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ABSTRACT Various intracellular bacterial symbionts that provide their host with es-
sential nutrients have much-reduced genomes, attributed largely to genomic decay
and relaxed selection. To obtain quantitative estimates of the metabolic function of
these bacteria, we reconstructed genome- and transcriptome-informed metabolic
models of three xylem-feeding insects that bear two bacterial symbionts with com-
plementary metabolic functions: a primary symbiont, Sulcia, that has codiversified
with the insects, and a coprimary symbiont of distinct taxonomic origin and with
different degrees of genome reduction in each insect species (Hodgkinia in a cicada,
Baumannia in a sharpshooter, and Sodalis in a spittlebug). Our simulations reveal ex-
tensive bidirectional flux of multiple metabolites between each symbiont and the
host, but near-complete metabolic segregation (i.e., near absence of metabolic cross-
feeding) between the two symbionts, a likely mode of host control over symbiont
metabolism. Genome reduction of the symbionts is associated with an increased
number of host metabolic inputs to the symbiont and also reduced metabolic cost
to the host. In particular, Sulcia and Hodgkinia with genomes of �0.3 Mb are calcu-
lated to recycle �30 to 80% of host-derived nitrogen to essential amino acids re-
turned to the host, while Baumannia and Sodalis with genomes of �0.6 Mb recycle
10 to 15% of host nitrogen. We hypothesize that genome reduction of symbionts
may be driven by selection for increased host control and reduced host costs, as
well as by the stochastic process of genomic decay and relaxed selection.

IMPORTANCE Current understanding of many animal-microbial symbioses involving
unculturable bacterial symbionts with much-reduced genomes derives almost en-
tirely from nonquantitative inferences from genome data. To overcome this limita-
tion, we reconstructed multipartner metabolic models that quantify both the meta-
bolic fluxes within and between three xylem-feeding insects and their bacterial
symbionts. This revealed near-complete metabolic segregation between cooccurring
bacterial symbionts, despite extensive metabolite exchange between each symbiont
and the host, suggestive of strict host controls over the metabolism of its symbionts.
We extended the model analysis to investigate metabolic costs. The positive rela-
tionship between symbiont genome size and the metabolic cost incurred by the
host points to fitness benefits to the host of bearing symbionts with small genomes.
The multicompartment metabolic models developed here can be applied to other
symbioses that are not readily tractable to experimental approaches.

KEYWORDS constraint-based modeling, flux balance analysis, nitrogen recycling,
symbiosis, xylem-feeding insects

The genome size of bacteria varies more than 50-fold from �0.2 to 12 Mb (1). This
variation is largely representative of genetic capacity for function because the great

majority of bacterial genomes are gene dense, with protein-coding regions accounting
for 85 to 90% of the genome. Multiple factors influence bacterial genome size,
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including spatiotemporal variability in environmental conditions, nutrient availability,
biotic interactions, and effective population size (1–4). Some of the bacteria with the
tiniest genomes are intracellular bacterial symbionts in insects, and this trait is attrib-
uted largely to genomic decay arising from the vertical transmission of very small
numbers of bacterial cells from the mother insect to her offspring (5, 6). Runaway
genome reduction of these bacteria is countered by selection for metabolic function,
specifically the synthesis of nutrients required by the insect host, and selection for
reduced maintenance costs can also contribute to genome reduction (7). The most
persuasive evidence for selection of small genome size comes from studies of free-
living bacteria with large effective population size in low-nutrient environments (4, 8),
but the possibility that small genome size may also be adaptive for insect endosym-
bionts has been raised (5, 9–11). Symbiont maintenance costs can be substantial
because intracellular bacteria derive all their requirements from the surrounding host
cell, consuming host nutrients that could otherwise have been utilized for host growth
and reproduction. For example, the symbiont Buchnera in aphids is a major nutritional
sink, estimated to consume 11 times more nitrogen than it provides to the insect host
(12). However, the magnitude of these costs has never been quantified.

In this study, we investigated how the metabolic cost to the host of maintaining
bacterial symbionts may vary with the genome size of the bacteria. We focused on
xylem sap-feeding insects, which derive key nutrients (specifically, 10 essential amino
acids and one or more B vitamins) from bacterial symbionts that are localized to
specialized cells (bacteriocytes) and are transmitted vertically via the ovary of the
female insect (13, 14). These associations are ideally suited to our purpose because, first,
xylem sap is an extraordinarily nutrient-poor diet (15–17) exerting strong selection for
metabolic efficiency in the insect symbiosis and, second, the genome size of the
symbionts varies �10-fold, from 0.15 to 1.66 Mb in different xylem-feeding insects (5).
Intriguingly, the nutritional function of these symbioses is partitioned between two
bacteria, known as the primary symbiont and coprimary symbiont (18, 19). This
condition is predicted to impose additional costs on the host, which has to support the
nutritional requirements of two symbionts that mediate the same function as a single
symbiont in other associations (11).

