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Abstract

The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane

protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Muta-

tions in these transmembrane proteins have been linked with several heart-related issues,

including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome.

Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex

have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an

important avenue for drug-design and discovery research. In this work, we present the struc-

tural and mechanistic details of potassium ion permeation through an open KCNQ1 struc-

tural model using the combined molecular dynamics and steered molecular dynamics

simulations. We discuss the processes and key residues involved in the permeation of a

potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i)

the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its deriva-

tives into the complex. The results reveal that interactions between KCNQ1 with KCNE1

causes a pore constriction in the former, which in-turn forms small energetic barriers in the

ion-permeation pathway. These findings correlate with the previous experimental reports

that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding

onto the complex, the energy-barriers along ion permeation path are more pronounced, as

expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless,

pulling the ion when a weak blocker is bound to the channel does not necessitate high force

in SMD. This indicates that our SMD simulations have been able to discern between strong

and week blockers and reveal their influence on potassium ion permeation. The findings pre-

sented here will have some implications in understanding the potential off-target interactions

of the drugs with the KCNQ1/KCNE1 channel that lead to cardiotoxic effects.
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Introduction

The cardiac KCNQ1 is a voltage-gated potassium ion channel that is expressed in different

tissues throughout the human body, including heart, brain, epithelia and smooth muscles [1].

In particular, KCNQ1 is involved in shaping the cardiac action potential in the heart, thus

KCNQ1 is important for the normal functioning of the heart. In the cardiac myocytes, the

KCNQ1 channel complexes with its beta-subunit, the transmembrane KCNE1 (minK) protein

to constitute the slow component of the delayed rectifier current (IKS) [2]. This is mainly facili-

tated by allowing selective permeation of the potassium ions from the intracellular membrane

to the extracellular environment, through the KCNQ1 channel [3,4]. The maintenance of this

normal ion flux gives the KCNQ1/KCNE1 ion channel its unique role in controlling the dura-

tion of the repolarization phase of the cardiac action potential. Mutations in either of these

proteins (i.e., KCNQ1 or KCNE1) are shown to be linked with congenital long QT syndrome

(LQTS1), atrial fibrillation, and short QT syndrome [5–7]. In particular, a list of all known

LQTS1-associated single-point mutations in human KCNQ1 channel are provided in S1

Table.

It has been reported in the literature that the association of these two proteins slows the

activation of KCNQ1 by 5- to 10-folds [8–10]. Another profound effect of the KCNE1 protein

on KCNQ1 is the paradoxical slowing of the gating associated with KCNQ1 channel inactiva-

tion, which otherwise takes place in a fast manner [11]. However, the molecular bases behind

the KCNQ1/KCNE1 interactions and their impacts on the function of KCNQ1 have not

been understood well. The experimental structures of either human KCNQ1 and/or human

KCNQ1/KCNE1 complex have not been reported till today. The most recent experimental

structure for the KCNQ1 channel is for frog species and was reported by Sun & Mackinnon in

2017 [12]. Hence, computational modelling approaches have been routinely employed to

bridge the gap with experiments and to gain some insights about the structures and dynamics

of KCNQ1 channel. For example, Kang et al [13] determined the experimental structure of

KCNE1 using solution NMR and subsequently they used experimentally-restrained molecular

docking of the transmembrane domain of a KCNQ1 potassium channel with KCNE1 and

reported that the latter modulates the KCNQ1 function [13]. In another study, Xu et al [14]

employed a combination of comparative modelling, protein-protein docking and molecular

dynamics methods to construct the three dimensional structure of the KCNQ1/KCNE1 com-

plex. This study [14] showed that the interactions of KCNE1 with that of KCNQ1 tend to affect

the activation of the latter through different structural re-arrangements in the KCNQ1 chan-

nel. In our recent study [15] we employed advanced modelling and MD simulations, including

the replica-exchange MD (REMD) approach, to build a comprehensive 3D structure of the

KCNQ1/KCNE1 complex. In this study [15], we initially constructed a 3D structure of the

human KCNQ1 channel, using the homology modelling approach with the X-ray crystal

structure of a Kv1.2-Kv2.1 paddle chimera channel (PDB ID: 2R9R) as the template. REMD

approach was implemented to refine the S1-S2 helices from our KCNQ1 model. Later, we per-

formed ~800 ns long MD simulations of the independent structures of KCNQ1 model and the

known X-ray crystal structure of human KCNE1 protein (PDB ID: 2K21). Cluster analyses

were then performed on the MD trajectories and resulted in the extraction of low-energy dom-

inant conformations of human KCNQ1 model and KCNE1. These dominant conformations

were used to perform rigorous ensemble-based protein-protein docking in order to build com-

prehensive structural models of the KCNQ1/KCNE1 complex, which were finally refined

through long-scale MD simulations [15]. The results from this study [15] revealed the dynamic

behaviors of the KCNQ1 alone and the KCNQ1/KCNE1 complex and revealed that the pro-

tein-protein interactions have improved the structural stability of KCNQ1. This finding is
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consistent and complementary to the earlier studies [16–18]. In addition, in our previous clas-

sical MD simulations, we found that the ions could enter the open pore of the KCNQ1 channel

(particularly in the absence of KCNE1 protein); however, they were not able to pass through

the selectivity filter residues and therefore fell back into the intra cellular region. Further, we

observed apparent differences in the time and frequency of ions permeating into the pore of

the KCNQ1 channel in the presence and absence of KCNE1 protein. This indicated that the

KCNQ1-KCNE1 interactions can affect ion permeation, however, we were not able to assess

the molecular processes underpinning these differences using classical MD simulations. Until

date, there have been limited studies that explicitly addressed the question of how the intermo-

lecular interactions between KCNQ1 and KCNE1 impact the ion-permeation.

Therefore, in the current study, we aim at addressing this important question by using the

structural models of the open-state human KCNQ1 structure and the human KCNQ1/KCNE1

complex that we developed in our earlier study [15]. In particular, we focus on understanding

the structural and mechanistic details of the ion permeation through the open-state KCNQ1

structure and how these details change upon KCNQ1 interactions with KCNE1 and small mol-

ecule binding to the KCNQ1/KCNE1 complex. For this purpose, we employ steered molecular

dynamics (SMD), an enhanced sampling approach, to estimate the magnitude of the force

required to pull a potassium ion from the intra-cellular to the extracellular region and through

the pores of the unbound-KCNQ1 channel and the KCNQ1/KCNE1 complex. This is useful to

develop qualitative and quantitative insights into the ion permeation mechanisms in this ion

channel complex[19–22]. SMD is a popular approach that has been previously applied to study

a number of ion channels, including KvAP voltage-gated potassium channel, voltage-gated

sodium ion channel, calcium ion channels, mechanosensitive channels, etc [22–26].

