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In this study, the effects of a syntrophic methanogen on the growth of Pecoramyces
sp. F1 was investigated by characterizing fermentation profiles, as well as functional
genomic, transcriptomic, and proteomic analysis. The estimated genome size, GC
content, and protein coding regions of strain F1 are 106.83 Mb, 16.07%, and 23.54%,
respectively. Comparison of the fungal monoculture with the methanogen co-culture
demonstrated that during the fermentation of glucose, the co-culture initially expressed
and then down-regulated a large number of genes encoding both enzymes involved in
intermediate metabolism and plant cell wall degradation. However, the number of up-
regulated proteins doubled at the late-growth stage in the co-culture. In addition, we
provide a mechanistic understanding of the metabolism of this fungus in co-culture with
a syntrophic methanogen. Further experiments are needed to explore this interaction
during degradation of more complex plant cell wall substrates.

Keywords: anaerobic fungus, methanogen, metabolism, genome, RNAseq, iTRAQ

INTRODUCTION

In the rumen, microorganisms, which are mainly composed of anaerobic fungi, bacteria, archaea,
and protozoa, have coevolved for millions of years, making the rumen one of the most effective
and highly evolved systems regarding degradation of recalcitrant lignocellulosic plant material in
nature (Russell and Rychlik, 2001; Weimer et al., 2009). Within this system, the diverse microbial
communities cooperate efficiently in the digestion and conversion of plant biomass in feeds to
various compounds crucial for body maintenance and performance (Kim et al., 2011; Mao et al.,
2016). Anaerobic fungi, bacteria, and protozoa degrade and ferment ingested plant biomass and
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release hydrogen during this process (Akin et al., 1988). However,
the accumulation of hydrogen is energetically unfavorable and
can inhibit the fermentation of ingested feed (Ungerfeld, 2015).
Ruminal methanogens are effective hydrogen utilizers and can
use the hydrogen generated to reduce carbon dioxide (which
is also a product of primary fermentation) to methane, thereby
keeping the steady-state hydrogen concentration low and the
rumen operating more efficiently (Janssen and Kirs, 2008). Thus,
trophic interactions exist between the methanogenic archaea
and the hydrogen-producing microorganisms that includes both
anaerobic fungi and bacteria.

Anaerobic fungi assigned to the phylum
Neocallimastigomycota play key roles in the decomposition
of recalcitrant plant lignocellulosic materials in the rumen.
Since the identification of anaerobic fungi by Orpin (1975),
11 genera assigned to the phylum Neocallimastigomycota
have been described: Neocallimastix (Heath et al., 1983),
Caecomyces (Gold et al., 1988), Piromyces (Gold et al., 1988),
Orpinomyces (Barr et al., 1989), Anaeromyces (Breton et al.,
1990), Cyllamyces (Ozkose et al., 2001), Buwchfawromyces
(Callaghan et al., 2015), Oontomyces (Dagar et al., 2015),
Pecoramyces (Hanafy et al., 2017), Feramyces (Hanafy et al.,
2018), and Liebetanzomyces (Joshi et al., 2018). Despite their
potent capacities for lignocellulose degradation, anaerobic fungi
and their enzymes are yet to be exploited in biotechnological
processes. This is largely due to their obligately anaerobic lifestyle
and a poor understanding of their growth requirements and
metabolic characteristics. Anaerobic fungi can ferment a wide
range of fermentable sugars, such as glucose, fructose, xylose,
and cellobiose as energy sources. These are utilized to produce
H2, CO2, formate, acetate, lactate, and ethanol as the major
fermentation end products (Lowe et al., 1987; Teunissen et al.,
1993). In their natural habitat in the rumen and hind-gut of
large mammalian herbivores, anaerobic fungi grow together in
communities with other microbes. Anaerobic fungi and closely
associated methanogens can be isolated from mixed microbial
communities and can be cultured in stable co-culture in media
that do not contain appreciable amounts of compounds that
methanogens need to grow (Cheng et al., 2009). Anaerobic
fungal-methanogen co-cultures have been shown to be stable
with robust growth evident over long periods of time (Bauchop
and Mountfort, 1981; Cheng et al., 2009). Additionally, in co-
cultures, as a consequence of inter-species hydrogen transfer, the
metabolite profile of the anaerobic fungus alters, shifting away
from more reduced products, such as lactate and ethanol, toward
acetate and formate. The formate and hydrogen, end products
of fungal fermentation, are used by the methanogens to produce
methane (Cheng et al., 2009; Jin et al., 2011; Li et al., 2016).
Meanwhile, the fiber-degrading ability of the anaerobic fungus in
co-cultures was improved (Jin et al., 2011). Thus, the metabolic
profile of anaerobic fungi in the co-culture is comparable to that
of their counterparts in the rumen, where hydrogen and formate
are known to be transient and low (Hungate, 1967; Hungate
et al., 1970), and the fiber-degrading ability is known to be high
(Krause et al., 2003). Thus, investigating the interaction between
anaerobic fungi and co-cultured methanogen might provide
insights into the complex microbial interactions in the rumen.

