established that the signature of host response to viral infection is ISGs. However, the severity 
of COVID-19 does not seem to be correlated with the expression of ISGs at all. It is possible that patients with 
severe COVID-19 may activate pathways involving S100A12 in addition to the initial activation of interferon 
signaling pathways as a response to the overwhelming infection. The exact role of S100A12 in the response to 
severe infection will require more in-depth investigation.

It shall be noted that ISGs as the signature for host response to respiratory viral infection was mainly derived 
from mild infections or even human challenge experiments. Host response to severe respiratory viral infection 
including COVID-19 could be much more complicated. It’s not entirely surprising that “bacterial signature” such 
as S100A12 is activated in severe respiratory viral infection. It’s possible that sometimes viral infection is simply 
overwhelming for the immune systems of certain infected individuals and interferon response by itself is way 
too weak to stop virus replication and systemic damage to the human host. More specifically, neutrophils which 
express high level of S100A12 could be heavily involved in host response to severe COVID-19 even at the early 
stage of the disease development, including both neutrophil expansion and neutrophil-related gene activation.

Data availability
All relevant data are publicly available as described in the manuscript.
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