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Objective: This study targets to investigate the connection between the 
possibility of Cardiometabolic Multimorbidity (CMM) and the Dietary Index 
for Gut Microbiota (DI-GM), paying special attention to the mediating roles of 
systemic inflammatory markers, specifically the Systemic Immune-Inflammation 
Index (SII) and the Systemic Inflammatory Response Index (SIRI).

Methods: A cross-sectional study was conducted involving 17,388 eligible 
participants from the National Health and Nutrition Examination Survey 
(NHANES) spanning from 2007 to 2020. Weighted logistic regression model 
was employed to assess the correlation between DI-GM, SII, SIRI, and CMM. 
Additionally, restricted cubic spline (RCS) regression model was utilized to 
investigate any potential nonlinear relationships between these variables and 
the risk of CMM. The degree to which SII and SIRI mediated the link between 
CMM and DI-GM was assessed using mediation analysis. Additionally, sensitivity 
and subgroup analyses were conducted to confirm the results.

Results: A lower risk of CMM was markedly correlated with higher DI-GM 
scores (OR = 0.94, 95% CI: 0.91–0.98, p = 0.001). An elevated risk of CMM 
was markedly linked to higher levels of Ln-SII and Ln-SIRI (OR = 1.45, 95% CI: 
1.28–1.65, p < 0.001; OR = 1.87, 95% CI: 1.69–2.07, p < 0.001). Higher education 
levels were associated with a stronger protective effect of DI-GM on CMM, 
according to subgroup analysis (P for interaction < 0.05). SII and SIRI, which 
accounted for 8.3 and 18.1% of the total effect, respectively, partially mediated 
the link between DI-GM and CMM (p < 0.001). Sensitivity analysis proved the 
stability of the findings.

Conclusion: According to the study’s findings, DI-GM could mitigate the danger 
of CMM. Reduced systemic inflammation acted as a partial mediating factor in 
this connection. These findings highlight the mechanisms of gut microbiota to 
mitigate the danger of CMM from a nutritional perspective. This offers insightful 
information for clinical CMM therapy and prevention.
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1 Introduction

Cardiometabolic multimorbidity (CMM) is defined by the 
concurrent presence of several cardiometabolic disorders 
(CMDs), such as hypertension, diabetes, coronary artery disease 
(CAD), and stroke (1). Globally, there has been a notable growth 
in the frequency of CMM. In the United States, for example, the 
prevalence of CMM climbed from 9.4% in 1999 to 14.4% in 2018 
(2). Similarly, data from the China Health and Retirement 
Longitudinal Study (CHARLS) revealed that, among 7,909 
participants who were free of CMM in 2011, 2,501 individuals 
had developed CMM by 2020 (3). The high prevalence of  
CMM not only poses serious health risks for patients but also 
markedly raises the risk of mortality from all causes (4). 
Specifically, individuals with CMM experience a reduction in life 
expectancy of more than 10 years by the age of 60 (5). Therefore, 
an in-depth investigation into the pathogenesis and  
intervention strategies of CMM is of great significance for 
improving patient outcomes and alleviating the public 
health burden.

Recently, the gut microbiota has emerged as a vital part of the 
human microbiome (6, 7). It plays crucial roles in maintaining 
intestinal barrier function, modulating the immune system, 
synthesizing vitamins and short-chain fatty acids and 
participating in metabolism as well as nutrient absorption (8).

Prior research has highlighted the link between gut 
microbiota and CMM. The gut microbiota composition varied 
significantly between diabetic and non-diabetic groups, with the 
non-diabetic group having more (SCFA), −generating bacteria 
(9). And the gut microbiota structure of CMM patients has 
undergone significant changes, which may manifest as alterations 
in microbial diversity and specific bacterial groups (10–12). Diet 
not only provides energy and nutrients but also profoundly 
affects the host’s metabolic health through altering the gut 
microbiota’s composition and function (10). Recently, Kase and 
his colleagues developed a Dietary Index for Gut Microbiota 
(DI-GM) to evaluate diet quality for a healthy gut microbiota 
(13). Compared to traditional dietary indices such as the Healthy 
Eating Index (HEI) and the Mediterranean Diet Score (MDS), the 
DI-GM focuses specifically on indicators such as gut microbiota 
diversity, SCFA levels, and the ratios of specific bacterial phyla. 
This targeted approach allows the DI-GM to more accurately 
reflect the impact of diet on gut microbiota regulation, 
demonstrating greater specificity for gut health (13). 
Nevertheless, investigation into the connection between DI-GM 
and CMM is scarce.