In recent years, omics-based techniques have been used
to study the diversity, ecology, and biology of anaerobic
fungi. Five genomes of anaerobic fungal strains have been
reported, including Piromyces sp. E2, Pecoramyces ruminantium
C1A, Anaeromyces robustus, Neocallimastix californiae, and
Piromyces finnis (Youssef et al., 2013; Haitjema et al., 2017). The
transcriptomes of Pecoramyces ruminantium C1A, Piromyces
finnis, Neocallimastix californiae, Caecomyces churrovis,
Anaeromyces mucronatus, Neocallimastix frontalis, Orpinomyces
joyonii, Piromyces rhizinflata, and Anaeromyces robustus have
been described (Couger et al., 2015; Solomon et al., 2016; Henske
et al., 2017; Gruninger et al., 2018). To our knowledge, there are
no studies that apply functional genomic, transcriptomic, and
proteomic approaches to interrogate the effect of co-culturing
a methanogen on the metabolism, including expression of
fiber-degrading enzymes, of an anaerobic fungus.

In the present study, we used genomic, transcriptomic,
and metabolomic data of the anaerobic fungal monoculture
to draw a metabolic pathway of the fungus. The mRNA
expression profile of the anaerobic fungus Pecoramyces sp. F1
in the presence and absence of its syntrophic methanogen,
Methanobrevibacter thaueri, was also investigated. By combining
the foregoing analysis with the anaerobic fungal proteome
dynamics and analysis of the metabolites induced by growth with
the methanogen, we reveal the effects of the archaeon on the
metabolism of the anaerobic fungus.

MATERIALS AND METHODS

Maintenance of Anaerobic Fungal
Monoculture and Co-culture
The anaerobic fungus Pecoramyces sp. F1, formerly described
as Piromyces sp. F1, and its symbiotic methanogen,
Methanobrevibacter thaueri, were isolated and identified
from goat rumen by Jin et al. (2011). The culture was maintained
in rumen fluid media (Davies et al., 1993) with 1% (w/v) rice
straw as substrate and transferred every 3 days. The media
was prepared according to Cheng et al. (2009) and 90 ml
media was dispensed into 160 ml serum bottle with 1 g rice
straw as substrate. At each transfer, 10 ml of 3-day-old culture
was inoculated into 90 ml of fresh media and incubated at
39◦C for 3 days. The fungal monoculture was obtained by
adding chloramphenicol (50 mg l−1 final concentration) to
inhibit the growth of the associated methanogen (Cheng et al.,
2009). The relative abundance of methane in the head-space
gas of the monoculture was analyzed by GC-TCD (Agilent
7890B, Agilent, Santa Clara, CA, United States) to ensure that
no methane was being produced by the culture to confirm
that the methanogen was no longer present in fungal pure
culture studies.

Experimental Design and Sample
Collection
In the current study, the medium used for experiments
was a modified medium M2 (Barichevich and Calza, 1990)
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with 2.16 g l−1 (12 mM) glucose as substrate. The medium
was prepared and dispensed under anaerobic conditions
into serum bottles (90 ml/bottle), with pH adjusted
to 6.8 (Li et al., 2016). For anaerobic fungal genome
sequencing, 40 bottles of Pecoramyces sp. F1 monoculture
were incubated at 39◦C for 72 h without shaking. The
fungal cells were then harvested by centrifugation at
10,000× g for 15 min.

To investigate the effects of co-culturing with M. thaueri on
the metabolism of Pecoramyces sp. F1, the anaerobic fungus
was grown alone (monoculture) and also in co-culture with
the methanogen at 39◦C without shaking. A total of 72
bottles were used for the experiment; details of the protocol
information are shown in Supplementary Figure 1. Samples
were collected from each replicate for transcriptomic, proteomic,
and metabolite analysis. The total volume of gas accumulated
in each culture over the incubation period was also measured
using the pressure transducer technique (Theodorou et al.,
1994). After each reading, the head-space was vented to
return the pressure to ambient conditions. Furthermore, the
gas drawn was analyzed for CH4 and H2 content. Samples
from the cultures were collected at approximately 50% and
100% of maximum gas production (i.e., mid- and late-
growth stages) as determined from previously generated gas
accumulation curves. The pH was measured at each time
point immediately upon removing crimp-seals and stoppers
from the serum vials. Aliquots of 5 ml supernatant were
then collected and stored at −20◦C for subsequent analysis
of water-soluble metabolites. The rest of the culture was
then centrifuged at 8,000 × g for 15 min, and 1 ml of
supernatant was used for the analysis of residual glucose with
a commercial glucose kit (Nanjing Jiancheng Biotechnology
Institute, Nanjing, China). The cells from the remaining six
bottles, representing each replicate, were then mixed and split
into two parts for RNAseq and iTRAQ analysis. Two bottles of
each replicate were used for the analysis of gas, glucose, pH, and
water-soluble metabolites.

