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Simple Summary: Plants in the Opuntia genus are abundant and can be used as a feed supplement
because they are highly digestible and can provide water and energy.We fed sheep during late gestation
with alfalfa (Control), Opuntia (Opuntia) or protein-enriched Opuntia (E-Opuntia) and measured milk
yield and postnatal growth in the progeny. Birth weight did not differ among treatments (p > 0.05) but
progeny from E-Opuntia grew faster (p < 0.01) and were heavier at weaning (p < 0.05), despite the fact
that Control ewes produced more milk (p < 0.05). Feeding ewes with Opuntia (protein enriched or
not) during the last third of gestation is an option for reducing production costs in underfed females
managed under extensive conditions in arid and semiarid regions.

Abstract: The present study tested whether feeding ewes during the last third of pregnancy with
cladodes of Opuntia (untreated or protein-enriched), as an alternative to alfalfa hay, would improve
milk yield as well as the pre- and post-natal growth of their lambs. Sixty mature Rambouillet ewes
and their progeny were randomly allocated among three nutritional treatments: (i) Control, fed alfalfa;
(ii) Opuntia, fed untreated cladodes; (iii) E-Opuntia, fed protein-enriched cladodes (pre-treated with
urea and ammonium sulphate). Birth weight did not differ among treatments (p > 0.05) but Control
ewes produced more milk than both groups of Opuntia-fed ewes (p < 0.05). However, milk yield was
not related to the growth of the progeny (p > 0.05) because lambs from E-Opuntia-fed ewes grew faster
(p < 0.01) and were heavier at weaning (p < 0.05) than lambs from the other two groups.We conclude

Animals 2020, 10, 995; doi:10.3390/ani10060995 www.mdpi.com/journal/animals

http://www.mdpi.com/journal/animals
http://www.mdpi.com
https://orcid.org/0000-0001-9946-3942
https://orcid.org/0000-0003-4412-4972
https://orcid.org/0000-0003-0289-2009
https://orcid.org/0000-0002-0917-4475
https://orcid.org/0000-0002-1905-7934
https://orcid.org/0000-0002-3414-338X
http://www.mdpi.com/2076-2615/10/6/995?type=check_update&version=1
http://dx.doi.org/10.3390/ani10060995
http://www.mdpi.com/journal/animals


Animals 2020, 10, 995 2 of 13

that Opuntia (with or without protein enrichment) can be used as an alternative to alfalfa hay for
feeding ewes during the last third of pregnancy and therefore reduce production costs under extensive
conditions in arid and semiarid regions. Moreover, protein-enriched Opuntia appears to improve
postnatal lamb growth.

Keywords: birth weight; cactus; Opuntia spp.; postnatal performance; sheep

1. Introduction

The breeding of small ruminants is often the principal economic output in the arid and semiarid
regions of the world. Animals raised under these conditions depend solely on the forage resources from
these usually degraded rangelands, and generally do not receive any nutritional supplementation [1,2]
because high-quality pastures and concentrates are not readily available and usually too expensive [3].

A possible low-cost alternative is to make use of autochthonous plants, such as cacti (Opuntia spp.)
and ball moss (Tillandsia recurvata) [4–6]. Opuntia spp. offer a high water content, high digestibility
and significant amounts of energy [7,8]. In cladodes of the spineless cactus, Opuntia ficus-indica,
the protein content ranges from 2.8–8% [7–10], the fat content ranges from 3.9–4.7 g/100 g DM [9]
and the content of metabolisable energy ranges from 11.1–11.4 mj/kg DM [10], with some variation
according to age and genotype. Opuntia adapts easily to poor-quality soils, withstands water
shortages and high temperatures [11,12], and is widely distributed across Latin America, South Africa
and the Mediterranean region [10,13].

Previous studies have shown that feeding female sheep and goats with Opuntia cladodes can
improve reproductive performance and the growth of their offspring post-weaning, suggesting that
Opuntia is a viable alternative for nutritional management of small ruminants in arid and semiarid
conditions [14–17]. Particularly important is the period that includes late gestation and early lactation
because the female must transition from a non-lactating lipogenic status into one of high demand for
energy to support the growth of fetuses and the newborn [18]. In contrast with its ability to supply
energy, Opuntia cladodes contain low and variable amounts of protein [7,8]. This problem can be
overcome to some extent by adding urea (1%) or by fermentation with various additives [17,19–21].
These treatments enhance the dry matter intake and digestibility of Opuntia [22,23]. Enhancing
the nutritive value of the maternal diet during the last trimester of gestation can improve colostrum
quality [24], especially when the nutritive quality of the feedstuff is low. Previous work has shown
that Opuntia cladodes can also fill this role in sheep, increasing the production, immunoglobulin G
concentration and energy content of colostrum [4,15]. However, the effect on birth weight remains
unknown. Thus, in the absence of sufficient information, we tested whether feeding Opuntia cladodes
(untreated or protein enriched), as a substitute for alfalfa hay, during the last trimester of gestation
would increase milk yield and birth weight, and accelerate lamb growth.