Inflammation is crucial in the development and progression 
of cardiovascular metabolic Syndrome. Novel inflammatory 
markers, such as systemic-inflammation index (SII) and systemic 
inflammatory response index (SIRI), have demonstrated 
predictive value across various chronic diseases (14, 15). In 
addition, chronic inflammation and gut microbiota seem to be in 
an interactive state, where inflammation can affect gut microbiota 
disorder and gut microbiota can regulate inflammation (16–18). 
They jointly participate in the pathogenesis of CMM. To sum up, 
we investigated the connection of CMM and DI-GM., utilizing 
NHANES data and probing into the possible mediating effects of 
the SII and SIRI.

2 Methods

2.1 The design for the study

The NHANES is a national examination that collects comprehensive 
data on nutrition and health across the United States population (19). 
The dataset was publicly available and has been collected following 
ethical guidelines, including securing informed consent from all 
participants. The experimental designs and associated NHANES data 
were available on a publicly accessible platform: www.cdc.gov/nchs/
nhanes/. Each methodological approach adhered strictly to the 
pertinent ethical standards and regulations. We analyzed the NHANES 
dataset spanning from 2007 to 2020, initially including 66,148 
participants. Exclusions were made for 29,861 participants that were < 
20 years, pregnant or lacking of survey weight, 17,700 participants with 
insufficient data of assessing CMM, 1136 participants with missing data 
of dietary intake and 63 participants with insufficient data of calculating 
SII or SIRI. Ultimately, the total was 17,388 participants (Figure 1).

2.2 Calculation of the dietary index for gut 
index microbiota

For the NHANES study, dietary information was collected using 
a 24-h recall approach. Each participant underwent two interviews 
conducted. The first interview took place in person, while the second 
one took place over the phone a few days later. Considering the greater 
accuracy of in-person data collection, we  chose to use only the 
information gathered during the initial interview for our analysis (20).

Ten of the 14 different food or nutritional components that make 
up the DI-GM are considered beneficial to gut microbial multiplicity, 
whereas the remaining 4 are considered detrimental. 
Supplementary Table 1 provided a detailed list of meal kinds and 
computation techniques. The beneficial gut microbiota score (BGMS) 
and the unfavorable gut microbiota score (UGMS) are components of 
the overall DI-GM score, which runs from 0 to 13 (21). Four groups 
were also created from the overall scores: 0–3, 4, 5, and ≥ 6 points (22).

2.3 Definition of CMM

The CMDs encompassed hypertension, diabetes, CAD, and stroke 
(23). Diabetes was identified based on any of the following criteria: (1) 
a history of the condition, (2) current use of medications that lower 
blood glucose levels, or (3) a fasting plasma glucose level of at least 
126 mg/dL or an HbA1c level of at least 6.5%. Hypertension was 
determined by: (1) a history of the condition, (2) the use of 
antihypertensive medications, or (3) a blood pressure reading of at 
least 140/90 mm Hg for systolic or diastolic pressure. Stroke and CAD 
were identified through self-reported clinical diagnoses. If a person 
had two or more CMDs, they were considered to have CMM.

2.4 Inflammatory index

Complete blood count on blood samples was detected in the 
mobile examination center (MEC). The following formulas were used 
to determine SII and SIRI values (24).
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SII = (platelet count × neutrophil count)/lymphocyte count,
SIRI = (neutrophil count × monocyte count)/lymphocyte count.

2.5 Covariates

Covariates consisted of sociodemographic and life behavior 
variables (25). Please refer to Supplementary Table  2 for detailed 
classification for covariates.

2.6 Statistical analysis

We employed MEC examination weights to accurately reflect the 
U. S. population in this study (26). Weighted t-tests were used to 
evaluate continuous data, which were given as weighted mean ± 
standard deviation (SD). Weighted chi-square tests were implemented 
to assess categorical variables, which were represented as number and 
weighted proportions. Missing covariates were processed by “MICE” 
package using multiple imputation (27). We Ln-transformed SII and 
SIRI to resolve their skewness (28).