We studied three xylem-feeding insects: the spittlebug Philaenus spumarius, the
sharpshooter Graphocephala coccinea, and the cicada Neotibicen canicularis. These
insects possess the primary symbiont Sulcia muelleri (Bacteroidetes [henceforth referred
to as Sulcia]), which produces 7 or 8 essential amino acids (20), and different coprimary
symbionts that produce the complementary set of 3 or 2 essential amino acids and one
or more B vitamins: Hodgkinia cicadicola (alphaproteobacterium [henceforth Hodg-
kinia]) in cicadas (21), Baumannia cicadellinicola (gammaproteobacterium [henceforth
Baumannia]) in sharpshooters (14), and a bacterium allied to Sodalis glossinidius
(gammaproteobacterium [henceforth Sodalis]) in spittlebugs of the tribe Philaeni-
nae (22). The origin of these associations has been dated provisionally to 260 to 280
million years ago (mya) for Sulcia (20), �190 mya for Hodgkinia in cicadas (21), �80
mya for Baumannia in sharpshooters (23), and more recently for Sodalis in philae-
nine spittlebugs (22).

We hypothesized that the cost to the insect host of maintaining the bacteria may be
reduced by metabolic efficiencies of the symbioses, including limited overlap between
the metabolic outputs from the primary and coprimary symbionts and efficient bacte-
rial recycling of host-derived nitrogenous compounds to essential amino acids returned
to the host, and that these metabolic traits would be particularly evident in symbioses
with more ancient coprimary symbionts with very small genomes. To test these
predictions, we applied metabolic modeling techniques, which provide quantitative
predictions of metabolic flux within individual partners, as well as between the bacteria
and the insect host (12, 24–26). For each symbiosis, we reconstructed genome-scale
metabolic models for each symbiont, together with a transcriptome-informed model
for the insect bacteriocyte, and then combined these individual models to generate a
three-compartment model with flux between the partners. Quantitative flux estimates
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were inferred by flux balance analysis (FBA), which optimizes flux to a desired outcome
(objective function) (27) and flux variability analysis (FVA), which determines the range
of fluxes that each reaction can achieve while maintaining the optimized objective
function (28). Importantly, interpretation of the metabolic comparisons across the
different bacterial symbionts is not confounded by phylogenetic differences between
the bacteria because the metabolic reactions used in our models are generic to all the
bacterial taxa under study. Our analyses confirmed our prediction of very little overlap
in outputs between the bacterial symbionts in all symbioses and revealed reduced
metabolic costs of the symbioses with more ancient coprimary symbionts.

RESULTS
The metabolic networks of the symbiotic bacteria and their hosts. We recon-

structed the metabolic network of the primary symbiont (Sulcia), the coprimary sym-
biont, and the insect host for the three xylem-feeding insects (Fig. 1a to c). Consistent
with their small genomes, the bacterial symbionts possess fewer metabolism-related
genes that support fewer reactions and metabolites than free-living bacteria such as
Escherichia coli (Table 1; Fig. 1d to f). The metabolic capabilities of the primary symbiont
Sulcia are highly conserved across the three insects (Table 1), with a core set of 81
intracellular metabolic reactions contributing 89 to 94% of the total reactions in each
Sulcia network (see Fig. S1 and Table S1a in the supplemental material). The coprimary
symbionts vary in their metabolic capabilities, with the 50 reactions in Hodgkinia (in the

FIG 1 Metabolic interactions in xylem-feeding insect-bacterial symbiosis. (a to c) The insects used in this study (a) spittlebug (Philaenus spumarius), (b)
sharpshooter (Graphocephala coccinea), and (c) cicada (Neotibicen canicularis). (d to F) Model structure showing species compartments and metabolites
exchanged between each compartment for (d) spittlebug, (e) sharpshooter, and (f) cicada symbiosis. Bacterial genome size and the total number of metabolites
in each compartment are shown in parentheses. The number of input and output metabolites for each compartment is displayed alongside the arrows. (g and
h) Metabolic network maps of integrated three-partner (g) spittlebug, (h) sharpshooter, and (i) cicada models. The prefuse force-directed algorithm was used
for generating the network layout and visualized with Cytoscape_v3.4.0. Circles (gold, red, and black) represent metabolites, and squares (brown, blue, and
green) represent reactions.
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cicada) representing just 14% of the 370 reactions in Baumannia (in the sharpshooter)
and 9% of the 578 reactions in Sodalis (in the spittlebug) (Table 1). Overall, the three
coprimary symbionts have a shared set of just 27 reactions, constituting 5 to 54% of the
total reactions in each symbiont (Fig. 1d to f; Fig. S1 and Table S1A). The metabolic
networks of the insect hosts each comprise 213 intracellular reactions and 212 to 214
metabolites (Table 1 and Fig. 1d to f).

For each symbiosis, the metabolic networks of the bacterial symbionts and host
were combined via transport reactions to form an integrated three-compartment
model (Fig. 1g to i). We used these three-compartment metabolic models to determine
the metabolite flux between the partners in each symbiosis. Specifically, we quantified
the metabolite outputs from the bacterial symbionts to the host and other bacterial
symbionts and the metabolite inputs from the host to the bacterial symbionts by FBA.
To assess whether the flux through reactions mediating interactions between host and
symbionts are tightly constrained, the minimal and maximal fluxes through each
reaction were determined by FVA, while maintaining a fixed maximal theoretical
growth yield of the bacterium. The range of fluxes for �88% of all reactions in all three
models varied by less than 1 mmol g dry weight�1 h�1 (see Table S1b to d and Fig. S2
in the supplemental material), and 55 to 80% of the transport reactions between host
and symbiont varied in flux by less than 1% (Table S1b to d and Fig. S3 in the
supplemental material). Due to the low flux variability in our models, all fluxes reported
in the rest of this article are optimal fluxes predicted by FBA.