2. Materials and Methods

2.1. Ethics Statement

The study was conducted during the breeding period on a commercial farm in northern Mexico
(22◦15′N, 100◦52 W). All procedures in this study are consistent with International [25] and National [26]
Research Council’s Guide for the Care and Use of Laboratory Animals, with institutional approval
reference number 10561934075.

2.2. Animals and Experimental Procedure

A total of 60 pregnant Rambouillet ewes were naturally mated and 43 of them, with the same
days of pregnancy, and their progeny (33 females and 21 males) were used to investigate the effect of
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maternal diet during the last third of gestation (from Day 100 ± 3 of pregnancy to delivery) on birth
weight and postnatal growth. Sheep were dewormed before mating with a commercially available
product containing 1 g ivermectin (Baymec®; Bayer, Mexico). Additionally, all ewes had received an
intramuscular injection of commercially available products containing 0.005 g of vitamin B12 (Catosal®;
Bayer, Mexico), and 500,000 IU of vitamin A, 75,000 IU of vitamin D3 and 50 mg of vitamin E (Vigantol®;
Bayer, Mexico). Sheep had free access to clean water and a block of mineral salts containing at least
17% P, 3% Mg, 5% Ca, and 75% NaCL.

The experimental protocol is shown in Figure 1. Ewes were naturally mated with trained
rams for 34 days (two full reproductive cycles, mostly during August). Pregnancy, number of
fetuses and gestational age were assessed three times between 30 to 45 days after the start of mating,
by transabdominal ultrasonography (Samsung-Medison SA-600 fitted to a 4 MHz convex probe;
Samsung Co. Seoul, South-Korea). Gestational age was estimated by assessing fetometric parameters:
uterine depth (in early pregnancy), fetal crown-rump length, fetal biparietal diameter, and calcification
of the fetal ribs and skull [27].
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Figure 1. Schematic representation of the experimental design. Day 0 represents the day when the males
were introduced and the breeding period started. Dietary treatments began around day 100 of gestation
and continued until lambing.

On estimated gestational day 100 ± 3, the ewes were randomly allocated among three pens, one for
each dietary treatment, ensuring the average body weights of the groups were similar. The treatments
were alfalfa (Control; n = 11; 9 singletons and 2 set of twins), untreated Opuntia (Opuntia; n = 14;
9 singletons and 5 set of twins) and protein-enriched Opuntia (E-Opuntia; n = 18; 14 singletons and 4 set
of twins; see details below). Feed was provided in a fence-line feeder with sufficient space to minimize
competition and allow every animal to consume its feed allocation.

2.3. Experimental Diets

Ewes were fed twice daily with dietary treatments from estimated gestational day 100 ± 3 up to
lambing. The Control ewes were offered alfalfa hay (3% on the basis of their average body weight),
whereas the ewes in the treatment groups were offered Opuntia or E-Opuntia diets. Opuntia cladodes
were harvested daily and cut into small pieces to facilitate consumption. For the E-Opuntia treatment,
cladodes were protein enriched by treating them with a solution containing 600 g urea and 80 g
ammonium sulfate in 20 L of water. This solution was sprayed onto 100 kg of chopped cladodes and left
for 24 h. In both Opuntia treatments, each ewe was initially offered 500 g per day and the amount was
gradually increased to 3 kg per day. Food refusals were quantified on a pen basis but, after the two
first days of the adaptation period, all of the diet offered was consumed. Therefore, on average the dry
matter intake for the control treatment was 1.3 kg per animal/day and 0.78 kg per animal/day for
both Opuntia treatments. All ewes were fed to meet their nutritional requirements but, during the last
third of gestation, the amount offered was below the nutritional requirements for a dry ewe with
low physical activity [28]. For instance, the diet in the control treatment was 27% above the protein
requirements, but 57% below the metabolizable energy; while in the diet in the Opuntia treatment was
63% below the protein requirements and 35% below the metabolizable energy; whereas in the diet in
the E-Opuntia treatment was 33% below the protein requirements and 37% below the metabolizable
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energy (Table 1). During early lactation, the diet was based on alfalfa, oats straw and silo to meet
the nutritional requirements [28].