In addition, we have also extended our study to reveal the effects of small-molecule binding

on the potassium ion permeation through the KCNQ1/KCNE1 complex. It is known that sev-

eral drugs exhibit severe cardiotoxic effects due to binding into the KCNQ1/KCNE1 complex

and blocking the permeation of potassium ion and thereby perturbing the generation of the

IKs current [27–31]. Hence, it is also important to understand how blockers with different

binding affinity towards KCNQ1, affect potassium ion permeation. To address this, we have

performed molecular docking calculations of Chromanol 293B, a well-known KCNQ1 blocker

and its derivatives [32,33], into the pore region of the KCNQ1/KCNE1 complex. Subsequently,

SMD simulations were performed to pull the ion from the intracellular region to the extracel-

lular environment, but in the presence of the bound-ligand. Our SMD simulations are able to

discriminate between the high-affinity blockers and weak blockers, that are in agreement with

the previous biochemistry results. Thus, the study presents comprehensive atomic-level details

about the impacts of protein-protein interactions and ligand-binding on the K+ ion perme-

ation through the KCNQ1 channel.

Methods

Classical MD simulations of the unbound systems

The structural models of the KCNQ1 protein and the KCNQ1/KCNE1 complex were embed-

ded in membrane and were subjected to long MD simulations. The KCNQ1 and KCNQ1/

KCNE1 complex, were obtained from homology modelling and protein-protein docking and

simulations, as detailed in our previous paper [15]. The full membrane-bound systems were

built using the Membrane Builder program of CHARMM GUI (http://www.charmmgui.org).

The tetrameric protein (or protein-protein system) was embedded in a bilayer of Palmitoylo-

leoylphosphatidylcholine (POPC) and Phosphatidylinositol 4,5-bisphosphate (PIP2) in the

ratio of 10:1, respectively. The system was further hydrated with 20 Å (TIP3P water model) on
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upper and lower leaflets. An ionic concentration of 150 mM KCl solution was maintained in

the system, both in the upper and lower regions and neutralized with counter ions. Protein,

lipids and ion parameters were assigned using the CHARMM36 force field. NAMD package

[34], version 2.10 and 4,096 processors on the Blue Gene\Q supercomputer were employed for

running the Molecular Dynamics (MD) simulations.

The solvated, membrane-bound systems underwent two stages of energy minimizations.

In the first minimization round of 50,000 steps, the protein and the lipid heads were fixed;

whereas the lipid tails, water and ions were allowed to relax. This step was essential to

remove any existing steric clashes that might have risen from the improper packing of the

membrane around the protein. During the second stage of minimization, a constraint of

100 kcal/mol was placed on the entire system and energy minimization was performed for

50,000 steps. This constraint was gradually removed during four more rounds of minimiza-

tion. Each minimization stage was of 50,000 steps and the constraining forces were reduced

to 50, 10, 5 and finally 1 kcal/mol. The energy minimized systems were then heated to 310 K

for 1 ns, while retaining the 1 kcal/mol backbone restraints. Next, we performed NPT equili-

bration of the systems for 250 ps each. Finally, the production MD simulations of the sys-

tems, with an integration time step of 2 fs and periodic boundary conditions, were carried

out for ~240 ns timescale. The Langevin thermostat was employed to maintain the constant

temperature (310 K) and pressure (1 bar) during the production simulations. Bonded inter-

actions were computed every time step, short-range non-bonded interactions every two

time steps, and long-range electrostatic interactions every four time steps. A cutoff of 12 Å
was used for van der Waals and short-range electrostatic interactions; with a switching func-

tion starting at 10 Å for van der Waals interactions to ensure a smooth cutoff. The simula-

tions were performed under periodic boundary conditions, with full-system, long-range

electrostatics calculated by using the particle-mesh Ewald (PME) method. The unit cells

were large enough such that adjacent copies of the protein were never close enough for mak-

ing short-range interactions.

Clustering for dominant conformations of KCNQ1/KCNE1 complex

Later, the 240 ns long MD trajectory of KCNQ1/KCNE1 complex was clustered to identify

the most dominant conformations of the complex to perform small-molecular docking. For

this purpose, we adopted the Average-Linkage algorithm using a code in PTRAJ program of

AMBER [35]. We ran the average-linkage algorithm for a number of clusters ranging from 5

to 100. Structures were extracted at 4 ps intervals over the entire simulation time (240 ns). In

this algorithm, cluster-to-cluster distance is defined as the average of all distances between

individual points of the two clusters. Clustering quality is determined through the calcula-

tion of a number of clustering metrics including the Davies-Bouldin index (DBI) [36] and

the "elbow criterion" [37]. These metrics help in identifying the optimal number of clusters

to be extracted and their population size. In order to remove the extra noise from the data as

a result of rotations and translations, all the non-hydrogen heavy atoms were fitted to the

minimized initial structure. Next, the RMSD is used to cluster the residues at the binding

site of the ligands. These residues were clustered into groups of similar conformations

using the atom-positional RMSD, as the similarity criterion. In each cluster, the structure

that has the minimum RMSD (also called the cluster centroid) was chosen as the cluster rep-

resentative. 15 dominant conformations were obtained from the clustering analyses and

alignment of the DBI and SSR/SST parameters to be used in the subsequent docking simula-

tions. These 15 conformations represent more than 95% of the structure variability during

the MD trajectory.
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Small-molecule docking

Molecular docking calculations were carried out using the most recent version of smina [38].

Smina is a version of AutoDock Vina which offers a better control over the docking and scor-

ing parameters [39]. The protein structures were prepared using the protein preparation wiz-

ard in the Schrodinger software package [40]. The protonation states were assigned at the pH

of 7. Protein structures were then saved as PDB files and converted to PDBQT format using

the AutoDock Tools [41] to be used as inputs for smina.

Ligand structures were prepared using the ligprep [42] module of Schrodinger and saved as

mol2 files. The ligand protonation states and tautomeric states were assigned at neutral pH.