DNA Extraction, Sequencing, Genome
Assembly, and Gene Calling and
Annotation
Genomic DNA was extracted from a 3-day-old anaerobic
fungal monoculture with the CTAB method (Cheng et al.,
2017). Briefly, the culture was centrifuged and ground in
liquid nitrogen. CTAB buffer was added to dissolve the
powder and phenol/chloroform/isoamyl alcohol (25:24:1) was
then used to purify the DNA. Three libraries with insert
sizes of 170 bp, 350 bp, and 6,000 bp were prepared at BGI
(Beijing Genomics Institute, Shenzhen, China) according to the
manufacturer’s instructions (Illumina). Paired-end sequencing
was conducted on an Illumina Hiseq 2000 platform (BGI,
Shenzhen, China). A total of 28.67 Gb in 159,302,966 quality-
filtered paired-end reads were used for assembly (Supplementary
Table 1). The quality-filtered reads were assembled with
SOAPdenovo V1.05 (Li et al., 2008, 2010) using a kmer
value of 43. The assembly was then optimized by the

paired-end and overlap relationship of reads through mapping
reads to assembled contigs. Gene calling was then conducted
using a combination of Augustus V2.6.1 and Genemarkes
V2.3e (Ter-Hovhannisyan et al., 2008; Keller et al., 2011).
Transposable elements (TEs) were identified by RepeatMasker
(Repbase) and RepeatProteinMasker1. Tandem repeats were
identified by Tandem Repeat Finder (TRF) (Benson, 1999).
The number of simple sequence repeats (SSRs) were calculated
using the results of TRF according to Youssef et al. (2013).
The rRNAs and tRNAs were identified using RNAmmer 1.2
(Lagesen et al., 2007) and tRNAscan-SE 1.23 (Lowe and Eddy,
1997), respectively. BLAST was used for the annotation of
gene models against KEGG, GO, CAZy, Uniprot_Swissprot
and non-redundant (NR) databases (Bard and Winter, 2000;
Kanehisa et al., 2004; Cantarel et al., 2009; The UniProt
Consortium, 2015). The genome assembly and gene calling
and annotation were conducted by BGI (Shenzhen, China).
The raw data was submitted to SRA under the accession
number: PRJNA517297.

RNAseq Mapping and Differentially
Expressed Gene Analysis
The RNA for RNAseq analysis were isolated from the mid-
and late-growth stages of the anaerobic fungal monoculture
and co-culture. The RNAseq libraries, which included only
mRNA, were generated according to the Illumina TruSeq
RNA sample protocol. The mRNA was enriched using oligo-
dT (Rio et al., 2010). Paired-end sequencing was conducted
on an Illumina Hiseq 2000 platform (BGI, Shenzhen, China).
All quality-filtered reads were mapped to the genome and
genes by BWA (Li and Durbin, 2009) and Bowtie (Langmead
et al., 2009), respectively. The number of reads produced per
sample and the mapping results are provided in Supplementary
Table 2. The quantification of gene expression was calculated in
fragments per kilobase of transcript per million mapped reads
(FPKM) with the RSEM package (Li and Dewey, 2011). To
assess variability between biological replicates, the coefficient
of determination R2 was calculated between biological replicate
pairs using RSEM-generated FPKM values (Supplementary
Table 3). The raw data was submitted to SRA under the
accession number: PRJNA517315. Differentially expressed genes
were screened with the NOISeq package (Tarazona et al., 2015)
according to the following criteria: fold change > ±2 and
divergence probability >0.8.

Isobaric Tags for Relative and Absolute
Quantization (iTRAQ) Analysis of
Proteins
Proteins for iTRAQ analysis were collected from the mid- and
late-growth stages of the anaerobic fungal monoculture and
co-culture. The cells were digested and labeled according to
Yan et al. (2016). One biological replicate from each sample
(four samples in total) was then mixed as one iTRAQ set
resulting in three iTRAQ sets that were analyzed. The mixed

1http://repeatmasker.org
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fractions were then separated by liquid chromatography
(LC) and analyzed by two-step mass spectrometry (MS)
(Yan et al., 2016). All procedures were conducted at BGI
(Shenzhen, China). The MGF files, converted from the
raw data using a 5600 msconverter, were used for protein
identification with the Mascot search engine (Matrix Science,
London, United Kingdom; version 2.3.02) against the fungal
transcriptome containing 17,639 sequences (Yan et al., 2016).
The identification of proteins in the three sets is shown
in Supplementary Table 4. The proteomic dataset was
deposited in the iPROX database under the accession number
IPX0001499000. The criteria for differential expression of
proteins was a P-value < 0.05 and fold change > ±1.2 in at
least two iTRAQ sets.

Nucleotide Sequencing of 28S rRNA
Gene and ITS Sequences and
Phylogenetic Analysis
The genomic DNA from the anaerobic fungal monoculture
was used to amplify the 28S rRNA gene using the primer
pair AF-LSU (5′-GCTCAAAYTTGAAATCTTMAAG-3′)
and AF-LSU (5′-CTTGTTAAMYRAAAAGTGCATT-3′)
(Dollhofer et al., 2016). To amplify the ITS sequence, primers
ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-
TCCTCCGCTTATTGATATGC-3′) were used (White et al.,
1990). The PCR reaction (20 µl) consisted of 0.5 µl of each
primer, 1 µl of the template DNA and 10 µl of PCR Master
Mix. For 28S rRNA gene amplification, after initial denaturation
at 94◦C for 3 min, 36 cycles of amplification were performed,
with 94◦C for 20 s denaturation, 61◦C for 45 s annealing,
72◦C for 45 s extension, and a final extension of 72◦C for
10 min. For the amplification of ITS sequence, we performed an
initial denaturation at 95◦C for 3 min, followed by 39 cycles of
amplification with 95◦C for 30 s denaturation, 52◦C for 1 min
annealing, 72◦C for 1 min extension, and a final extension of
72◦C for 5 min. The sequences were deposited at the GenBank
under accession numbers MG250475 and MG250482 for 28S
rRNA gene and ITS sequences, respectively. 28S rRNA gene
and ITS sequences from representatives of the anaerobic fungal
genera were retrieved and used to construct phylogenetic trees
with MEGA 6 (Tamura et al., 2013).