Using weighted logistic regression models, we first evaluated the 
link between DI-GM, SII, and SIRI and the probability of CMM, 
calculating odds ratios (OR) with 95% confidence intervals (CI). 
These variables were analyzed both continuously and categorically 
across three models: Model 1 was left uncorrected, Model 2 
corrected for demographic characteristics, while Model 3 took into 

account all covariates (29). To explore potential non-linear 
relationships between DI-GM, SII, SIRI, and CMM risk, 
we  constructed restricted cubic spline (RCS) regression models, 
optimizing the number of knots based on the minimum Akaike 
information criterion (AIC) (30). Subgroup analyses followed to 
evaluate interaction effects between DI-GM and covariates on CMM 
risk, using likelihood ratio tests. Finally, mediation analysis was 
applied to evaluate whether the inflammation index played a 
mediating function. Mediation analysis tests the total effect (TE), 
direct effect (DE), and indirect effect (IE) between variables. 
We  established 1,000 times repeated sampling to improve the 
accuracy of the results (31). Moreover, we carried out a sensitivity 
analysis and exclude participants with extreme energy intake and 
verify the results’ resilience (32). R software (version 4.4.1) was used 
for all analyses. The criterion for statistical significance was set at P 
less than 0.05.

3 Results

3.1 Study objects characteristics

Our study encompassed a total of 17,388 study objects, comprising 
8,662 males (49.8%) and 8,726 females (50.2%). They were categorized 
into two groups: the non-CMM group, which consisted of 12,640 
individuals, and the CMM group, with 4,748 individuals. Table  1 
presented the characteristics of the participants. Across all variables 

FIGURE 1

Participants’ screening process.
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TABLE 1 Characteristics of participants grouped by CMM in NHANES 2007–2020.

Variables Total Non-CMM group CMM group P

17,388 12,640 4,748

Age, n (%) < 0.001

  20–39 4,827 (31.2) 4,642 (38.2) 185 (4.8)

  40–59 5,905 (38.1) 4,555 (39.2) 1,350 (33.9)

  ≥ 60 6,656 (30.8) 3,443 (22.6) 3,213 (61.3)

Gender, n (%) < 0.001

  Male 8,662 (49.8) 6,174 (49) 2,488 (52.7)

  Female 8,726 (50.2) 6,466 (51) 2,260 (47.3)

Race, n (%) < 0.001

  Mexican American 2,652 (8.5) 1990 (8.9) 662 (7.1)

  Other Hispanic 1891 (5.9) 1,379 (6) 512 (5.5)

  Non-Hispanic White 7,091 (67.1) 5,290 (67.7) 1801 (64.7)

  Non-Hispanic Black 3,790 (10.7) 2,421 (9.6) 1,369 (15.2)

  Other Race—Including Multi-Racial 1964 (7.7) 1,560 (7.7) 404 (7.6)

Education, n (%) < 0.001

  Less than high school 4,347 (16) 2,802 (14.3) 1,545 (22.4)

  High school grad/GED or equivalent 3,962 (23.5) 2,803 (22.4) 1,159 (27.3)

  Higher than high school 9,079 (60.6) 7,035 (63.3) 2044 (50.3)

PIR, n (%) < 0.001

  ≤1.3 5,694 (22.4) 3,994 (21.5) 1700 (26)

  1.3–3.5 6,610 (36) 4,688 (34.9) 1922 (40)

  > 3.5 5,084 (41.6) 3,958 (43.6) 1,126 (34)

Marital status, n (%) < 0.001

  Married/living with partner 10,360 (63.9) 7,604 (64) 2,756 (63.3)

  Widowed/divorced/separated 4,106 (19.4) 2,543 (17.1) 1,563 (28.3)

  Never married 2,922 (16.7) 2,493 (18.9) 429 (8.3)

BMI, n (%) < 0.001

  < 5 kg/m2 4,466 (27) 3,856 (31.1) 610 (11.5)

  25–30 kg/m2 5,573 (32.1) 4,252 (33.9) 1,321 (25.5)

  ≥ 30 kg/m2 7,349 (40.9) 4,532 (35) 2,817 (63)

Smoking status, n (%) < 0.001

  Non smokers 9,466 (54.2) 7,178 (56.2) 2,288 (46.6)

  Former smokers 4,529 (27.2) 2,847 (24.4) 1,682 (37.7)

  Current smokers 3,393 (18.6) 2,615 (19.3) 778 (15.7)