The geometry of the ligands were optimized through the OPLS2005 force field [43]. The dock-

ing search space was confined to a 20�20�20 Å box around the ligand-binding site with an

exhaustiveness search parameter of 20 (default is 8). The binding site residues of Chromanol

293B were obtained from a mutational study by Lerche et al. [44] who had confirmed the resi-

dues responsible for interaction with Chromanol 293 B. These residues included Thr312,

Phe340 and Ile337 from the four subunits. The ligand-bound KCNQ1/KCNE1 complexes,

obtained from the docking calculations, were also embedded in a mixed POPC/PIP2 mem-

brane bi-layer and subjected to ~4 ns long MD simulations. The preparation and MD simula-

tions of the ligand-bound systems were carried out exactly in the same sequence of processes

performed for the unbound systems, as detailed above.

Steered molecular dynamics simulation

The starting structures of KCNQ1, ligand-unbound KCNQ1/KCNE1 and the ligand-bound

KCNQ1/KCNE1 complex for the SMD simulations were obtained from their respective

classical MD trajectories. The parameters for the SMD simulations were mostly same as

the classical MD, except for the application of an external force to pull a potassium ion

from the intracellular environment to the extracellular bulk region. The force was applied

along a vector normal to the x-axis pointing from the axis to the initial position of the atom.

During the simulation, Cα atoms of the Asp301 residue located on the S5/P-loop linker in

the four subunits were constrained along the Z-direction with a force of 1 kcal/mol. This

was done to prevent any structural drifts in the protein and its location in the membrane,

while the ion was being pulled. Each SMD simulations were carried out for 4 ns long time

scale using a spring constant of 4 kcal/mol/Å and a constant velocity of 0.025Å/ps. The pro-

tein experienced no appreciable drift in the plane of the membrane, so the applied forces

may be considered to be radial at all points in the simulations. Repeated SMD simulations

were performed for the different systems to ensure reproducibility of the results (refer to

supplementary information, S1–S3 Figs). The RMSD graphs for the SMD simulations

are also provided in the supplementary information (See S4 Fig), which confirms that the

application of external force did not make any significant impacts on the overall structures

of the systems. All the SMD simulations in this work were performed using NAMD 2.9 [34]

package.

Analysis & visualization

VMD [45] and Chimera suite [46] were employed for visualization and analyses of MD trajec-

tories in this work. Pore radius profiles were calculated using HOLE program [47,48]. All the

plots discussed in this work were generated using Gnuplot and GraphPad Prism version 6.0

[GraphPad Software, La Jolla California USA, www.graphpad.com].
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Results and discussion

Classical MD simulations

The KCNQ1 and KCNQ1/KCNE1 systems were thoroughly equilibrated during ~240 ns long

classical MD simulations. We expect that the systems are stabilized during MD equilibration

and could offer insights about their relevant dynamic changes under the influence of sur-

rounding environment (water, lipids, ions). The Fig 1a presents the root mean square devia-

tion (RMSD) of the protein backbone in KCNQ1 and KCNQ1/KCNE1 complex during the

MD simulations. As it can be seen in the Fig 1a, there were only� 2 Å deviation in the RMSD

values that indicates the overall stability of the systems during MD simulations. In particular,

it can be seen that the changes in the RMSD values for the KCNQ1/KCNE1 complex were

slightly lesser than those seen in the un-complexed KCNQ1 protein. This describes that the

intermolecular protein-protein interactions have added some degree of rigidity to the com-

plex. The only flexible regions during our analyses (of the MD trajectories) were related to the

loop regions and linkers in between the segments, which is an expected phenomenon. The

more specific details about the model and the dynamic changes of the systems during MD sim-

ulations are reported in detail in our earlier work [15]. But one important observation we

made was that, despite the model being an open state, the potassium ions freely entered into

the pore; however, they were not able to cross through the selectivity filter regions in the ion

channel. As a result, we noticed that the ions either stayed inside the pore or moved back into

the intracellular environment. Understandably, this is a known limitation of classical MD sim-

ulations. The potassium ion permeation through the selectivity filter barriers of the KCNQ1

channel would require several nanoseconds to microseconds of MD simulations, which is

not always practical. Particularly, in this study, we compare an un-complexed KCNQ1 and a

KCNQ1/KCNE1 complex, and it is nearly impossible to study the impacts of protein-protein

interaction on the ion permeation mechanisms only based on extensively long classical MD

trajectories. As a result, we decided to dedicate this work for employing alternative enhanced

sampling SMD approach to gain mechanistic insights into ion permeation processes in the un-

complexed KCNQ1structure and how they are affected by intermolecular KCNQ1/KCNE1

interactions. For the purpose, we sampled the MD trajectories and selected the snapshots for

KCNQ1 and KCNQ1/KCNE1 complex, in which a potassium ion is relatively placed in the

same position near the intracellular entrance of the channel (see in Fig 1b and 1c). This

reduces any possible bias that may arise from manually placing an ion at the position(s) of

interest within the system(s).

Steered molecular dynamics (SMD) simulations

SMD simulations were initially performed for the two systems: (1) the KCNQ1 protein; and

(2) the KCNQ1/KCNE1 complex. During the SMD simulations, a single K+ ion was pulled

from the intracellular region (at the bottom of the pore), through the KCNQ1 pore, to the

extracellular region. The length of this pathway was ~34 Å long (i.e. starting from the intracel-

lular channel entrance to the extracellular loops above the selectivity filter). Each of the SMD

simulation was carried out for 4 ns and with a combination of 4 kcal/mol/Å of spring constant

and 0.025 Å/ps of velocity. The choice of the force and velocity parameters was based on a pre-

vious study from our group, in which we benchmarked the different forces and velocities to

find the optimum combination for ion channels [22]. Our findings from these SMD simula-

tions for the ligand-free systems are presented in the following sections.

Ion permeation in KCNQ1 protein. Fig 2a presents the SMD force profile for pulling a

potassium ion through the pore of the un-complexed KCNQ1 channel. In a standard SMD
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profile graph, hills represent different potential energy barriers along the ion permeation path-

ways, thus, necessitating larger pulling force to release the ion from the respective sites. The

plateaus appear whenever the ion easily escapes without any potential barriers along the path.