Chemical Analysis
The head-space gas of the culture was collected and analyzed
for relative abundances of H2 and CH4 using GC-TCD
(Agilent 7890B, Agilent, Santa Clara, CA, United States)
according to Li et al. (2016). The volumes of H2 and CH4
were then calculated according to the total gas production.
The concentration of ethanol was measured by GC-
TCD using a method described by Li et al. (2016). The
concentrations of formate, acetate, lactate, malate, citrate,
and succinate were analyzed by HPLC (1220 Infinity LC
system, Agilent, Santa Clara, CA, United States) with a
reversed phase column ZorbaxSB-Aq (Agilent, Santa Clara,
CA, United States) according to Li et al. (2016). The statistical
analysis of glucose, gas, pH, and fermentation end products

was conducted in RStudio2 and a significant effect was
declared at P < 0.05.

RESULTS

The Genome of Anaerobic Fungus
Pecoramyces sp. F1
The anaerobic fungus in the present study was isolated in co-
culture with the methanogen, M. thaueri and the results were
published by Jin et al. (2011). Based on the fungal morphology,
particularly the monocentric fungal thallus and presence of
monoflagellated zoospores, the fungal component of the co-
culture was assigned to the genus Piromyces (Jin et al., 2011).
Subsequently it became apparent that the newly discovered
genus, Pecoramyces was morphological similar to some Piromyces
isolates (Hanafy et al., 2017). To obtain a more accurate
identification of our fungal isolate, we applied molecular
techniques based on the amplification and sequencing of the
gene encoding the 28S rRNA and its ITS sequences. Using these
sequences information, two phylogenetic trees were constructed
based on the 28S rRNA gene sequence and the ITS sequence,
respectively (Supplementary Figure 2). Both phylogenetic
trees confirmed that the fungus isolated in co-culture with
M. thaueri (Jin et al., 2011) is a member of the newly described
anaerobic fungal genus, Pecoramyces (Hanafy et al., 2017), and is
subsequently referred to as Pecoramyces sp. F1.

The genome of Pecoramyces sp. F1 was sequenced using
paired-end Illumina technology with approximately 268×
coverage. Results estimated the genome size of this fungus to
be 106.83 Mb (Table 1). As observed in previously reported
anaerobic fungal genomes (Youssef et al., 2013; Haitjema et al.,
2017), Pecoramyces sp. F1 exhibited low GC content (16.07%)
with a very low proportion of the genome used in coding for
proteins (23.54%). From the data, it was estimated that the
genome encoded 17,740 genes with an average length of 1,918 bp.
A comparison of the Pecoramyces sp. F1 genome with five
published anaerobic fungal genomes is shown in Table 2. The
implications relating to genome structure are discussed later.
The putative pathway for metabolism of glucose by Pecoramyces

2http://www.rstudio.org

TABLE 1 | The assembly of the genome of Pecoramyces sp. F1.

Items Scaffold Contig

Total number 10,442 19,426

Total length (bp) 106,834,627 98,707,616

N50 (bp) 40,524 10,106

N90 (bp) 2,916 2,011

Max length (bp) 272,868 156,300

Min length (bp) 1,000 200

Sequence GC (%) 16.07 16.07

Three libraries with insert sizes of 170 bp, 350 bp, and 6,000 bp were prepared.
A total of 28.67 Gb in 159,302,966 quality-filtered paired-end reads was used for
assembly with SOAPdenovo V1.05 using a kmer value of 43.
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TABLE 2 | A comparison of genomes of Pecoramyces sp. F1 and other anaerobic fungi.

Items Pecoramyces sp.
F1

Pecoramyces
ruminantium#

Piromyces sp.
E2$

Piromyces finnis$ Anaeromyces
robustus$

Neocallimastix
californiae$

Estimated genome size (Mb) 106.83 100.95 71.02 56.46 71.69 193.03

Number of scaffolds 10,442 32,574 1,656 232 1035 1,819

Protein coding (%) 23.54 20.60 23.90 30.35 27.41 15.22

Number of genes 17,740 16,347 14,612 11,314 13,081 21,028

Average gene length (bp) 1,918 1,623 1,675 2,278 2,350 2,216

Number of exons 66,993 52,044 45,130 54,796 60,136 86,802

GC content (%) 16.07 17.00 21.80 21.18 16.30 18.20

#The data were reported by Youssef et al. (2013). $The data were reported by Haitjema et al. (2017).