Drinking status, n (%) < 0.001

  Non drinkers 6,349 (29.5) 3,989 (25.7) 2,360 (43.6)

  Moderate drinkers 9,977 (63.3) 7,775 (66.2) 2,202 (52.2)

  Heavy drinkers 1,062 (7.3) 876 (8.1) 186 (4.2)

Physical activity, n (%) < 0.001

  Yes 10,119 (63.6) 8,040 (67.9) 2079 (47.5)

  No 7,269 (36.4) 4,600 (32.1) 2,669 (52.5)

Daily energy intake, mean (SD) 2146.58 (967.23) 2199.50 (975.52) 1949.28 (909.02) < 0.001

DI-GM, mean (SD) 4.59 (1.63) 4.63 (1.63) 4.45 (1.65) < 0.001

DI-GM group, n (%) < 0.001

(Continued)
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examined, statistically significant differences were noted between the 
non-CMM and CMM groups (All p < 0.05).

3.2 Associations between DI-GM and CMM

The findings of the weighted logistic regression analysis examining 
the connection between DI-GM scores and CMM were presented in 
Table 2. A 7% decrease in CMM risk was associated with a 1-point 
increase in DI-GM in the original model (Model 1) (OR: 0.93, 95% 
CI: 0.91, 0.96, p < 0.001). Further adjustment for all factors in Model 
3 maintained a significant association, with a 6% reduction in CMM 
risk with per 1-point increase in DI-GM (OR: 0.94, 95% CI: 0.91, 0.98, 

p = 0.001). After controlling for all factors, in categorical analysis the 
likelihood of CMM was 24% lower for individuals that had a DI-GM 
score greater than 6 than for those in the lowest DI-GM score group 
(OR: 0.76, 95% CI: 0.64, 0.89, p < 0.001). Trend analysis showed a 
strong inverse correlation (P for trend < 0.001) between CMM 
likelihood and DI-GM scores.

Interestingly, we found that BGMS was marginal significantly with 
a lower CMM hazard (OR: 0.96, 95% CI: 0.92, 1.01, p = 0.085), 
whereas UGMS was obviously with a lower CMM hazard (OR: 0.90, 
95% CI: 0.84, 0.96, p < 0.001) in Model 3.

Following this, we constructed RCS model with 3 knots to investigate 
the potential non-linear correlation between CMM and DI-GM 
(Figure 2A). The model indicated that, after accounting for all covariates, 

TABLE 1 (Continued)

Variables Total Non-CMM group CMM group P

  0–3 4,490 (24.5) 3,157 (23.7) 1,333 (27.7)

  4 4,578 (24.6) 3,307 (24.4) 1,271 (25.2)

  5 3,931 (23.1) 2,891 (23.3) 1,040 (22.4)

  ≥ 6 4,389 (27.8) 3,285 (28.6) 1,104 (24.7)

SII, mean (SD) 526.17 (339.75) 507.15 (312.93) 597.10 (417.55) < 0.001

SIRI, mean (SD) 1.23 (0.89) 1.14 (0.77) 1.57 (1.16) < 0.001

TABLE 2 The associations between DI-GM and CMM in weighted logistic regression models.

Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

DI-GM

  Per 1-point increment 0.93 (0.91, 0.96) < 0.001 0.91 (0.88, 0.94) < 0.001 0.94 (0.91, 0.98) 0.001

DI-GM group

  0–3 Reference Reference Reference

  4 0.88 (0.78, 1.00) 0.056 0.87 (0.75, 1.02) 0.079 0.92 (0.78, 1.08) 0.279

  5 0.82 (0.71, 0.96) 0.012 0.82 (0.69, 0.98) 0.029 0.88 (0.73, 1.06) 0.175

  ≥ 6 0.74 (0.65, 0.83) < 0.001 0.66 (0.57, 0.77) < 0.001 0.76 (0.64, 0.89) < 0.001

  P for trend < 0.001 < 0.001 < 0.001

BGMS 0.91 (0.88, 0.94) < 0.001 0.92 (0.89, 0.96) < 0.001 0.96 (0.92, 1.01) 0.085

UGMS 0.99 (0.95, 1.03) 0.569 0.91 (0.87, 0.96) < 0.001 0.90 (0.84, 0.96) < 0.001

Model 1 was not adjusted for any covariate. Model 2 was adjusted for age, gender, race, education, PIR, marital status. Model 3 was adjusted for all covariates.