Table 1. Nutrient composition (DM basis) of the diets offered during the last third of gestation
and nutrient requirement for a 50 kg ewe [28].

Treatment DM (%) CP (%) EE (%) CARB (%) NDF (%) ADF (%) ME (Mcal/kg)

E-Opuntia 26.4 7.3 1.5 41.6 35.8 17.9 2.1
Opuntia 26.7 4.0 2.9 47.1 32.0 21.5 2.2
Control (alfalfa) 93.5 13.9 1.0 19.0 53.0 39.0 1.5
NRC requirement 10.9 3.4

DM: Dry matter; CP: Crude Protein; EE: Ether Extract; CARB: Carbohydrates; NDF: Neutral Detergent Fiber; ADF:
Acid Detergent Fiber; ME: Metabolizable energy.

The nutritional composition of diets including dry matter, maintenance energy, and crude protein
were assessed by AGROLAB México S.A. de C.V. (Table 1).

2.4. Maternal Live Weight

Ewes were weighed weekly throughout the experiment and the measurement were used to
determine body weight changes.

2.5. Milk Yield

Before feeding, milk yield was assessed every two weeks (on the same day of the week), from one
week after birth until weaning, using the oxytocin protocol to elicit milk let-down [29,30]. In brief,
the ewes were separated from their lambs and then hand milked 5 min after an intramuscular injection
of oxytocin (20 IU mg−1; PiSA Agropecuaria, Hidalgo, Mexico) according to manufacturer’s guidelines.
The time of the first milking was recorded and, 3 h later, the ewes were re-milked following the same
oxytocin protocol. The weight of the milk collected at the second milking and the exact time between
the two milkings were recorded to allow estimation of the rate of milk yield. After the second milking,
the ewes and lambs were reunited in the pen.

2.6. Newborn Outcomes and Offspring Growth

On the day of lambing, the date, sex, and birth weight were recorded. To measure growth
rates, lambs were weighed weekly from birth until weaning (60 days). One twin-born lamb from
the E-Opuntia treatment died so its weight was used only for the analysis of birth weight.

2.7. Statistical Analysis

Data were analyzed using SAS version 9.3 [31]. Birth weight, body weight gain and weaning weight
of the progeny were analyzed using linear mixed model procedures (PROC-MIXED). Fixed effects in
the model were treatment, birth type and progeny sex. Birth weight, body weight gain and weaning
data were included as covariates as appropriate. Maternal body weight change and lamb body weight
gain were fitted in a linear regression model of weight on time for each individual and estimates
of the regression coefficients were obtained as a measure of change by unit time. Milk yield data
were analyzed using a mixed linear model (PROC MIXED of SAS) with treatment as the fixed effect.
For progeny birth weight, liveweight gain, and weaning weight, sex and birth type were included as
independent covariates where appropriate. Sampling date was included as a repeated measure and a
random effect. All two-way interactions among the fixed effects and covariates were included in each
model and non-significant (p > 0.05) interactions were removed from the model. Significant differences
among means for treatments within variables were analyzed using LSD of PROC GLM [31].
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3. Results

3.1. Effects of Supplementation on Maternal Traits

As shown in Figure 2, ewe body weight did not differ among treatments at the beginning of
the experiment (p > 0.05) but, at the end of the experiment, the differences between all treatments
were significant (p < 0.001). The changes in ewe body weight differed among treatments (p < 0.001)
and were −84 g day−1 (Control), 22 g day−1 (Opuntia) and −121 g day−1 (E-Opuntia).
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Figure 2. Body weight (±SEM) of Rambouillet ewes that received alfalfa (Control; grey line), untreated
Opuntia (black solid line), or protein-enriched Opuntia (black dotted line) during late gestation. NS:
not significant; *: p < 0.05; **: p < 0.01; *** p < 0.001.