FIGURE 1 | Gas production of anaerobic fungal monoculture and fungal-methanogen co-culture. (A) Cumulative gas production curve showing the sampling time
for transcriptomic, proteomic, and fermentation end products analysis. Mc, mid-growth stage of co-culture; Mm, mid-growth stage of monoculture; Lc, late-growth
stage of co-culture; Lm, late-growth stage of monoculture. (B) H2 and CH4 production from fungal monoculture and co-culture, respectively.

sp. F1 was demonstrated in Supplementary Figure 3 based on
genomic and transcriptomic data. Comparison of the genomes
of anaerobic fungi and aerobic fungi was demonstrated in
Supplementary Figure 4.

Effect of Co-culturing With a
Methanogen on the Metabolism of
Pecoramyces sp. F1 at Mid-Growth
Stages
The gas production curves of the anaerobic fungal monoculture
and co-culture with the methanogen are shown in Figure 1.
The co-culture grew more rapidly and produced more

gas, reaching mid- and late-growth stages sooner than the
corresponding axenic cultures (Figure 1A). A total gas volume
of 107 ml in the anaerobic fungus/methanogen co-culture was
measured after 66 h of cultivation compared with 90 ml after
a longer incubation time of 80 h of the monoculture. Large
amounts of H2 accumulated in the monoculture whereas it was
undetectable in the co-culture. As expected, CH4 accumulated
in the anaerobic fungus/methanogen co-culture (Figure 1B).
For further molecular analysis, samples were taken at mid- and
late-growth stages.

Based on transcriptional analysis (mRNA data), at the mid-
growth stage 12,262 ± 171 and 12,176 ± 311 genes were
expressed in the monoculture and co-culture, respectively
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(P > 0.05). In comparison to the monoculture, it was observed
that 62 and 121 genes were up-regulated and down-regulated,
respectively, in the co-culture (Supplementary Table 5). The top
10 up-regulated and down-regulated genes and their functional
annotations are shown in Table 3. Half of the top 10 up-
regulated genes were annotated as fiber-degrading enzymes.
The number of genes undergoing alternative splicing were
examined and 8,281 ± 878 and 7,727 ± 169 alternatively
spliced genes were detected in the monoculture and co-culture,
respectively (P > 0.05).

In addition to the transcriptional analysis, proteomic analysis
was carried out on total proteins at mid- and late-growth stages
using the iTRAQ approach. A total of 2,149 proteins were
identified (MASCOT) and quantified in all three replicates in
both cultures at the mid- and late-growth stages. In comparison
with the monoculture, it was observed that 117 and 162 proteins
were up-regulated and down-regulated, respectively, in the co-
culture at the mid-growth stage. The top 10 up-regulated and
down-regulated proteins and their functions are shown in
Table 4. It is significant that many of the transcripts and proteins
that were highly up-regulated or down-regulated had no matches
in the databases included in this study (Tables 3, 4), however,
a large number of proteins associated with cellular-binding and
transmembrane activities were moderately up-regulated (>2 and
<100 folds) (Supplementary Table 6).

The pH value of the co-culture, although not very different,
was significantly higher (6.5± 0.03) than that of the monoculture
(6.4 ± 0.03) (P < 0.05) at the mid-growth stage. Metabolites,

including formate, lactate, acetate, ethanol, succinate, malate, and
citrate were detected in the supernatant of the monoculture;
formate, lactate, succinate, malate, and citrate concentrations
were significantly decreased when measured in the anaerobic
fungus/methanogen co-culture when compared with the fungal
monoculture (Figure 2).

The effects of the methanogen on the metabolism of
Pecoramyces sp. F1 in co-culture at the mid-growth stage is
presented in Supplementary Figure 5. The expression levels
of aconitase and NADH dehydrogenase genes were down-
regulated in the co-culture, while no significant differences were
observed at the protein level. The expression levels of lactate
dehydrogenase and pyruvate formate lyase (PFL) genes were
not affected by co-culturing the fungus with the methanogen,
although they were up-regulated at the protein level. In the case
of aldehyde/alcohol dehydrogenase, it was found to be down-
regulated at both the transcription and protein levels.

Effect of Co-culturing With a
Methanogen on the Metabolism of
Pecoramyces sp. F1 at Late-Growth
Stages
Measurements made at the late-growth stage showed that
11,978 ± 237 and 10,010 ± 348 genes were expressed in the
monoculture and co-culture, respectively (P < 0.05). Relative to
the monoculture, 42 and 852 of the expressed genes were up-
regulated and down-regulated, respectively, in the co-culture. It

TABLE 3 | The top 10 up-/down-regulated genes of anaerobic fungus Pecoramyces sp. F1 at mid- and late-growth stages.