FIGURE 2

The correlations of DI-GM, SII, and SIRI with CMM in RCS regression models. (A) DI-GM, (B) SII, (C) SIRI. Models were adjusted for all covariates.
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there was a linear negative correlation of DI-GM with the risk of CMM, 
with no significant non-linear effect observed (P for non-linear > 0.05).

3.3 Associations between two 
inflammatory index and CMM

Table 3 highlighted that Ln-SIRI and Ln-SII were significantly 
connected with the probability of CMM after controlling for all 
variables. A 45% increased risk of CMM was linked to every unit 
increase in Ln-SII (OR: 1.45, 95% CI: 1.28, 1.65, p < 0.001), and an 87% 
increased risk of CMM was linked to each unit increase in Ln-SIRI 
(OR: 1.87, 95% CI: 1.69, 2.07, p < 0.001). In categorical analyses, 
compared to Q1 of Ln-SII, the objects with Q3 and Q4 of Ln-SII had a 
greater danger of CMM, and the objects with Q2, Q3 and Q4 of ln-SIRI 
had a higher risk of CMM (All ORs > 1, p < 0.05). In addition, the trend 
test identified a strong positive correlation between the probability of 
CMM and two inflammatory markers (Both P for trend < 0.001).

As illustrated by Figures 2B,C, RCS regression models exhibited a 
linear positive correlation between Ln-SIRI and CMM (P for 
non-linear > 0.05) and a nonlinear positive correlation of Ln-SII and 
CMM (P for non-linear < 0.05).

3.4 Subgroup analyses

We explored the correlations of DI-GM with CMM according to 
different groups of covariates (Figure 3). In the vast majority of groups, 
DI-GM still demonstrated its beneficial effects, consistent with the 
analysis results above. We found that DI-GM and education level had 
an obvious interaction effect on CMM (P for interaction < 0.05). The 
impact of DI-GM on CMM is obvious in participants with education 
level higher than high school, while no significant effect of DI-GM 
was found in the other two subcategories.

3.5 The mediating function of inflammation 
index

The mediating influence of SII and SIRI was investigated using 
mediation analyses (Figure 4). TE, IE, and DE were all obvious in two 
mediation models (p < 0.001). The connections between DI-GM and 
CMM were specifically mediated by Ln-SII and Ln-SIRI, which 
accounted for 8.3 and 18.1% of the corresponding association, 
respectively (p < 0.001). According to these results, DI-GM decreased 
the risk of CMM by reducing inflammation.

3.6 Sensitivity analysis

We excluded participants with extreme energy intake and further 
assessed the association between the DI-GM and CMM 
(Supplementary Table 3). The significant correlation between higher 
DI-GM and lower CMM risk did not change.

4 Discussion

In this study, we  investigated the link of DI-GM with 
CMM, and the mediating functions of SII and SIRI. Weighted 
logistic regression models and RCS analysis consistently indicated 
that CMM risk may be  decreased by DI-GM, but it may 
be increased by SII and SIRI. Mediating analysis confirmed that 
the reduction of inflammation is a mechanism by which DIGM 
reduces the risk of CMM. Sensitivity analysis supported the 
robustness of our research results. Our results emphasized the 
latent capacity of DI-GM to lower the risk of CMM and the 
underlying mechanisms of inflammation, offering fresh 
approaches to clinical prevention and care of CMM and having 
important public health implications.

TABLE 3 The associations of SII, SIRI, and CMM in weighted logistic regression models.

Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Ln-SII

  Per 1-unit increment 1.61 (1.44, 1.81) < 0.001 1.56 (1.38, 1.75) < 0.001 1.45 (1.28, 1.65) < 0.001

  Q1 Reference Reference Reference

  Q2 1.03 (0.90, 1.18) 0.695 1.12 (0.96, 1.31) 0.145 1.06 (0.90, 1.25) 0.485

  Q3 1.32 (1.12, 1.55) 0.001 1.39 (1.17, 1.66) < 0.001 1.24 (1.04, 1.49) 0.019

  Q4 1.79 (1.54, 2.07) < 0.001 1.76 (1.48, 2.09) < 0.001 1.56 (1.30, 1.88) < 0.001

  P for trend < 0.001 < 0.001 < 0.001

Ln-SIRI

  Per 1-unit increment 2.35 (2.16, 2.55) < 0.001 2.03 (1.85, 2.23) < 0.001 1.87 (1.69, 2.07) < 0.001