Across the experiment, milk yield differed among treatments (p < 0.05), sampling dates (p < 0.001)
and the interaction between these factors was significant (p < 0.05). During the first two samplings after
lambing, milk yield was similar among treatments and did not change with time (p > 0.05; Figure 3).
However, differences appeared at milk samplings 3 (p < 0.05) and 4 (p < 0.01), with Control ewes
producing more milk than ewes in either of the Opuntia treatments (Figure 3). The interactions between
treatment and birth type and between treatment and progeny sex were not significant (p > 0.05).
After combining data across all treatment groups, milk yield tended to differ between birth types
(p = 0.07; 675 mL for singletons; 547 mL for twins) and with lamb sex (p = 0.06; 540 mL for females;
670 mL for males). Neither daily bodyweight gain nor weaning weight were correlated with milk yield
(p > 0.05).
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Figure 3. Milk yield (± SEM) from week 1 up to weaning (60 days; sampling 4) in Rambouillet ewes
that received alfalfa (Control; grey line), untreated Opuntia (black solid line), or protein-enriched
Opuntia (E-Opuntia; black dotted line) during late gestation. NS: not significant; * p < 0.05; ** p < 0.01;
*** p < 0.001.
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3.2. Progeny Birth Weight and Growth

On average, the birth weight of the lambs from the CTL treatment was 3.7 ± 0.1 kg; 3.8 ± 0.2 for
the lambs from the OP treatment and 3.7 ± 0.1 for the lambs from the ENR treatment. Birth weight did
not differ among treatments (p > 0.05; Figure 4). However, weight gain during the suckling period was
significantly less in the Control group (97 ± 11 g day−1) and the Opuntia group (97 ± 9 g day−1) than in
the E-Opuntia group (128 ± 19 g day−1; p < 0.01), leading to significantly greater weaning weight in
the E-Opuntia group (p < 0.05; Figure 4). Maternal milk yield was not correlated with the weight gain
or the weaning weight of the progeny (p > 0.05).
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Figure 4. Body weight (±SEM) from birth to weaning (Week 8) in the progeny of Rambouillet ewes
that received alfalfa (Control; grey line), Opuntia (black solid line), or protein-enriched Opuntia (black
dotted line) during late gestation. The data are combined for birth type (singleton and twins) and sexes.

Weaning weight differed among treatments (p < 0.05; Figure 4). An orthogonal contrast revealed
the difference between Control and E-Opuntia to be significant for body weight on weight sampling
week 4 and onwards (p < 0.05).

In the Control treatment, singletons (4.1 ± 0.3 kg) were heavier than twins at birth (3.5 ± 0.2 kg;
p < 0.05). However, the difference between male (4.0 ± 0.3 kg) and female lambs from controls was not
significant (3.6 ± 0.2 kg; p > 0.05). Daily live weight gain and weaning weights were similar between
singletons and twins and between male and female lambs (p > 0.05).

Similarly, in the Opuntia treatment, singletons (4.1 ± 0.3 kg) were heavier than twins at birth
(3.5 ± 0.2 kg; p < 0.05), whereas no difference was observed between male (4.0 ± 0.3 kg) and female
lambs (3.6 ± 0.2 kg; p > 0.05). The daily live weight gain and weaning weights were similar between
singletons and twins and between male and female lambs (p > 0.05).

In the E-Opuntia treatment, there were no differences in birth weight between sexes or between
birth types (p > 0.05). However, in this group, male lambs grew faster (200 ± 44 g/day) than female
lambs (97 ± 14 g/day; p < 0.05) and therefore males were heavier at weaning (15.0 ± 2.3 kg) than female
lambs (9.7 ± 1.0 kg; p < 0.05). Daily live weight gain and weaning weight did not differ between
singletons and twins (p > 0.05).

When all the lambs from all the treatments were combined for analysis (Table 2), the birth
weights of male and females did not differ (3.8 ± 0.2 vs. 3.7 ± 0.1; p > 0.05). From birth to weaning,
however, males grew 35% faster than females (130 ± 16 vs. 96 ± 8 g day−1; p < 0.01) and were 21%
heavier at weaning (11.5 ± 0.8 vs. 9.5 ± 0.5; p < 0.05). In the combined groups, single-born lambs
were heavier at birth than twin-born lambs (3.9 ± 0.1 vs. 3.4 ± 0.1; p < 0.01) and grew 27% faster
(125 ± 17 vs. 98 ± 8 g day−1; p = 0.09) so were 17% heavier at weaning (11.2 ± 0.9 vs. 9.6 ± 0.5;
p < 0.05). In the combined data for all lambs, the relationship between birth weight and body weight
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gain, and the relationship between birth weight and weaning weight, were not significant (p > 0.05).
However, the weaning weight was positively related to weight gain (p < 0.001), with a 2.7-kg increase
in weaning weight for every 50 g day−1 increase in weight gain.