Metabolic outputs from the symbionts. Our first analysis focused on the principal
metabolic function of the symbiotic bacteria, the production of essential amino acids
(EAAs). The metabolic models supported the net release of every EAA synthesized by
each bacterium in the sharpshooter and the cicada symbioses: 8 EAAs by Sulcia and the
two remaining EAAs (histidine and methionine) by the coprimary symbiont (Fig. 2a and
b). The metabolic model for the spittlebug symbiosis also supported the net release of
the 7 EAAs synthesized by Sulcia and 4 of the 6 EAAs synthesized by the coprimary
symbiont Sodalis, comprising histidine, methionine, and tryptophan, which are not
synthesized by Sulcia in this symbiosis, and threonine, which was also produced by
Sulcia (Fig. 2c). In our models, the EAAs arginine and lysine synthesized by Sodalis were
not released.

In our simulations, the total flux of EAA release was 0.26 mmol g dry weight�1 h�1

for the spittlebug symbiosis, 0.12 mmol g dry weight�1 h�1 for the sharpshooter, and
0.13 mmol g dry weight�1 h�1 for the cicada symbioses (Fig. 2a to c; Table S1e to g).

TABLE 1 The bacterial and insect metabolic models used in this study

Symbiosis No. of genes No. of reactions No. of unique metabolites

Spittlebug
Sulcia 82 86 146
Sodalis 400 578 556
Philaenus spumarius 279 213 213
Integrated model 761 877 598

Sharpshooter
Sulcia 74 88 146
Baumannia 234 370 405
Graphocephala coccinea 321 213 214
Integrated model 629 671 484

Cicada
Sulcia 83 91 149
Hodgkinia 37 50 115
Neotibicen canicularis 413 213 212
Integrated model 533 354 365

E. coli K-12a

MG1655 1,366 2,251 1,136
aData from reference 27.
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The host was the largest sink for all EAAs derived from the symbionts, consuming
between 49 and 96% of every EAA produced (Fig. 2d to f). The fluxes of EAA release
varied by an order of magnitude across the different EAAs, with leucine and lysine
consistently released at high fluxes (Fig. 2g). All the EAAs derived from coprimary
symbionts had low release fluxes (Fig. 2a to c). Histidine and methionine release from
Baumannia represented just 8% of the total EAAs released in the sharpshooter symbi-
osis and the equivalent value for Hodgkinia in the cicada was 15%. Sodalis contributed
16% of the total EAAs released in the spittlebug symbiosis, comprising methionine and
histidine (8%), tryptophan (2%), and threonine (6%).

Our models also revealed that the symbionts release a range of metabolites in
addition to EAAs. The total number of metabolites released was 18 to 21, independent
of genome size (Fig. 3a to c). However, the flux of metabolites exported from primary
symbionts was higher than that from coprimary symbionts (Fig. 3d and e), and the
differences were 2-fold for the sharpshooter symbiosis, 8-fold for the spittlebug sym-
biosis, and 18-fold for the cicada symbiosis (Table S1e to g).

Sulcia in all three symbioses released the same set of five central carbon metabolites:
succinate, fumarate, xylulose-5-P, glycerate-1,3-P, and dihydroxyacetone P (Table S1e to
g). The compounds released from the coprimary symbionts varied between the differ-
ent symbioses (Fig. 3c and e and Table S1e to g). In particular, ammonia constituted the

FIG 2 Comparison of EAA synthesis fluxes and utilization profiles for three-compartment insect-bacterial symbioses. (a to c) In silico predictions of EAA export
by bacteria in sharpshooter, cicada, and spittlebug symbiosis. (d to f) Comparison of EAA utilization profiles for bacteria and host in (d) sharpshooter, (e) cicada,
and (f) spittlebug symbiosis. (g) In silico predictions of EAA production in sharpshooter, cicada, and spittlebug symbiosis.
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highest flux of material released from Sodalis (0.15 mmol g dry weight�1 h�1) and
Hodgkinia (0.015 mmol g dry weight�1 h�1), while acetate accounted for the highest
flux of material released from Baumannia (0.23 mmol g dry weight�1 h�1) (Table S1e to
g). In our models, the ammonia was metabolized by the host to glutamine, and
glutamine to glutamate, via host-encoded glutamine synthetase and glutamate syn-
thase, respectively, and the acetate was assimilated into the host’s central carbon
metabolism.

The overlap in outputs from the primary and coprimary symbionts in each associ-
ation comprised up to two metabolites: ammonia and threonine in the spittlebug,
acetate in the sharpshooter, and acetate and AMP in the cicada (Table S1h, part i). For
each association, 16 to 20 unique metabolites were released from the primary and
coprimary symbionts (Table S1H, part ii).

We also investigated the incidence of cross-feeding of metabolites synthesized by
one symbiont and required exclusively by the other symbiont (and not the host). Five
cross-fed metabolites were identified, each unique to a single symbiosis (Fig. 4). The
sharpshooter symbiosis had three instances of transfer from the primary symbiont
Sulcia to the coprimary symbiont Baumannia, one contributing to Baumannia pepti-
doglycan synthesis and two to products Baumannia delivered to the host (homoserine,
a precursor of the EAA methionine, and 3-methyl-2-oxobutanoate, a precursor of the B
vitamin pantothenate) (Fig. 4). The two exchanged metabolites in the spittlebug
symbiosis are intermediates in the synthesis of the B vitamin pantothenate (Fig. 4). The
cicada symbiosis has no metabolites that are transferred exclusively between symbi-
onts (Fig. 4).