In case of the lone KCNQ1 protein, until ~1 ns of the SMD simulation, the force profile is flat,

indicating the absence of any barricades in its permeation path. However, at ~1.2 ns, the ion

Fig 1. The starting systems for SMD simulation. (a) RMSD plots of classical MD simulation for KCNQ1 and KCNQ1/KCNE1 Systems, (b) structure of KCNQ1

protein alone, (c) structure of KCNQ1/KCNE1 protein complex.

https://doi.org/10.1371/journal.pone.0191905.g001
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encounters the selectivity filter residues that cause significant energetic barriers in further ion

permeation. The region corresponding to the selectivity filter is marked as ‘SF’ on the plot (Fig

2a). Thus, the force required for pulling the ion from the impact of selectivity filter residues

required as much as ~600 pN force in the SMD simulations. Accordingly, the force plot for the

SMD simulation of KCNQ1 (shown in Fig 2b) shows peaks of different intensities within ~1–2

ns time scale. We name these peaks as B1-B4 in this study (see Fig 2b). These peaks possibly

indicate the presence of different binding sites for potassium ion at the selectivity filter region

of the KCNQ1 channel, as shown in Fig 2c. It can be noted that B1 corresponds to the site

where the potassium ion is coordinated with the strong electronegative carbonyl oxygen atoms

of the four threonine residues (Thr312) from all the subunits. When the SMD external force

reaches ~ 400 pN, the ion is released from the B1 site. Once released, it encounters the next

two sites (B2 and B3), where the ion is obstructed by the strong electrostatic interactions ren-

dered by Ile313 and Gly314 from all the four subunits. Hence, releasing the ion from the B2

and B3 sites required more external force of ~600 pN during the SMD simulations. It was

noted (during the SMD simulations) that the Thr312 residues were involved in sliding the

potassium ion from B1 to B2 site; whereas, the same role was played by Gly314 when the ion

migrated from B3 to the B4 site. The final energetic barrier encounter by the ion in its’ perme-

ation pathway was at site B4, where the ion was slowed down by the carbonyl oxygen atoms

from two residues, Tyr315 and Gly316. To escape from this site, a small force of ~200 pN was

Fig 2. The SMD force profile of K+ ion pulled through the KCNQ1 protein alone. (a) The force profile for the potassium ion pulled through eh KCNQ1 channel

pore, showing the high peak corresponding to the selectivity filter (SF) of the protein. (b) The zoomed-in peaks of the force profile corresponding to the energy barriers

marked as B1, B2, B3 and B4. (c) Snapshots from the SMD showing the location of the ion at the different binding sites (B1, B2, B3 and B4) in the selectivity filter with

respect to the force profiles. The potassium ion is shown in yellow, the S5, S6 and P-loop of two subunits are shown in cartoon. The KCNQ1 VSD and the other two

subunits are not shown for clarity.

https://doi.org/10.1371/journal.pone.0191905.g002
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required during the SMD simulations. It is clear from the plot that after being released from

the B4 site at ~1.9 ns, the ion entered the extracellular region (or bulk environment) and thus,

the SMD force profile remained flat until the end of ~4 ns long simulation.

Furthermore, we analyzed the presence and movement of water molecules during the SMD

simulation. As shown in S5 Fig, the entrance pore is widely open for water molecules. How-

ever, as they approach the selectivity filter, the number of water molecules that can be accom-

modated is significantly reduced. This explains why the selectivity filter acts as a sieve and does

not allow the passage of other ions of different size, density and charge to pass the pore. These

findings are consistent with previous studies from the literature, related to the selectivity filter

properties and the binding sites of potassium through the channel [49–52]. Our SMD simula-

tions clearly identified four binding sites for potassium formed by the selectivity filter motif

TIGYG (Thr-Ile-Gly-Tyr-Gly). We were also able to quantify their energy barriers along the

pathway of the ion. For an ion to successfully pass through the filter, it has to overcome each of

the carbonyl atom cages created by these residues, one after the other. The force needed for a

potassium ion to migrate from the first binding site formed by Thr residues (B1) is almost 50%

lesser than the force for pulling ion from the binding sites formed by the Ile and Gly residues

(B2 and B3). The characteristics of the selectivity filter in voltage-gated potassium ion channels

are well studied [51,53–55]. In KCNQ1, there are four well-defined binding sites formed by

the carbonyl atoms of the TIGYG residues that capture the ion and allow its sequential passage

through the selectivity filter [56]. Our SMD simulations showed that the 2nd and 3rd binding

sites i.e., B2 and B3 serve as the rate-limiting sites within the KCNQ1 channel.

Ion permeation in KCNQ1/KCNE1 complex. To understand the effects of KCNE1 on

the ion permeation process, we performed the SMD simulations (with the same parameters

described above) on the KCNQ1/KCNE1 complex. The results of the SMD simulations are

shown in Fig 3a. When compared to the SMD force profile for ion permeation in KCNQ1 pro-

tein (in Fig 2a), the force profile for the protein-protein complexes (in Fig 3a) exhibit some

additional peaks. Particularly, these new peaks (marked as BA1 and BA2 in Fig 3a) are seen

during the initial stage of the SMD simulations. This clearly indicates the presence of some

energetic barriers (not seen in un-complexed structure of KCNQ1) that are imposed upon the

interactions of KCNQ1 with the KCNE1 protein. The two peaks, named as BA1 and BA2 in

this study, are seen at ~0.5 ns and 1 ns of SMD simulations. While the first peak (i.e., BA1) is

clearly independent of the others, the second peak (BA2) is seen as a shoulder of the main ‘SF’

peak, which is also found in the un-complexed structure. Close inspection of the SMD trajecto-

ries revealed that the BA1 site is located just below the S6 helices (See Fig 3b). When the potas-

sium ion reached this site, it was encircled and trapped by electrostatic interactions rendered

by different residues, such as Ser349, Ala344, Gly345 from different subunits, thus requiring a

force of ~200 pN to permeate further into the pore. Single point mutations at these sites in

KCNQ1 have been associated with LQT1. For example, a natural variant of Ser349Trp muta-

tion has been found in LQTS1 patients, however, the reason behind the effect of this mutation

on the disease pathogenicity is still not clear [57]. Our SMD simulations clearly state that this

residue (i.e., Ser349) is located at the entrance of the pore region and results in an energy bar-

rier for the ion passage. In this context, it is understandable that mutation of this serine residue

with a bulkier tryptophan residue would cause more strong constriction at the pore, thereby,

leading to the channel loss-of-function. Similarly, mutation of Ala344 to valine (i.e., Ala344-

Val) has been reported in LQT1 patients [58]. This mutation has been categorized as a domi-

nant-negative mutation[59], meaning that it acts antagonistically to that of the wild-type gene.