Stages Up-regulated genes Annotation (NCBInr) Dow-regulated genes Annotation (NCBInr)

Mid-growth stage A07452 – A15543 –

A03863 – A06045 –

A11553 – A03640 PREDICTED: LRR receptor-like
serine

A14137 Hypothetical protein A14257 F5/8 type C domain protein, partial

A04599 Sugar transporter A18279 Extracellular alpha amylase

A00805 Aldo/keto reductase diketogulonate
reductase

A03239 Chitin binding protein, partial

A14029 Putative cellulase A16618 Rubrerythrin

A06074 Cellobiohydrolase II-like cellulase
CelI

A17342 Circumsporozoite protein

A08689 Putative cellulase A16337 Conserved hypothetical protein

A06592 Putative cellulase A06176 –

Late-growth stage A15892 Hypothetical protein Haur_1598 A14983 –

A08101 Lectin-B A18355 –

A15439 PREDICTED: CCR4-NOT
transcription complex subunit 1-like

A11982 Putative uncharacterized protein

A00782 Hypothetical protein Haur_1598 A12645 Endo-1,3-1,4-beta-glucanase

A01657 Hypothetical protein PFL1_01810 A10479 Cellulase

A12240 Conserved hypothetical protein A13908 Hypothetical protein
BATDEDRAFT_27702

A03105 Circumsporozoite protein A13113 Beta-glucosidase

A00753 Hypothetical protein RO3G_04189 A05614 Alpha-amylase

A15083 Hypothetical protein Haur_1598 A14764 Pyruvate kinase, partial

A10600 Circumsporozoite protein A06138 Endoglucanase B
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TABLE 4 | The top 10 up-/down-regulated proteins of anaerobic fungus Pecoramyces sp. F1 at mid- and late-growth stages.

Stages Up-regulated proteins Annotation (Uniprot_Swissprot) Dow-regulated proteins Annotation (Uniprot_Swissprot)

Mid-growth stage A10870 – A08105 Endochitinase A

A11918 Ubiquinone/menaquinone
biosynthesis methyltransferase ubiE

A16996 Probable isoprenylcysteine
alpha-carbonyl methylesterase
ICMEL1

A10968 – A00985 Glutaredoxin-C1

A01230 – A04792 Mannan
endo-1,4-beta-mannosidase B

A17203 – A11779 26 kDa endochitinase 1

A15978 Uncharacterized symporter ynaJ A15646 Enamine/imine deaminase

A11958 ATP-binding cassette sub-family A
member 1

A11651 –

A08103 D-Xylose-proton symporter A07589 Transcriptional activator HAP5

A14498 ABC transporter A family member 1 A12393 –

A15678 – A04227 Zinc-type alcohol
dehydrogenase-like protein
PB24D3.08c

Late-growth stage A15978 Uncharacterized symporter ynaJ A04324 60S ribosomal protein L27a
(fragment)

A01843 Uncharacterized symporter ynaJ A12393 –

A08103 D-Xylose-proton symporter A09942 Peptidyl-prolyl cis–trans isomerase
pin1

A10870 – A08105 Endochitinase A

A06767 – A18633 –

A07467 Extracellular matrix protein FRAS1 A04839 Adenine phosphoribosyltransferase

A01230 – A07269 Guanylate kinase

A14498 ABC transporter A family member 1 A06738 Histidinol-phosphate
aminotransferase

A06268 Tubulin-specific chaperone A A12012 –

A17203 – A15624 –

was observed that most of the highly up-regulated genes at the
transcriptional level in the co-culture (RNA fold change >±100)
were related to binding activities in the cell (Supplementary
Table 7). The top 10 up-regulated and down-regulated genes and
their functional annotations are shown in Table 3. In comparison
to the mid-growth stage, at the late-growth stage, fewer genes
were alternatively spliced. Thus, we observed 5,908 ± 603 and
2,061 ± 226 genes were alternatively spliced in the monoculture
and the co-culture, respectively (P < 0.05).

In the late-growth stage, the number of proteins up-regulated
was double that at the mid-growth stage cultures (276 versus 117).
In the case of the down-regulated proteins, however, there was no
difference in the numbers observed for the mid- and late-growth
stage cultures (168 versus 162). Most of the highly up-regulated
proteins (protein ratio > ±2) were related to sporulation,
transmembrane, and cellular-binding activities (Supplementary
Table 8). The top 10 up-regulated and down-regulated proteins
and their functions are shown in Table 4.

As observed in the mid-growth stage, the pH value of the
co-culture (6.53 ± 0.002) was significantly higher than that of
the monoculture (6.24 ± 0.01) (P < 0.05) at the late-growth
stage. Relative to the monoculture, the concentrations of formate,
lactate, malate, and citrate were significantly decreased in the
co-culture (P < 0.05), while the concentrations of acetate
and succinate were significantly increased in the co-culture

(P < 0.05). In contrast, the concentration of ethanol did not vary
between the monoculture and the co-culture (Figure 3).

The effects of co-culturing the methanogen with Pecoramyces
sp. F1 on metabolism at the late-growth stage are shown in
Supplementary Figure 6. At the gene expression level, all of
the enzymes, except for fumarase, involved in the metabolism
of glucose in the anaerobic fungus were down-regulated when
cultured with the methanogen, while only glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), phosphoglycerate mutase
(PGM), PFL, and aldehyde/alcohol dehydrogenase (ADH) were
also down-regulated at the protein level.