Metabolic inputs to the symbionts from the host. In terms of metabolite counts,
the principal metabolites imported by both primary and coprimary symbionts were
amino acids and their derivatives (Fig. 5a and b), and in quantitative terms, central
carbon intermediates were dominant (Fig. 5c and d). For Sulcia, the amino acid with the
highest import flux was glutamate (utilized in reactions in EAA synthesis), while fructose
6-phosphate and malate were the chief central carbon imports (Table S1e to g). For the
coprimary symbionts, the dominant inputs varied with species. The chief nitrogen and
carbon inputs, respectively, were glutamine and 6-phospho-D-glucono-1,5-lactone for

FIG 3 Comparison of metabolites exported by bacteria from three-compartment insect-bacterial symbioses based on metabolite counts and metabolite fluxes.
(a) Relationship between bacterial genome size and number of metabolic outputs exported to the host. (b to e) Metabolic outputs to bacterial compartments
based on (b and c) metabolite counts and (d and e) metabolite fluxes. (Note the difference in scales of flux between the primary symbionts [left] and coprimary
symbionts [right].) Fluxes of individual metabolite production and consumption are provided in Table S1e to g.

Ankrah et al. ®

September/October 2018 Volume 9 Issue 5 e01433-18 mbio.asm.org 6

https://mbio.asm.org


Sodalis, serine and fructose for Baumannia, and ribose-5-P and cystathionine for
Hodgkinia (Table S1e to g).

The number of metabolic inputs to the bacterial symbionts varied inversely with
bacterial genome size (Fig. 5e), ranging from 14 metabolic inputs to Sodalis (1.66 Mb

FIG 4 Metabolite cross-feeding between bacterial partners. Shown are metabolites exchanged exclusively between bacterial partners in (a) spittlebug, (b)
sharpshooter, and (c) cicada symbiosis. Metabolites produced by Sulcia are colored red. Inferred fluxes for metabolite groups assimilated and released by
bacteria are given in mmol g dry weight�1 h�1.

FIG 5 Comparison of metabolites consumed by bacteria from three-compartment insect-bacterial symbioses based on metabolite counts and metabolite
fluxes. Shown are metabolic inputs to bacterial compartments based on (a and b) metabolite counts and (c and d) metabolite fluxes. (Note the difference in
scales of flux between the primary symbionts [left] and coprimary symbionts [right].) (e) Relationship between bacterial genome size and number of metabolic
inputs derived from the host. Fluxes of individual metabolite production and consumption are provided in Table S1e to g.
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genome) to 37 inputs to the bacterium with the smallest genome, Hodgkinia (0.15 Mb
genome). In parallel, the number of host-derived metabolites shared between the
primary and coprimary symbionts increased with reduced genome size of the copri-
mary symbiont, from two shared metabolites for the spittlebug symbiosis, through 8 for
the sharpshooter, to 15 for the cicada symbiosis. The two shared metabolites in the
spittlebug symbiosis, glutamine and tyrosine, were also shared between the primary
and coprimary symbionts in the other symbioses. (Table S1h, part i). For each associ-
ation, the primary and coprimary symbionts imported 12 to 30 unique metabolites from
the host (Table S1h, part ii).

Taken together, these analyses reveal that, as the metabolic scope of the bacterial
symbionts declines with genome reduction, the number of host metabolites required
to support bacterial metabolism increases. This relationship is accompanied by an
increased overlap in the number of host-derived metabolites utilized by the primary
and coprimary symbionts.

The metabolic cost of the symbiosis to the host. To estimate the cost of
maintaining bacterial symbionts by each host, simulations were performed comparing
host growth yields in the presence and absence of biomass production by either the
primary or coprimary symbiont. For these simulations, the uptake fluxes for the main
sources of C, N, P, and S (glucose, fructose, ammonium, phosphate, and sulfate) were
capped at the observed uptake fluxes in the three-compartment model by setting the
lower bounds of the uptake reactions to the predicted uptake fluxes with both
symbionts present. Our simulations indicated that the cost of maintaining bacterial
partners by the host decreased with declining bacterial genome size (Fig. 6).

We extended the analysis of metabolic costs to quantify the supply of host-derived
N to EAA production, the key metabolic function of the symbionts. For Sulcia, EAA
output was equivalent to 66 to 80% of host-derived N (Fig. 7a to c; Table S1i). The
coprimary symbionts were less efficient in their transformation of host N into EAAs
delivered back to the host, at 30% for Hodgkinia (Fig. 7c), 15% for Sodalis (Fig. 7a), and
10% for Baumannia (Fig. 7b).