  Q1 Reference Reference Reference

  Q2 1.28 (1.10, 1.48) 0.002 1.37 (1.16, 1.62) < 0.001 1.27 (1.07, 1.52) 0.008

  Q3 1.75 (1.54, 1.98) < 0.001 1.73 (1.50, 1.98) < 0.001 1.48 (1.29, 1.71) < 0.001

  Q4 3.58 (3.17, 4.05) < 0.001 3.05 (2.66, 3.51) < 0.001 2.58 (2.23, 3.00) < 0.001

  P for trend < 0.001 < 0.001 < 0.001

Model 1 was not adjusted for any covariate. Model 2 was adjusted for age, gender, race, education, PIR, marital status. Model 3 was adjusted for all covariates.
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Our findings demonstrated alignment with prior 
investigations examining the associations of gut microbiota with 
individual CMD risks, while extending evidence to the 
pathophysiological spectrum of multimorbidity clustering. A 
negative connection between DI-GM and diabetes risk was found 
by Wu et  al., indicating that maintaining DI-GM lowers the 
chance of developing diabetes (10). Separately, Liu et al. illustrated 
that elevated DI-GM scores and indices favorable to Gut 
microbiota has been connected with a decreased likelihood of 
stroke, especially among individuals aged 30 and older (21). 
Moreover, another study indicated that there is an adverse 
relationship between DI-GM and the prevalence of metabolic 
dysfunction-associated fatty liver disease (MAFLD) in the 
United States (33).

The gut microbiota and health are closely related to 
cardiovascular and metabolic health. The gut microbiota exhibits 

excellent anti-inflammatory and antioxidant effects, and 
inflammation and oxidative stress are important factors affecting 
cardiac metabolism (34–36). In addition, metabolites were produced 
by the intestinal microbiota, including trimethylamine N-oxide 
(TMAO), SHFA, and phenylacetylglutamine, might either enhance 
or suppress the development of cardiovascular disease (37, 38). In 
addition, the metabolites of probiotics exhibited angiotensin-
converting enzyme (ACE) inhibitory properties, leading to their 
anti-hypertensive effects (39). The evaluation of DI-GM includes 14 
foods or nutrients that are closely related to gut health and 
cardiovascular metabolic health. A clinical trial showed that the 
avocado supplementation group showed a significant increase in 
Faecalibacterium prausnitzii and AF16_15 bacteria (40). 
Faecalibacterium prausnitzii alleviates inflammation and strengthens 
intestinal machinery and mucosal barrier, leading to lower plasma 
lipopolysaccharide level and anti-atherosclerosis (41). In addition, 

FIGURE 3

Subgroup analysis of associations of DI-GM and CMM. Models were adjusted for all covariates.
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avocado is rich in unsaturated fatty acids (UFA), which help promote 
blood lipid health and reduce the risk of metabolic diseases (42, 43). 
One cruciferous vegetable that is high in isothiocyanates is broccoli. 
These substances increase myrosinase activity in the colon and 
cecum, and they lower the risk of cardiovascular disease (CVD) by 
acting as antioxidants and anti-inflammatory agents (44–46). The 
annual consumption of chickpeas in the United States is increasing 
year by year. A meta-analysis showed that because of their high fiber 
and protein content, low starch digestion, and hormonal impacts, 
chickpeas may help regulate blood sugar levels (47). Coffee and tea 
are rich in caffeine, which may reduce the incidence of CMD by 
affecting gut microbiota, increasing energy expenditure, and 
improving lipid metabolism (48–50). In addition, cranberries are 
rich in unique phytochemicals, including anthocyanins, flavonoids, 
and phenolic acids (51). The metabolites of anthocyanins have 
shown good effects in improving gut microbiota composition, anti-
inflammatory and antioxidant properties (52). Flavonoids are 
present in a large number of plant-based foods. It can promote the 

production of beneficial gut microbiota, inhibit pathogen growth 
and endotoxin production to maintain intestinal immune 
homeostasis. Fermented dairy products contain probiotics, including 
Streptococcus thermophilus and Lactobacillus delbrueckii, which can 
lower the risk of diabetes and CVD by enhancing the digestive tract’s 
internal and exterior health (53, 54). In addition, the favorable 
impacts of dietary fiber, soybeans, and whole grains on cardiac 
metabolism can also be determined (55–57). Dietary fiber also can 
actively regulate the gut microbiota (58). Soybeans are rich in 
soybean isoflavones (Sis). SIs can enhance intestinal secretion 
capacity, regulate inflammatory signaling pathways, affect intestinal 
barrier function and regulates glucose homeostasis and lipid 
metabolism (59, 60).