Effect of Co-culturing With a
Methanogen on the Expression of
Carbohydrate-Targeting Enzymes of
Pecoramyces sp. F1 at the Mid- and
Late-Growth Stages
The top 20 differentially expressed fiber-degrading enzymes at
the mid- and late-growth stages were examined (Table 5).
Importantly, all of these genes were down-regulated at
the late-growth stage. Although it was not anticipated
that polysaccharide-degrading enzymes are required for the
metabolism of glucose, our search for the top 20 fiber-degrading
enzymes showed that several genes coding for such enzymes
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FIGURE 2 | Concentrations of fermentation end products (A) and glucose (B) and pH values (C) in the supernatant of anaerobic fungal monoculture and co-culture
at the mid-growth stage. ∗Means significant difference between two groups.

were up-regulated in the mid-growth stage. The up-regulated
genes included the afore-mentioned putative cellulase and
others with encoded polypeptides annotated as cellulases,
endoxylanases, alpha-amylases and a feruloyl esterase. Thus, a
broad range of polysaccharide-degrading enzymes were released
during the early stages of glucose metabolism in co-culturing of
Pecoramyces sp. F1 with its syntrophic methanogen. However,
these polysaccharide targeting enzymes were down-regulated
during the late-growth stage.

DISCUSSION

Isolation and maintenance of anaerobic fungi requires a
relatively complex, strictly anaerobic culture methodology
limiting their study to relatively few research groups world-
wide. Consequently, we do not have a good understanding of
the diversity and taxonomy of these unique fungi. According
to classical taxonomy, zoospore ultrastructure and to a lesser
extent, fungal morphology were used to assign generic and
specific names to isolates (Theodorou et al., 1996; Ozkose
et al., 2001). More recently, molecular techniques based on the
amplification and sequencing of genes encoding the 28S rRNA
gene and ITS sequences have been used to aid classification. In
the current work, molecular techniques were used to reassign
the isolate Piromyces sp. F1 to Pecoramyces sp. F1. To date,

only one species of Pecoramyces (P. ruminantium) has been
described (Youssef et al., 2013; Hanafy et al., 2017). To date, a
limited number of publications have studied fungal/methanogen
interactions (Mountfort et al., 1982; Nakashimada et al.,
2000; Jin et al., 2011; Li et al., 2016). In much of the
original work, fungi and methanogens were isolated separately
from different ruminal environments (Mountfort et al., 1982;
Nakashimada et al., 2000). In working with the new isolate
of Pecoramyces and its syntrophically associated methanogen,
M. thaueri, we studied the metabolism of this isolate on
glucose to obtain primary information about a Pecoramyces
strain grown in monoculture and in co-culture with a
syntrophic methanogen.

The estimated genome size of Pecoramyces sp. F1 matched
that of the previously reported estimate for Pecoramyces
ruminantium, as shown in Table 2 (Youssef et al., 2013). This
observation shows that Pecoramyces has a larger genome size
compared with the Piromyces and Anaeromyces genera, although
the estimated genome size of a Neocallimastix is double the
size of Pecoramyces. In contrast, the data further demonstrates
that the anaerobic fungal genomes are consistently AT-rich
(GC% content range from 16 to 22; Table 2). The genera
Piromyces and the Anaeromyces appear to have fewer genes
(∼13,000) compared to the genus Pecoramyces (∼17,000), while
the gene number reported for Neocallimastix is almost twice
that for Piromyces and Anaeromyces. While Piromyces finnis
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FIGURE 3 | Concentrations of fermentation end products (A) and glucose (B) and pH values (C) in the supernatant of anaerobic fungal monoculture and co-culture
at the late-growth stage. ∗Means significant difference between two groups.

codes for approximately 11,000 genes, the number of genes
coded by Piromyces sp. E2 is not very different from that of
Pecoramyces ruminantium (Youssef et al., 2013). The number of
genes coded by Neocallimastix californiae (Haitjema et al., 2017)
shows that this fungal species uses about twice the genome of the
Pecoramyces strains to encode a number of genes only slightly
higher than that of the Pecoramyces strains. Therefore, the protein
coding percentage of the genome of the reported Neocallimastix
strain is very low in comparison with the other genera discussed
in this manuscript.

The results from this study show that alternative splicing
occurs in Pecoramyces sp. F1, as reported in the aerobic fungi
(Grutzmann et al., 2014). Meanwhile, the average alternative
splicing rates of Pecoramyces sp. F1 (∼45% and 22% at the mid-
and late-growth stages, respectively) seem higher than the aerobic
fungi, which was 6.4% on average (Grutzmann et al., 2014).
Furthermore, it was observed that alternative splicing in the
co-culture of the fungus with the methanogen was significantly
lower than the fungal monoculture at the late-growth stage. The
decreased splicing might be due to the limitation of the substrate
in the culture or a slower growth rate associated with substrate
depletion; Birch et al. (1995) reported that differential splicing in
Phanerochaete chrysosporium might regulate the specificities of
substrate of this fungus.