DISCUSSION

Metabolic modeling is widely used in biotechnological applications to predict and
explain the metabolic consequences of specific genetic manipulations of metabolism-
related genes, such as gene deletions and altered gene expression (29–31), and it is also
increasingly being applied to investigate metabolic interactions, especially among
microorganisms (24, 32–36). These modeling studies provide a powerful route to
identify feasible metabolic solutions and to generate quantitative hypotheses for

FIG 6 Bacterial maintenance costs incurred by host insects. Bacterial maintenance costs are inferred
from reductions in growth flux the host incurs by harboring a bacterium.
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empirical testing, recognizing that the model outputs are not intended to be a perfect
representation of the biological system under study. The constraint-based modeling
approach adopted here generated optimized metabolite flux distributions across three
linked metabolic networks (two bacterial symbionts and their host), and they success-
fully captured the core function of the symbiotic bacteria, comprising their synthesis
and release of EAAs to the host (Fig. 2). More broadly, the models yield predictions of
the flux of metabolites transferred between the partners that cannot be obtained from
enumeration of the metabolism gene content of bacterial symbionts.

Consistent with computational analyses of bacteria in other habitats (37), the
number of metabolic inputs to the symbionts varies inversely with symbiont genome
size (Fig. 5e). In other words, the bacterial symbionts with small genomes consume a
greater diversity of host metabolites than bacteria with larger genomes in xylem-
feeding insects. An important process contributing to genome reduction in the bac-
terial symbionts is genomic decay (see the introduction), which is predicted to lead to
a generalized decline in the integrity of the metabolic network of bacteria, but this is
unlikely to be a complete explanation for our observation because the number of
metabolites released from the bacteria does not vary with genome size (Fig. 3a). We
hypothesize that it may be advantageous to the host for its symbionts to require
multiple metabolic inputs. Specifically, some metabolic inputs may be points of host
control over symbiont metabolism, as has been demonstrated for the Buchnera sym-
biont in aphids (38), and the regulated supply of multiple metabolites may provide for
more robust and precise host controls over symbiont growth and function. Thus,
among the three symbioses investigated in this study, we predict that host control over
EAA release and growth yields of the coprimary symbiont is greater for the cicada
association with Hodgkinia (37 inputs) than for the sharpshooter association with

FIG 7 Nitrogen utilization by bacterial symbionts. Inferred fluxes for total nitrogen assimilated and released by bacteria are calculated by multiplying the flux
through a metabolite transport reaction by the N stoichiometry of the given metabolite. (a) Spittlebug. (b) Sharpshooter. (c) Cicada. Broken arrows represent
transport fluxes between host and symbionts. Reaction fluxes (mmol g dry weight�1 h�1) are shown below each metabolite transport class. Percentages
represent the proportion of flux through each metabolite transport class (e.g., non-EAA transport input flux) relative to the total N input transport flux into each
symbiotic partner (denoted by bold text with an asterisk). Individual metabolite fluxes are shown in Table S1i.

Metabolic Function of Bacteria with Small Genomes ®

September/October 2018 Volume 9 Issue 5 e01433-18 mbio.asm.org 9

https://mbio.asm.org


Baumannia (26 inputs) and the spittlebug association with Sodalis (14 inputs). These
metabolic controls may operate in conjunction with both controls over transport across
the host-symbiont interface and also host effector molecules, including immune-
related products, to regulate symbiont growth yields and nutrient release fluxes. Such
mechanisms have not, to date, been investigated in xylem-feeding insect symbioses,
but they have been identified in other intracellular symbioses. For example, an amino
acid transporter expressed in the aphid bacteriocyte has been functionally character-
ized in the aphid symbiosis (39), the antimicrobial peptide coleoptericin A has been
implicated in the regulation of symbiont proliferation in Sitophilus weevils (40), and
cysteine-rich peptides, which promote nutrient release from bacterial symbionts in
plant roots (41, 42), have been identified in some insect symbioses (43, 44).

Implicit in the hypothesis that symbiont metabolic function and growth are regu-
lated by metabolic inputs from the host is that the supply of these inputs can limit
metabolic flux and biomass production in the symbiont. Where a single host-derived
metabolite is an input for both the primary and coprimary symbionts, between-
symbiont competition can ensue with deleterious consequences, including increased
allocation of symbiont resources to competitive traits instead of services to the host
and reduced fitness of both symbionts and host (45–48). Our models suggest that
between-symbiont competition could be particularly intense because proportionately
more shared metabolites than inputs to single symbionts are allocated to biomass
production, rather than to EAA release to the host.

How might competition for host-derived metabolites that are shared between the
primary and coprimary symbionts be constrained? Two complementary processes may
be involved. First, the host may provide an excess of shared metabolites but limit the
supply of nutrients that are exclusive to each symbiont. Symbiont growth and EAA
production could, thereby, be controlled by the exclusive inputs, preventing overcon-
sumption of the shared metabolites. Additionally or alternatively, competitive interac-
tions may be suppressed by host-mediated segregation of the symbionts. Specifically,
symbiont access to host metabolites is constrained by a host membrane, the symbio-
somal membrane, which bounds each bacterial cell and, where investigated, has highly
selective transport properties exerting substantial controls over host metabolite supply
to the symbionts (49, 50). Metabolic segregation is not, however, complete because
limited cross-feeding of metabolites between the two symbionts was identified in the
models for two of the three associations (in the spittlebug and sharpshooter). Inter-
estingly, a majority (4 out of 5) of the cross-fed metabolites contribute to the synthesis
of EAAs and B vitamins that are released to the host (Fig. 4). This pattern raises the
possibility that selection may favor metabolic interactions between the primary and
coprimary symbionts that contribute directly to host nutrition.