The Gly345Arg mutation has been associated with familial sudden death in LQT1 patients

[59]. This indicates that the BA1 site (formed by Ser349, Ala344, Gly345) plays a very impor-

tant role in the functionality of the KCNQ1 ion channel. After releasing the ion from this site,
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Fig 3. The force profile of K+ ion pulled through the KCNQ1/KCNE1 protein complex. (a) The SMD force profile to show

the different peaks formed by the barriers marked as BA1, BA2 and SF (selectivity filter), (b) Close up view of the BA1 barrier,

(c) Close up view of the BA2 barrier. The potassium ion is shown in yellow sphere, the protein structure is shown in cartoon

presentation and the residues are depicted by bonds.

https://doi.org/10.1371/journal.pone.0191905.g003
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with the help of an SMD external force, the ion encounters its next energetic barrier, located

close to the selectivity filter at the pore region of the channel marked as BA2 and shown in Fig

3c. At the BA2 site, a different set of residues (composed of Thr312 from all four subunits,

Ile337 and Phe340) from the S6 helix and S5-P-loop linker obstructs the ion movement. In this

path, the cation-π interaction between the pulled K+ ion and Phe340 seems to form a major

barrier that requires ~280 pN to break-free the ion. A previous study employed alanine-scan-

ning single residue mutagenesis experiments found that Thr312, Ile337 and Phe340 are among

the most significant molecular determinants of KCNQ1 blockade [60]. This confirmed that

Phe340 played a very important role in the interactions with the KCNE1 channel. Mutations

at this site using either an alanine residue or a tryptophan residue led to the complete loss

of functional modulation of KCNQ1 by KCNE1 [61]. Since, our SMD simulations clearly

show that the KCNE1 interactions constricts the KCNQ1 pore, it could be hypothesized that

Phe340Ala or Phe340Trp mutation can affect the closing of the channel. This proposal is sup-

ported by an earlier finding [7] that a mutation at Phe340 site could disrupt the close state of

KCNQ1 and can modify its inactivation, which could be linked with LQTS [7]. A comprehen-

sive list of all known LQTS1-linked single point mutations and their reported properties are

provided in S1 Table.

It is important to highlight that the two sites (BA1 and BA2) and the corresponding force

peaks were not seen in the SMD simulations of KCNQ1 protein. This describes the possible

impact of KCNQ1/KCNE1 interactions on the pore domain of the KCNQ1 channel. Fig 4

present the superimposed 3D structures of the un-complexed KCNQ1 (in yellow) and the

KCNQ1/KCNE1 complex (in purple). It can be observed that there is a clear shrink in the

pore-opening (in Fig 4b) that is possibly caused by the inward-shift of the S6 helices leading

to the iris-like change in the pore opening. This finding is useful to explain the previous

experimental reports that identified dramatic slowdown in the KCNQ1 activation due to its’

Fig 4. Superimposition of the KCNQ1 alone (yellow) and KCNQ1/KCNE1 complex (purple). (a) rear view of the channel, (b) zoomed view to show the shift in the

S6 helices.

https://doi.org/10.1371/journal.pone.0191905.g004
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interactions with KCNE1 protein [7,62,63]. Further, a previous study by Hoshi et al. [64] also

hypothesized that the elimination of the slow inactivation in potassium channels, might be

linked to structural rearrangement in the pore and/or constriction of the selectivity filter

region. In line with these earlier hypotheses, our SMD simulations provide in-depth qualitative

and quantitative insights into the effects of KCNE1 interactions on the structural rearrange-

ments in KCNQ1 and, thus, in the ion permeation process as well. It is important to note that,

the KCNE1 interactions, however, do not cause any significant changes to the selectivity filter

residues of KCNQ1, as suggested by Xu et al [14]. This is explained by our SMD simulations

(as shown in Fig 3a). After releasing from the BA2 site in the KCNQ1/KCNE1 complex, the

ion entered into the selectivity filter segment and it can be seen that the barriers and the corre-

sponding peaks in this SMD force profile (Fig 3a) are all almost similar to those seen in the un-

complexed KCNQ1 simulation (Fig 2b). That is, four peaks related to B1-B4 sites, which are

collectively marked as SF, are all seen in the force profile of KCNQ1/KCNE1 after ~1 ns SMD

simulations. This confirms that the interactions of KCNE1 do not induce any significant struc-

tural changes in the selectivity filter of KCNQ1 channel and its main influence is manifested at

the pore region.

Pore dimension analysis of lone KCNQ1 and KCNQ1/KCNE1 complex. We also ana-

lysed the pore dimensions of the KCNQ1 ion channel and the KCNQ1/KCNE1 complex,

using the HOLE program [47,48]. The HOLE program adopts a Monte Carlo simulated

annealing approach to find the best path for a sphere (of variable radius) to squeeze through

the channel. HOLE has been successfully used in complementing the analysis of ion channels

in several studies [65–68]. The main objective of this analysis was to support our findings

related to the identified force profiles of K+ ion in the two systems; i.e. KCNQ1 alone, and

KCNQ1 in complex with KCNE1.

As shown in Fig 5a, the pore dimensions in the KCNQ1 protein (without KCNE1 interac-

tions) have a wide opening in the bottom that continues until the selectivity filter region.

This indicates that the channel has a completely open and wide pore without any constric-

tion along the ion permeation pathway. The narrowing of the pore begins only at the selec-

tivity filter region. This topology was found to remain stable throughout the long-scale

molecular dynamics simulations. See S6 Fig for the comparison of the pore topology of

structures from the beginning of the simulations vs. after the classical MD simulation. This

confirms that the pore constriction did not occur as a result of an artefact from our MD

simulations. Nevertheless, the pore dimensions in the KCNQ1/KCNE1 complex (shown in

Fig 5b) has significantly contracted near the bottom-opening. This represents the site BA1

identified in our SMD simulations. Further, the pore becomes even narrower at the proxim-

ity of the selectivity filter (shown in green color), which is the site BA2 in our SMD simula-

tions (Fig 3c). We also analyzed the radius of the pore in the two systems (as shown in Fig

5c). The red color line shows the radius of the pore domain in the KCNQ1 system. The pore

opening has a radius of around 6 Å, which reduces to less than 2 Å, while approaching the

selectivity filter. However, the radius of the pore in the KCNQ1/KCNE1 system (green color)

shows a completely different pattern. The reduction in the radius of the pore begins early on

at the opening of the pore domain, below the selectivity filter. The radius at this region is

around 4 Å, which increases to ~7 Å marking the pore cavity. The radius of the pore is again

reduced to ~0.4 Å and continues to be narrow along the selectivity filter. Therefore, it is

apparent that the protein-protein interactions between KCNE1 and KCNQ1 have led to sig-

nificant constriction in the pore segment of the latter. And as a result, extra small energetic

barriers are seen for the KCNQ1/KCNE1 complex, which are rightly captured by our SMD

simulations.
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Binding of small-molecules onto the KCNQ1/KCNE1 complex

In order to study the effects of small-molecule binding on the ion permeation, we initially fil-

tered a panel of known channel blockers of the IKS current from the ChEMBL database [69].