On the contrary, the remaining four components seem to 
be detrimental to CMM. Red meat contains N-nitroso compounds, 
heterocyclic amines, and heme, which can cause imbalance dysbiosis of 
the gut microbiota (61). More importantly, meta-analysis on red meat 
reveals adverse effects on CVD regardless of whether red meat is 

FIGURE 4

Mediation analysis of exploring the mediating effect of SII and SIRI. (A) SII, (B) SIRI. Models were adjusted for all covariates.
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processed or not (62, 63). Compared to whole grains, refined grains are 
obtained after grain processing, resulting in significant loss of nutrients 
such as dietary fiber, B vitamins, magnesium, iron, etc. Therefore, high 
intake of refined grains may lead to lower intake of these nutrients, which 
is detrimental to metabolic diseases (64, 65). Finally, the adverse effects 
of high-fat intake on cardiac metabolism have been widely recognized 
(66, 67). In summary, these 14 foods or nutrients are interconnected with 
intestinal health and lower likelihood of CMDs through anti-
inflammatory, antioxidant, and lipid-lowering pathways. For the first 
time, we have discovered that DI-GM decreases the risk of inflammation 
and further CMM in the populace at large, which confirms the 
conclusions of the above literature.

Subgroup analysis results showed that among individuals with 
education levels higher than high school, DI-GM had a greater 
reducing effect on CMM. This may be related to people with more 
education are more concerned about eating healthily with a high 
content of dietary fiber, unsaturated fatty acids as well as antioxidants, 
and significantly decrease inflammation and cardiovascular disease 
risk (68, 69).

Our research is distinguished by several key strengths. Firstly, 
we  have conducted the pioneering investigation into the 
relationship between the DI-GM and CMM, thereby providing 
innovative perspectives on the nutritional approaches to 
preventing CMM. Secondly, the robustness of our findings is 
bolstered by the application of a variety of statistical techniques. 
Thirdly, we have elucidated the mediation effects, shedding light 
on the possible underlying mechanisms of this relationship.

Notwithstanding these strengths, the study is subject to 
constraints. Foremost, the cross-sectional study means that data 
were collected at a specific moment in time, which precludes the 
causality between exposure and outcomes (70). Secondly, the 
research population is the American population, so it is necessary 
to be  cautious when extrapolating the research conclusions to 
other populations. Thirdly, our analysis focused solely on the 
effects of SII and SIRI in the DI-GM-CMM relationship, potentially 
overlooking the role of other inflammatory biomarkers. Finally, the 
DI-GM has its own limitations. There is a lack of clear definition 
for beneficial/harmful gut microbiota, and the indicators used in 
different studies are also inconsistent.

5 Conclusion

DI-GM that reflects gut microbiota could significantly reduce the 
occurrence of CMM. Inflammation may be one of the factors that 
underlie this advantageous effect. Our study elucidates the underlying 
mechanisms through which the gut microbiota modulates cardiac 
metabolism, offering novel insights for the prevention and 
management of CMM.
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Glossary

AIC - Akaike information criterion

BMI - body mass index

CAD - coronary artery disease

CHARLS - China Health and Retirement Longitudinal Study

CMD - cardiometabolic diseases

CMM - Cardiometabolic Multimorbidity

CVD - Cardiovascular disease

DE - direct effect

DI-GM - Dietary Index for Gut Microbiota

HEI - Healthy Eating Index

IE - indirect effect

MAFLD - metabolic- dysfunction related fatty liver disease

MEC - mobile examination center

NHANES - National Health and Nutrition Examination Survey

OR - Odds ratios

CI - confidence intervals

PIR - poverty-to-income ratio

RCS - restricted cubic spline

SII - systemic immune inflammation index

SIRI - systemic inflammatory response index

TE - total effect

TMAO - trimethylamine N-oxide

SCFA - short-chain fatty acid
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