The second robust pattern that emerged from our analysis was that symbionts with
a smaller genome are less costly to the host than symbionts with a larger genome
(Fig. 6). The underlying reason is that symbionts with highly reduced genomes have
very small metabolic networks that are dominated by linear pathways, with few
metabolic reactions that shunt host-supplied precursors away from EAA synthesis to
other biochemical pathways. These results suggest that selection for metabolic effi-
ciency may favor genome reduction in these bacteria.

We predicted that selection to minimize metabolic costs of the symbiosis would
be especially high in symbioses subsisting on xylem sap, which (as considered in
the introduction) is very nutrient poor, especially in organic carbon and nitrogen.
With respect to carbon, the coprimary symbiont Hodgkinia imposes minimal costs
because it has no capacity for independent energy production (21) (Table S1d), but
the demand for central carbon compounds by the other symbionts is substantial,
accounting for 37 to 66% of their total inputs (Table S1e to g). The host is expected
to maintain tight metabolic controls over the supply of these major compounds.
Consistent with our argument (above) that the host preferentially limits the flux of
metabolites unique to each symbiont rather than shared metabolites, the major
organic carbon inputs differ between the primary and coprimary symbionts in each
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symbiosis. Turning to nitrogen, all the symbionts impose a net demand on host
nitrogen resources, but the magnitude of the cost varies widely among the different
symbionts. The efficiency of Sulcia nitrogen metabolism, with up to 80% of input N
released back to the host as EAAs, greatly exceeds the calculated value of 60% for
the intracellular symbiont Portiera in the whitefly symbiosis (24) and the 9%
estimated for the Buchnera symbiont in aphids (12). We recognize, however, that
the inclusion of metabolite transport reactions that are not energetically costly to
the symbionts or host may potentially underestimate the costs associated with
symbiont maintenance and may affect the symbiont cost estimations. The copri-
mary symbionts are appreciably less efficient (10 to 30%) than Sulcia, and the
difference can be attributed to the low-output flux of EAAs synthesized by the
coprimary symbionts and the high-output flux of ammonia, especially from Sodalis.

We conclude by considering the contribution that symbioses in xylem-feeding
insects can make to our general understanding of metabolic function in symbiotic
microorganisms. Previous research based on analysis of the gene content of the
symbionts has revealed how selection pressures exerted in the symbiosis have led
to the remarkable evolutionary convergence of phylogenetically diverse coprimary
symbionts to produce EAAs that precisely complement the EAA biosynthetic func-
tion of the primary symbiont Sulcia (14, 19). The genome-scale modeling described
here provides quantitative validation of these conclusions and demonstrates that
the metabolic cost to the host of maintaining intracellular symbionts declines with
decreasing genome size of the symbiont, despite a parallel increase in the number
of host-derived metabolites required by the symbiont. These results provide a
quantitative basis for the argument that genome reduction of symbionts, especially
in hosts utilizing grossly nutrient-poor diets such as xylem sap, may not be driven
entirely by genetic drift and relaxed selection (see the introduction), but may be of
selective advantage to the host. The generality of the relationships between
symbiont genome size and metabolic traits identified in these xylem-feeding
insects can be investigated using phylogenetically different symbionts and hosts on
diets of different nutritional profiles.

MATERIALS AND METHODS
The insects. Adults of Philaenus spumarius (Linneus, 1758), informally known as the meadow

spittlebug, and Graphocephala coccinea (Forster, 1771), a sharpshooter informally known as the red-
banded leafhopper, were collected from vegetation surrounding Beebe Lake, Ithaca, NY, in June 2014
and July 2015, respectively. Mature nymphs of the dog-day cicada Neotibicen canicularis (Harris, 1841)
were collected from tree trunks at Lansing, Ithaca, NY, and retained in the laboratory for up to 3 days after
they had molted to adulthood. Species identification was carried out using taxonomic keys (51–53)
(voucher specimen CU1268 held in the Cornell University Insect Collection). For bacterial genome
sequencing, bacteriomes were dissected from each insect in ice-cold filter-sterilized phosphate-buffered
saline (PBS) and transferred to 70% ethanol. Total DNA was extracted using the DNeasy blood and tissue
kit (Qiagen) “tissue extraction” protocol and eluted in 50 �l AE buffer (Qiagen). For transcriptome
analysis, replicate samples of whole bodies and freshly dissected bacteriomes of each species (two
samples for N. canicularis, four for G. coccinea, and six for P. spumarius) were transferred to RNAlater
(ThermoFisher) and RNA was extracted with the RNeasy kit (Qiagen) “tissues” protocol, including
treatment with RNase-free DNase I (Qiagen) for 15 min at room temperature, following the manufactur-
er’s instructions. The final product was eluted in 50 �l RNase-free water.

DNA library preparation and sequencing of bacterial genomes. The extracted DNA (1 to 2 �g per
sample) was fragmented using an S2 ultrasonicator (Covaris) to obtain 700-bp fragments, which were
end repaired with the End repair mix LC (Enzymatics) and A-tailed with the Klenow 3=¡5= exo-enzyme
(Enzymatics). Universal Y-shaped adaptors were ligated using A-T ligation, adaptor-ligated DNA was
purified and size-selected using AMPure XP beads (Agencourt), and DNA was subjected to 14 cycles of
PCR amplification with barcoded Illumina index primers (see Table S2 in the supplemental material). The
amplified DNA was purified with AMPure XP beads and eluted in 15 �l buffer EB (Qiagen). Concentrations
were determined by Qubit 2.0 fluorometer (Thermo Fisher) with the DNA HS assay, yielding 5.8 to 14.1 ng
DNA �l�1. Library quality was assessed on a Bioanalyzer, and equimolar pools were subjected to 2�
150-bp paired-end sequencing on an Illumina HiSeq2500 platform.