As observed in previous reports (Cheng et al., 2009; Jin et al.,
2011; Li et al., 2016) during co-culturing of anaerobic fungi

with methanogens, total gas production exceeded that of the
gut fungal culture alone and the rate of gas production was
faster. This observation confirms the increased efficiency with
which the anaerobic fungi ferment substrates in the presence of
the hydrogen-utilizing methanogen. Sampling at the mid-growth
stage showed that total mRNA expression was not different
between the monoculture and co-culture and the number of up-
regulated genes was half the number of the down-regulated genes.
However, by the late-growth phase, mRNA expression of the co-
culture was significantly lower than that of the monoculture and
the ratio of the up-regulated and down-regulated genes were
dramatically decreased. The mRNA expression profiles suggest
that on encountering a glucose energy source, Pecoramyces
sp. F1 secretes a large number of polysaccharide degrading
enzymes including endoglucanases, chitinases, amylases, and
licheninases. In the case of the monoculture, this enzyme
secretion appears to continue throughout growth, perhaps due
to comparatively inefficient substrate utilization. On coupling
the fermentation of the anaerobic fungus with the methanogen,
the efficiency of the fermentation increased, leading to a down-
regulation of the expression of the polysaccharide degrading
enzymes. As shown in Table 5, this is particularly so for the
putative enzymes involved in cellulose metabolism, including
about six putative cellulases, likely reflecting the hydrolysis
of the cellulose backbone. The efficiency of the fermentation
in anaerobic fungus/methanogen co-culture increases is likely
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TABLE 5 | Top 20 differentially expressed fiber degrading enzymes at mid- and
late-growth stages.

Gene ID Mid-growth
stage#

Late-growth
stage

Annotation (NCBInr)

A16134 5.57 −7.07 Putative cellulase

A11665 1.86 −8.19 Alpha-amylase

A13113 −0.03 −9.81 Beta-glucosidase

A16053 5.82 −3.81 Putative cellulase

A18358 0.17 −9.45 AmyE alpha-amylase

A07248 −0.66 −9.61 Feruloyl esterase

A17896 −0.07 −8.51 Endo-1,4-beta-xylanase

A17801 2.11 −6.20 Alpha-amylase G-6

A02885 4.94 −3.27 Endoxylanase

A14736 2.63 −5.03 Pectate lyase D

A07671 −0.52 −8.13 Cellulase Cel48A precursor

A03809 1.09 −6.49 Alpha-amylase MalS

A11825 4.54 −2.81 Putative cellulase

A10479 −2.64 −9.98 Cellulase

A16521 3.54 −3.66 Putative cellulase

A02179 4.09 −2.81 Putative cellulase

A17482 4.22 −2.59 Glucan endo-1,3-beta-D-
glucosidase

A09998 0.44 −6.36 1,4-beta-D-glucan-4-
glucanohydrolase

A08700 0.66 −6.09 Alpha-amylase

A07525 5.17 −1.55 Putative cellulase

#The values are log2 of (co-culture FPKM/monoculture FPKM).

due to the removal of H2 through interspecies transfer to
the syntrophic methanogen to produce CH4. In the fungal
cell, the oxidization of NADH into NAD+ and H+ is
associated with the production of acetic acid. This pathway
is likely to be favorable for obtaining higher amounts of
ATP, compared with the more reduced electron sinks end-
products (e.g., lactate, ethanol) used by anaerobic fungi to
regenerate NAD+ for glycolysis (Bauchop and Mountfort, 1981;
Marvin-Sikkema et al., 1990).

The results in the present study are in agreement with the
observation that during syntrophic interactions between several
ruminal organisms with hydrogen-removing methanogens, a
shift in the metabolism occurs leading to extra ATP gain by
the organism co-cultured with the methanogen (Bauchop and
Mountfort, 1981; Marvin-Sikkema et al., 1990). Unlike the
transcriptomic data, major shifts in the proteomic data were
not observed in the present study. This may be due to the
fact that the proteins in the cell have a much longer lifetime
than that of the mRNAs. A genome-wide study showed that the
lifetime of mRNAs in Escherichia coli were between 3 and 8 min
(Bernstein et al., 2002). However, the rate of intracellular protein
degradation in E. coli was 4 h (Koch and Levy, 1955).

The changes in the metabolites observed in the present
study are similar to the results observed in our previous
studies (Li et al., 2016, 2017). In brief, the pH value increased
significantly at the late-growth stage as formate was utilized
by the co-cultured methanogen and the lactate decreased
due to a reduced demand for electron sink products for

regeneration of reducing equivalents. Finally, acetate increased
significantly because metabolism in the hydrogenosome
became more efficient.

Combining the data reported in the present study and
previous reports on anaerobic fungi and methanogens co-culture
(Cheng et al., 2009; Li et al., 2016, 2017), we found that in
the early growth stage of the co-culture, the metabolism in
the fungal cell improved and large amounts of end products
were produced. At this growth stage, the substrate was adequate
and only H2 was used by co-cultured methanogens to reduce
the gas pressure, which could inhibit the microbial growth
(Li et al., 2016). At the late-growth stage, the substrate
was inadequate for anaerobic fungi to produce enough H2
and methanogens would use formate to produce methane,
which increased the pH value of the culture. The metabolic
interaction between the two organisms would help both of
them to be competitive in the rumen. For the anaerobic
fungus, the fiber-degrading ability was improved and feedback
inhibition (both gas pressure and water-soluble metabolites) was
eliminated. For the methanogen, it could obtain H+ as soon as
it was produced.

In summary, in the present report we have used modern
molecular approaches to assign phylogenetic placement to a
new anaerobic fungal isolate and concomitantly provided a
mechanistic understanding of its intermediary metabolism in co-
culture with a syntrophic methanogen. We look forward to future
experiments that explore interactions during degradation of more
complex substrates.
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