For this purpose, Chromanol 293B and its derivatives that showed different range of binding

affinity (IC50: 50 nM to 58,000 nM) towards the KCNQ1 channel, as determined by experi-

ments, were selected. Chromanol 293B was discovered in 1996 [32,70,71] as a selective blocker

Fig 5. The dimensions of the pore shown in surface representation. For the two model states: (a) KCNQ1 without KCNE1, (b) KCNQ1 in complex with KCNE1.
�Colour code: Red is where the pore radius is too tight for a water molecule. Green where there is room for a single water molecule. Blue is where the radius is double

the minimum for a single water molecule. (c) Pore radius plot of the KCNQ1 alone (red) and KCNQ1/KCNE1 complex (green) systems. There is a continuous

constriction from the pore opening up to the selectivity filter in the KCNQ1/KCNE1 system as compared to the KCNQ1 pore which has a wide opening throughout

the pore.

https://doi.org/10.1371/journal.pone.0191905.g005
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of the IKS current. Furthermore, Chromanol 293B was also found exhibit affinity for the open

state of the KCNQ1 channel [44] and was therefore the best choice for our model, which is

also built in its open state. In 2001, Gerlach et al. [33] synthesized several derivatives of this

lead compound (Chromanol 293B) which in addition to Chromanol 293B are included our

study. Out of the different stereoisomers of the compounds we selected the most active vari-

ants to test on the KCNQ1/KCNE1 system. The structures and CHEMBL_ID of these com-

pounds are documented in Fig 6.

In order to perform molecular docking, we initially performed RMSD-based clustering of

our MD trajectory for KCNQ1/KCNE1 complex (Fig 7a) to extract dominant protein confor-

mations (Fig 7b). The small molecule-binding site in the KCNQ1 channel (of the complex)

was previously confirmed to be in the vicinity of Phe340 (binding site residues are shown in

Fig 7c) [44]. As discussed in our previous studies [15,22,72–75], the optimum number of dom-

inant protein conformations was obtained when the DBI reaches a local minimum with a flat

SSR/SST line (elbow criterion). SSR is the sum of squared residual; the SST is the total sum of

squares. For more details regarding the underlying theory of this clustering method, readers

Fig 6. The 2D structures of the Chromanol 293B and its derivatives employed in the molecular docking calculations. The 2D structures of the compounds and

their respective ChEMBL identification numbers are provided.

https://doi.org/10.1371/journal.pone.0191905.g006
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are encouraged to consult a review by Shao et al [37]. As can be seen in Fig 7a, clustering con-

verges at approximately 15 protein conformations. These 15 conformations of the KCNQ1/

KCNE1 complex (superimposed and given in Fig 7b) were later employed for our docking

calculations. Subsequently, we docked the selected small-molecule ligands in this study,

Fig 7. Clustering analysis of the KCNQ1/KCNE1 channel complex from the MD simulation based on the ligand binding site residues. (a) The clustering plot of

DBI and SSR/SST parameters, (b) The 15 cluster representative conformations of the KCNQ1/KCNE1 complex protein. (c) The binding site residues of the

Chromanol 293B and its derivatives shown in the structure of KCNQ1 (grey color cartoon) in complex with KCNE1 proteins (blue color cartoon). The binding cavity

shown with bonds in licorice presentation, is located right below the selectivity filter (SF) of the channel. The residues with their names are shown in the close-up of the

binding site.

https://doi.org/10.1371/journal.pone.0191905.g007
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chromanol 293B and its derivatives in Fig 6, into all the 15 target structures. We have a defined

binding site in the pore region of the KCNQ1 channel (shown in Fig 7c), to which the ligands

were bound during docking calculations. Thus, a total of 135 independent docking calculation

were performed. Molecular docking of each of the small molecules to an ensemble of protein

conformations ensures the accommodation of the protein flexibility during the docking work-

flow in this study. This is important to address any conformational dynamics that can lead to a

better docking pose for the tested compounds within the binding site of the protein. All dock-

ing simulations were performed using the smina docking tool [38], a version of AutoDock

Vina which offers a better control over the docking and scoring parameters [39]. See the

Methods section for parameters and details of the docking calculations.

Analysis of the protein-ligand binding modes. For each of the tested compounds, 20

different poses were obtained and ranked by AutoDock Vina scoring function [39]. The best

poses for all the ligands determined by Vina were then re-ranked with two other machine

learning scoring functions; the NNScore 2.0 [76] and the RF-Score-VS [77]. NNScore 2.0 is a

neural-network based scoring function, devised to aid the computational identification of

small-molecule ligands by providing a single pKd (binding affinity) value. The RF-Score-VS

[77], is another machine learning scoring function which has shown significant improvement

in the performance of virtual screening studies [77]. Machine-learning scoring functions

trained on protein-ligand complexes have shown great promise in small tailored studies as

compared to conventional scoring functions such as Vina scoring function [77–79].

The final docking score considered for each ligand was the average of the results from three

scoring functions, explained above, i.e. AutoDock Vina, NNScore 2.0 and RF-Score-VS. The

poses were then closely visualized for their proper filling of the designated binding site (see Fig

7c). The binding site of the ligand was selected based on the study by Lerche et al. [44] who

had investigated the binding mode of Chromanol 293B within the KCNQ1 pore, using a single

point mutational approach. The binding site is located right below the selectivity filter and is

formed by three residues from each subunit namely “Thr312, Ile337 and Phe340”. In the same

study, it was found that the single point mutations at these specific positions intensely reduced

current inhibition and had the strongest effects on blocking activity of Chromanol 293B [44].