Following the removal of adaptors and quality filtering, the DNA reads were used to assemble the
genome of each bacterium. First, the total bacteriome metagenome was assembled using the CLC
genomics workbench (version 3.6 CLC, Inc., Aarhus, Denmark). BLASTn (BLAST version 2.2 [54]) searches
of the resulting contigs were performed against ad hoc-built databases created using the publicly
available genomes of each bacterium (see Table S3 in the supplemental material), and the reads
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associated with the contigs for each bacterium were extracted separately and reassembled using SPAdes
version 3.5 (55) to generate the bacterial genomes. Genome annotations were carried out on RAST (56),
using Glimmer 3 as an open reading frame (ORF) caller for all bacteria, except Hodgkinia, which uses an
alternative genetic code (21). The contigs from our Hodgkinia genome assembly were used to perform
a BLASTn search against a reference Hodgkinia genome (PRJNA246493 [57]). For this search, a gene was
considered to present when the BLASTn search results matched a single entry in the reference Hodgkinia
genome and matched the total length of our contigs.

Illumina RNA-seq library preparation. Transcriptome sequencing (RNA-seq) libraries were gener-
ated from 2 �g total RNA per replicate, using a published protocol (58) with minor modifications.
Poly(A)� RNA was purified using Dynabeads oligo(dT) (Life Technologies) according to the manufactur-
er’s protocol and fragmented by incubation at 94°C for 2 min to generate long fragments (�700 bp).
cDNA was synthesized using Superscript II reverse transcriptase (Invitrogen) following the manufacturer’s
protocol, and the resulting cDNA was purified using RNA Clean XP magnetic beads (Agencourt).
Strand-specific libraries were generated with dUTP for second-strand synthesis. Double-stranded cDNA
was end repaired, A-tailed, and ligated to adaptors as for the DNA library preparation (described above),
and the resultant cDNA was purified and size selected to obtain 750-bp fragments. The uracil-containing
second strand was then digested using uracil DNA glycosylase (Enzymatics), and cDNA was subjected to
15 cycles of PCR amplification using barcoded Illumina index primers (Table S2). The final cDNA was
purified using AMPure XP beads (Agencourt) and eluted in 15 �l buffer EB (Qiagen). The concentration
was determined by Qubit (as described above), yielding 6.33 to 37.5 ng RNA �l�1, library quality was
checked by Bioanalyzer, and equimolar pools were used for 150-bp paired-end sequencing on an
Illumina HiSeq2500.

RNA-seq expression analysis. The raw reads were trimmed to remove adaptors and quality filtered,
retaining reads with an average quality score of �30. The reads were mapped against the reference
genomes of the bacteria obtained in this project (Table S3), and the mapped reads were excluded from
the data set. High-quality reads from each bacteriome and body sample were then assembled individ-
ually using Trinity version 2.1.1 (59) with default settings. Transcripts from bacteriome and body samples
were then merged using CD-HIT version 4.6.6 (60), considering a similarity threshold of 90%. ORF
detection was carried out using the Transdecoder suite version 2.0.1 (https://transdecoder.github.io/)
with default settings. The transcriptome was annotated using the Trinotate pipeline version 2.0.1
(https://trinotate.github.io/) and local BLAST (54) against SwissProt with an E value cutoff of 1e�5. The
completeness of the transcriptomes was assessed with BUSCO v3 (61): our transcriptomes included 75
to 87% of the 1,658 single-copy orthologous insect genes in OrthoDB v9 (62) (see Table S4 in the
supplemental material). Expression analysis was conducted with Trinity utility suite (https://github.com/
trinityrnaseq/trinityrnaseq/). The reads from each sample were aligned against the reference transcrip-
tome using the align_and_estimate_abundance.pl script with bowtie2 as the aligner and RSEM (63) as
the abundance estimation method to determine transcripts per million mapped reads (TPM). The
expression level of the different transcripts was then normalized to the expression of the lowest
transcript. Specifically, the mean TPM for each gene was divided by the lowest nonzero count and
rounded to the nearest integer. Transcripts with the lowest nonzero TPM received a normalized
expression level of 1, and all other transcripts received multiples of 1. Transcripts with zero TPM counts
(i.e., very-low-abundance transcripts with lengths less than the mean fragment length [63]) were
assigned the lowest TPM values in each replicate and normalized as described above. Zero-TPM
transcripts were used only for calculating the total protein content for each insect host.

Metabolic model reconstruction and analysis. Genome-scale metabolic models were generated
for the symbiotic bacteria (Sulcia [iNA82] and Sodalis [iNA400] from the spittlebug, Sulcia [iNA74] and
Baumannia [iNA234] from the sharpshooter, and Sulcia [iNA83] and Hodgkinia [iNA37] from the cicada)
(see Table S5a to f in the supplemental material) following the procedure in reference 24, as described
in Text S1 in the supplemental material. For the host models, reactions capable of generating or
consuming dead-end metabolites in each bacterial model were identified and incorporated in the draft
reconstruction where the cognate metabolism genes were detected in the host transcriptome (Table S5g
to i). Orphan reactions (non-gene-associated reactions) (Table S5j) were added to fill gaps in all the
metabolic networks. All metabolic networks were visualized using Cytoscape_v3.4.0 (64), and model
testing was conducted in COBRA Toolbox version 3.0 (65) run in Matlab (The MathWorks, Inc., Natick,
MA), using the Gurobi solver (66).