Table 2. Combined data for all the lambs from all Rambouillet ewes in all treatment groups (Control,
Opuntia and E-Opuntia) showing the effects of sex and birth type on birth weight, daily live weight
gain, and weaning weight.

Variable/Sex type Female Male SEM 1 p Value

n 33 21
Birth weight (kg) 3.7 3.8 0.26 0.2

Live weight gain (g day−1) 96 130 21 0.01
Weaning weight (kg) 9.5 11.5 1.3 0.03

Variable/Birth type Singleton Twin SEM1 p Value

n 31 22
Birth weight (kg) 3.9 3.4 0.27 0.002

Live weight gain (g day−1) 125 98 21 0.09
Weaning weight (kg) 11.2 9.6 1.3 0.3

1 Standard error of the mean from the mixed model output.

4. Discussion

Feeding ewes during the last third of pregnancy with Opuntia, with or without protein enrichment,
did not improve lamb birth weight or ewe milk yield above the levels seen with alfalfa hay. However,
the E-Opuntia treatment accelerated postnatal growth and led to a heavier weight at weaning, compared
to feeding either alfalfa or untreated Opuntia. Contrary to expectations, these were the only benefits
provided by protein enrichment of Opuntia cladodes, perhaps because the protein content remained
relatively low [32]. The impact on birth weight of Opuntia feeding during late gestation has been tested
only a few studies, none with protein-enriched cladodes, and the outcomes generally agree with those
in the present study. For example, Rekik et al. [15] supplemented Barbarine ewes during late gestation
and did not observe any improvement in progeny weight at 10 days postpartum.

It is perhaps important to note that the birth weight reported in the present study was below
values previously reported for this breed, at either a similar location [33] or elsewhere [34,35].
This outcome could be attributed to the amount of diet offered which, for all three treatments,
did not meet the NRC [28] requirements—the Control diet provided too little energy and both of
the Opuntia treatments provided too little protein or energy. This feeding regime was chosen to reflect
the real-world situation for reproducing Rambouillet sheep in arid and semiarid regions of northern
Mexico. These restrictions can explain the negative live weight gain in the ewes, as well as the lower
birth weight of the lambs, in the E-Opuntia and Control treatments [36]. However, in the Opuntia
treatment, the ewes did not lose weight, suggesting other factors are involved. A possible hypothesis is
that the E-Opuntia intake affected rumen environment [37,38], dry matter intake and digestibility [22,23].
Late gestation is a period of high demand for energy; however, gestational nutritional restriction
reduces the concentration of metabolic hormones and induces a catabolic hormonal profile [18,39,40].
Nutrient partitioning during gestation generally favors the fetus at the expense of the mother [41,42].
Hence, having in mind the previous literature, it is plausible to assume that the E-Opuntia intake
increased the propionate availability in the rumen stimulating glycogenolisis and this would result in
weight loss [43]. Nevertheless, fetal growth depends on nutrient availability, which in turn is related
to the capacity of the placenta to transport these nutrients. Thus, maternal nutritional restriction
in the current experiment may have affected fetal growth and induced a lower birth weight than
the average for this breed [33,44]. The impact of Opuntia feeding during late gestation has been tested
only by one study [15] but maternal body weights were not reported. An Opuntia only diet has been
shown to result in weight loss in dry Rumbi ewes, whereas body weight was maintained with a
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combination of Opuntia and straw [45]. Clearly, further research is needed on the nutritional value
of Opuntia cladodes and their ability to meet the demands of pregnancy and lactation in sheep that
are underfed.