The in vitro biological activity (IC50 and pIC50 values) of the ligands compared with their

respective docking scores from our calculations are listed in S2 Table. The first three com-

pounds have an IC50 ranging from 50 to 250 μM, considered as the most potent compounds in

this class. Compounds #4–7 with IC50 of 700 μM up to 1,100 μM represent blockers of average

inhibition and finally the last two compounds (#8 and #9) are considered as weak blockers

with 5,000 and 58,000 μM activity. Next, a Pearson correlation coefficient was computed to

assess the relationship between the scores calculated from the docking poses of the ligands

against the KCNQ1/KCNE1 protein complexes, and the pIC50 values of the compounds. There

was a strong, positive correlation (rpearson = 0.75) between the two variables, indicating that

our model has been successful in discriminating blockers of variable activity. A scatter plot in

Fig 8a summarizes the results.

To study the interactions of the ligands and their modes of binding within the pore of the

channel, we chose representatives of ligands with different ranges of activity. Fig 8b shows the

zoomed-in placement of these ligands within the binding site while interacting with the protein

residues. Ligand #2 possesses a trifluoro-butoxy substitution at the 6-position on the aromatic

ring. This bulky side chain interacts with the residues in the centre of the pore, underneath the

selectivity filter. Substantial interactions of Ligand #2 with the binding site residues include

Phe340, Ile337, and Thr312. The sulfonyl group makes contacts with Pro343, while the trifluoro

group interacts with Phe340, Ala336 and Ile337. This mode of binding is consistent with the

general mode of interaction of chromanols within the KCNQ1/KCNE1 ion channel [44].
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Fig 8. (a) A 2D scatter plot of the compounds’ docking score vs. pIC50. The linear line shows the positive correlation between the two variables

(rpearson = 0.7). (b) The binding mode of ligands (#2, #4, #8 and #9) within the binding pocket of the channel.

https://doi.org/10.1371/journal.pone.0191905.g008
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Furthermore, the protrusion of the lengthy side chain of the molecule towards the centre of the

pore can explain its high blocking activity. This extension is also responsible for the interaction

of the ligand with potassium ions as will be discussed in the next section of ion permeation.

We also investigated the binding mode of Ligand #8 and #9 as representatives possessing

weak blocking activity (See Fig 8b). This investigation helped us understand the main reason

behind the large difference in their IC50 values compared to ligand #1–3. Both ligands can

slightly fit within the binding site pocket, albeit with an inclination away from the pore and the

selectivity filter. Ligand #8, for example, makes minimal contacts with the Thr312 residues of

the different subunits, which are all located right below the selectivity filter. However, the ethyl

group that is attached to the sulfonyl residue of the ligand has a tendency to interact with resi-

dues that are not central to the axis of the pore, e.g. Gly345. As seen in Fig 8b, these two ligands

have cyanide substitutions at the 6-position of the aromatic ring, which is substantially shorter

and less bulkier than those of the strong blockers (ligands #1, #2 and #3). Refer to Fig 6 for

structures of the ligands.

Also, it is evident that increasing the size of the sulfonyl residue has a direct effect on the

potency of the compounds, as is the case with #9, possessing a butyl substitution extending

away from the sulfonyl group. The latter effect can be explained by the fact that the butyl entity

interacts with residues on the periphery of the pore and thereby pulls the ligand away from its

binding site. This hinders the physical presence of the drug molecule in the pore. Furthermore,

contrary to ligand #2, the 6-position substitution in #8 and #9, i.e. the cyanide group is facing

away from the pore and extends towards the opposite direction. This reduces the blockage of

the ion passage and can also be a second reason behind their reduced potency.

In addition, the interaction of one ligand #4, which has a slightly lower potency compared

to #1–3 (IC50 = 700 μM), was investigated (See Fig 8b). This compound also possesses a short

substitution (a single fluorine group) at the 6-position of the benzene ring, similar to #8 and

#9. However, compared to #8 and #9, it is more inclined towards the pore. This is clear from

the contact it makes with Thr312, which is placed at the mouth of the selectivity filter. This

interaction is completely absent in #8 and #9 as their cyanide group substitution is facing away

from this residue. The ligand also makes contacts with Thr312, Ile337 and Phe340 which are

all amongst the binding site residues indicating that it is central to the binding site cavity, right

below the selectivity filter. However, the fluorine substitution does not occupy as much space

as the side chain of Ligand #1 and #2 and therefore, its lower potency compared to the strong

blockers may be justified in this way.

Overall, the results from the docking simulations enabled us to confirm the structure activ-

ity relationship of the Chromanol blockers and the reason behind their differential activity.

The substitutions at the 6-position on the aromatic ring is the first determinant of potency.

This substitution, depending on its size and direction of extension towards the central axis of

the pore, can have differential effect on the conduction of the potassium ions. Secondly, the

sulfonyl residue substitution also affects the potency of the compounds. This effect may be pro-

duced because the substitutions at this position can have an affinity to interact with the resi-

dues on the periphery of the pore. This interaction draws the drug molecule further away from

the pore and thereby reducing their ability to produce physical blockage. This effect was clear

in ligand #9, which has a butyl group extending from the sulfonyl entity. The encouraging suc-

cess of the model in predicting the activity and blockage capacity indicated that the model is

capable of predicting the correct binding mode and the interaction of the ligands with the

channel. Thereby, this adds one more validation measure for our model with regards to its

ability for predicting the off-target interactions of other drugs. Also, given the acceptable

results we obtained from the docking studies, we decided to take our research question to the

next stage, i.e. testing the effect of drugs on the potassium ion permeation (presented below).
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Effect of blockers on ion permeation: SMD simulations

One of the objectives in this work was to also understand how the binding of drugs onto the

channel pore would affect the passage of ions through the KCNQ1/KCNE1 complex. To carry

out this study, we decided to focus on 6 compounds, marked with asterisks in S2 Table. The

compounds were selected such that they represent compounds with different ranges of activ-

ity. For instance, compounds #1, #2, #4 and #6 represented the group of strong-average inhibi-

tion. On the other hand, compounds #8 and #9 were possibly weak blockers of the KCNQ1

channel, as their IC50 values were 5,000 nM and 58,000 nM, respectively. The best ranking

pose of the each of the ligand-channel complex were obtained from the docking calculations

and optimized using short 4ns long MD simulations. For this purpose, the ligand-bound

KCNQ1/KCNE1 complexes underwent a series of classical treatments as follows: Two-stage

energy minimization!Heating! short NPT equilibration! ~4 ns long production MD

simulation. Each of these steps were carried out using the parameters and the simulation set-

ups as explained in the ‘Methods’ section.