The three-compartment model for each symbiosis (iNA761 [spittlebug], iNA629 [sharpshooter], and
iNA533 [cicada] [Table S5k to m]) was reconstructed by integration of the models of each bacterial
partner and their insect host, together with transport reactions to connect the three compartments (see
Text S1 for details). Due to the dearth of annotated transporters in endosymbiont genomes and lack of
empirical data on the energetic costs associated with metabolite transport between endosymbionts and
their insect hosts, we adopted a parsimonious metabolite transport strategy in which the endosymbionts
and insect hosts do not incur energetic costs for metabolite transfer. To set biologically relevant reaction
fluxes, normalized gene expression data of the bacteriocyte were used to set lower and upper bounds
for each host reaction (Table S5n). Missing host reactions, reactions with no matching transcript in the
transcriptome assembly, were assigned arbitrary upper bounds of 10 mmol g dry weight�1 h�1 (with
lower bounds of �10 mmol g dry weight�1 h�1 for reversible reactions). Approximately 66% of all
host-constrained reactions carried flux under optimal conditions (Table S5n).

All model simulations applied aerobic conditions (maximum oxygen uptake flux of 20 mmol g dry
weight�1 h�1) and a minimal external medium (insect hemolymph) comprising glucose, ammonia, and
sulfate as carbon, nitrogen, and sulfur sources, respectively, universal metabolites present in the external
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medium of all three insect models, and nicotinate D-ribonucleotide (spittlebug model medium), fructose
(sharpshooter model medium), and thiamine diphosphate, nicotinate D-ribonucleotide, dihydropteroate,
pyridoxine 5-phosphate, pantothenate, and cobalt (cicada model medium). The maximum uptake flux for
each reaction was capped at 100 mmol g dry weight�1 h�1. Amino acids were excluded as nutrient
sources in all model simulations (Table S5o). In the absence of empirical data on the relative abundance
of each symbiont within each insect host, we assumed equal biomass proportions for each symbiont in
all our simulations by fixing the lower bound of the biomass reaction for each bacterium at 0.01 mmol
g dry weight�1 h�1.

For the three-compartment model simulations, a single objective function representing the total
amino acid content in the whole insect body and the insect B vitamin requirement was used. Amino acid
coefficients were estimated from the total abundance of each amino acid in insect protein (see Table S6a
to i in the supplemental material) following standard protocols (67, 68), and B vitamins were assigned
arbitrary small coefficients (0.00005). The coefficients for biomass reaction components for individual
bacterial models (Table S6a, d, and g) were derived from the biomass equation of metabolic model
iSM199 of the insect symbiont Buchnera (12), modified to account for differences in the structural and
biosynthetic needs of each symbiont. For example, Sulcia and Hodgkinia do not have a cell wall or the
genetic capacity for cell wall synthesis, and consequently, cell wall components were omitted from their
respective biomass equations. Amino acids and most central carbon intermediates were assigned the
same biomass coefficients for all bacterial partners.

Metabolites exchanged between host and symbiont partners were identified by flux balance analysis
(FBA) (69) and flux variability analysis (FVA) (28). With the exception of minerals and metabolites involved
in cofactor biosynthesis which are required in small quantities by host and symbionts, a metabolite was
considered to be imported/exported by a symbiont if the flux through its transport reaction was greater
than 10�6 mmol g dry weight�1 h�1.

Calculation of symbiont maintenance costs. For analyses of symbiont maintenance costs, flux
through the biomass equation for a primary or coprimary symbiont was fixed to zero, while allowing flux
through all other symbiont-associated reactions (so ensuring host access to essential nutrients), and the
cost was computed as the difference between host growth yields in the presence and absence of
symbiont biomass production. Applying these constraints allowed the costs associated exclusively with
symbiont maintenance to be decoupled from the costs of meeting the EAA demands of the host. For all
maintenance cost simulations, the uptake fluxes for the main sources of C, N, P, and S (glucose, fructose,
ammonium, phosphate, and sulfate) were capped at the observed uptake fluxes in the three-
compartment model (i.e., with both symbionts).

Accession number(s). The GenBank accession numbers of the sequences described here are
NJPN00000000, NKXM00000000, MIEN00000000, NZ_NJPO00000000, and NJHQ00000000 for the bacte-
rial genome sequences and PRJNA341855, PRJNA342845, and PRJNA343314 for the insect transcrip-
tomes.

Data availability. All models have been provided in three formats—SBML (.xml), MATLAB (.mat), and
Excel (.xls)—and deposited in GitHub (https://github.com/Bessem06/Hemipteran). SBML files of the
models have also been submitted to the BioModels database (70) with the following identifiers:
MODEL1806250003, MODEL1806250004, and MODEL1806250005.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01433-18.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, PDF file, 0.1 MB.
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TABLE S1, XLSX file, 0.2 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.1 MB.
TABLE S4, XLSX file, 0.1 MB.
TABLE S5, XLSX file, 0.9 MB.
TABLE S6, XLSX file, 0.1 MB.
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