We acknowledge that, in addition to other factors [46–48], heavier females produce heavier
offspring at birth [49,50]. However, such results were not found in the present study. Despite a lack of
differences in birth weight, the lambs in the E-Opuntia group grew faster and were heavier at weaning.
Interestingly, Opuntia supplementation has been shown to benefit post-weaning growth and fattening
in other studies [14,22]. Barbarine lambs had a greater daily live weight gain when providing barley
straw in combination to cactus and soybean meal or atriplex and cactus in comparison to lambs
that received atriplex and barley grains [14,22]. Nevertheless, we could only find one comparable
study of the impact of Opuntia supplementation on postnatal growth in sheep, and it was done with
Barbarine ewes during early lactation. Non-protein-enriched Opuntia was compared to a control
diets but, in contrast to the present study, both diets met the nutritional requirements and lamb
growth was similar [15]. Among the other major factors affecting lamb growth in the first 8 weeks
are genetic background, birth weight, the amount of milk produced by the mother, and solid feed
consumption after the fourth week of age [30,51]. Milk composition is an important consideration for
explaining differences in postnatal growth. Unfortunately, technical issues prevented us from analyzing
milk composition, so this question awaits future studies. Previous studies have demonstrated that
the growth performance of lambs is highly related to birth weight, so individuals that are heavier at
birth grow faster and are heavier at weaning [30,33,52]. However, in the present study, growth rate was
not related to birth weight perhaps because the birth weights were low, as discussed above. In other
words, all lambs suffered fetal growth restriction and could therefore have been poorly prepared for
post-natal growth to age 8 weeks.

Milk yield influences the growth of the Merino lambs [30] but, in the present study, no such
relationship was evident. A similar observation was made in a previous study using only non-enriched
Opuntia cladodes [15]. However, we expected milk yield to be improved by feeding protein-enriched
Opuntia cladodes. The diet offered during early lactation met the nutritional requirements [28]
and the milk output increased as the experiment progressed in all treatments, in a fashion typical
of mature ewes [53] but, surprisingly, milk yield was greater in the Control group than in both
the Opuntia and E-Opuntia groups. The high demand for energy during gestation and lactation is well
known [18,54] suggesting, again, that the present observations can be explained by the effects of the low
dietary energy intake on lactogenesis [24]. It seems likely that the protein content in the alfalfa, being
greater than that in either of the Opuntia diets, is responsible for the better milk yield in the Control
treatment [54]. In goats, milk yields have been found to be similar in control and Opuntia-fed animals,
although the diets used in these studies contained many other ingredients that improved nutritive
quality [55,56]. Nevertheless, our results indicate that, during early lactation in animals that are
underfed, feeding Opuntia cladodes can result in moderate milk yield and perhaps reduce production
costs. There is some information about how Opuntia feeding affects the yield and composition of
colostrum and milk [15,57], but our observations suggest that research is warranted on the use of
protein-enriched Opuntia.

The higher weaning weight with E-Opuntia, in the absence of advantages in birth weight or
milk yield, might be related to prenatal programming by maternal dietary conditions. As explained
above, none of our diets met the NRC requirements for pregnant ewes [28]. Underfeeding can modify
fetal programming and lead to changes in metabolic pathways that affect fetal growth and postnatal
fat accumulation [58]. The primary muscle fibers are established during embryonic development,
with the number of fibers produced being a determinant of potential muscle mass [59,60], although fetal
growth during the last third of pregnancy is due to hypertrophy [36]. Concomitantly, fetal adipogenesis
begins around mid-gestation [61,62]. It appears that restriction of the maternal diet during gestation
would limit the number of muscle fibers but increase the amount of central adipose tissue [63–65],
thus compromising fetal growth and postnatal development. Indeed, in sheep, Ford et al. [64] observed
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that progeny from ewes that are underfed during pregnancy are heavier and with more backfat at
140 days of age, leading to the proposition of a positive relationship between intrauterine growth
restriction and postnatal catch-up growth.

Finally, lambs born as singletons were heavier at birth than lambs born as twins, after which
postnatal growth was similar, indicating catch-up growth by twins [66]. On the other hand, female
and male lambs had similar birth weights, despite the widely accepted sexual dimorphism of
the fetus [46,47]. In this case, however, postnatal growth was affected and males grew faster and were
heavier at weaning than females, perhaps reflecting a more active somatropic axis in males than
in females [67,68]. Overall, our results are supporting previous data on birth weight, weight gain
and weaning weight between singletons and twins and between female and male lambs [30,33,48,52].

5. Conclusions

In conclusion, Opuntia ficus cladodes, with or without protein enrichment, can largely match
the effects from a supplementation with alfalfa hay during the last third of pregnancy and, showing
similar birth weight, milk yield and lamb growth, offer a cost-saving option for industries based in arid
and semiarid regions where forage supply is limiting. Protein enrichment of the cladodes seems to have
little effect on prenatal growth or milk yield, but appears to improve postnatal growth, thus accelerating
weight gain in the lambs. Further research is needed to explore the impact of the supplementation of
protein-enriched Opuntia on colostrum and milk composition.
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