The equilibrated ligand-bound KCNQ1/KCNE1 complexes were then subjected to SMD

simulations, as described earlier, wherein a single potassium ion was pulled from the intra-

cellular region, through the pore, to the exterior of the channel. Comparisons of the resultant

force profiles from the ligand-bound KCNQ1/KCNE1 complexes against those obtained

for the ligand-free KCNQ1/KCNE1 complex and un-complexed KCNQ1 channel should,

theoretically, be useful to reveal the effects of ligand-binding on the potassium ion perme-

ation through the channel complex. Fig 9 compares the force profiles of the SMD simula-

tions performed on a strong blocker (ligand #2)-channel complex (a) and a weak blocker

(ligand #9)-channel complex (b). The force profiles for the other ligand-channel complexes

are provided in the supplementary information, S3 Fig. In an overall, it is interesting to note

that the peaks corresponding to the release of ions from the selectivity filter residues (as

marked in Fig 9) are almost similar to those seen in the ligand-free systems (see in Figs 2

and 3). The number of peaks related to these regions and their corresponding intensities are

all almost similar in all the three types of systems studied in this work, i.e. uncomplexed

KCNQ1, KCNQ1/KCNE1 complex, ligand-bound KCNQ1/KCNE1 complexes. This

describes that neither protein-protein interactions nor the ligand-binding affects the selec-

tivity filter in the KCNQ1 ion channel significantly. And in all cases, the release of the potas-

sium ion from the selectivity filter residues remains a significant rate-limiting stage in ion

permeation and this process costs ~600 pN force in all our SMD simulations. To explain

the SMD results in more details, the force profiles for the systems encompassing ligand #2

(strong-blocker) and ligand #9 (weak-blocker) are shown in Fig 9a and 9b. In case of #2,

the specific effects of ligand binding on the force profile from the SMD simulations are cap-

tured during the initial stage of simulation. This peak mostly overlaps with the peaks for

BA1-BA2 sites seen for KCNQ1/KCNE1 complex. This is because, the sites BA1 and BA2

form a part of the ligand binding site in the KCNQ1 channel, which is populated with

Phe340, Thr312 and Ile337. Hence, the ligands are bound near these sites in the channel

complex. As a consequence, the peaks in the SMD force profile corresponding to pulling

the ion from the ligand-barrier (in Fig 9) are concentrated at the initial stage of time-scale,

which mostly coincides to the peak seen in KCNQ1/KCNE1 complex (Fig 3). However, the

intensity of this peak in the case of ligand-bound systems increases as much as 200 pN. This

indicates that the binding of a ligand at this site enhances the blockade on the ion perme-

ation pathway, thereby, necessitating much higher force (> 500 pN, as shown in Fig 9a) for

ion release during the SMD simulations. The same trend is observed for all other strong

blockers in this study (S3 Fig).
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Furthermore, our SMD simulations were able to discern the high-affinity blockers from

those of low-affinity ones. The force profile for Ligand #9, representing one of the weak ligands

is shown in Fig 9b. The major difference in the force profiles of the high-affinity and weak-

affinity blockers are observed in the first peak (marked as Ligand on the force profile plots)

again. The intensity of the first peak is as high as ~500–600 pN for the high-affinity blockers

(#1, #2, #4, #6 in S3 Fig). While this peak corresponds to the ligand-binding region, the con-

striction is mainly caused by the respective side chain groups of drugs, which interact strongly

with the surrounding residues and restrict the smooth ion movement (Fig 9b and 9c). For

example, in the ligand #2-bound KCNQ1/KCNE1 complex, the ligand has much longer func-

tional group which obstructs the ion passage. Particularly, the sulfonyl group present in this

ligand renders a strong electrostatic environment for the passing ion, thus requiring much

higher external force to release the ion (Fig 9b). On the other hand, the weak-affinity ligands in

this study bind in an orientation that does not cause major hindrance for the ion permeation.

Fig 9. Force profiles for the pulling of a potassium ion through the ligand-bound KCNQ1/KCNE1 complex during the SMD simulations. The force profiles and

the ion permeation processes of a strong channel blocker, or Ligand #2 (a-b), and a weak blocker, or Ligand #9 (c-d) are shown.

https://doi.org/10.1371/journal.pone.0191905.g009
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For instance, when bound to the KCNQ1/KCNE1 complex, the cyano group substitution of

the aromatic ring in ligand #9 is drifted away from the ion passage (refer to Fig 9d) and, as a

result, pulling the ion across this ligand did not require much force. Hence, the force profile

for this complex with ligand #9 does not show any high-intensity peak< 1.5 ns. Pore dimen-

sion analyses (S7 Fig) on the drug-bound systems also supported the findings from SMD simu-

lations. It was found that the pore dimensions in the high-affinity binders are much wider;

whereas, the pore radius of the weak-affinity ligand systems are less constricted allowing much

easier ion permeation. Hence, our study has not only been able to provide mechanistic insights

into ion permeation in KCNQ1, in the presence and absence of protein-protein interactions

and ligand binding, but also discriminate the strong blockers from the weak ones. Further

experimental testing on the findings from this work are warranted.

Conclusions

In this study, we described the effects of KNCQ1-KCNE1 interactions and the small-molecule

binding on the ion permeation mechanisms through the KCNQ1 channel, using atomistic and

steered MD simulations. The 3D structures of the open-state of the unbound-KCNQ1 and the

KCNQ1/KCNE1 complex were initially equilibrated using long-scale MD simulations, which

revealed that the complex form was more stable than that of the unbound-KCNQ1 channel.

SMD simulations were performed on the structures of KCNQ1 and KCNQ1/KCNE1 complex

(collected from the MD trajectories), during which a potassium ion was pulled from the intra-

cellular region to the extracellular bulk water through the KCNQ1 channel. The SMD simula-

tions revealed that the selectivity filter residues formed the only high-energy barrier in the

unbound KCNQ1 structure. While this high-energy barrier still existed in the KCNQ1/

KCNE1 complex, there were a couple of additional energetic barriers found during the early

stages of SMD simulations. Analyses of the SMD trajectories of the KCNQ1/KCNE1 complex

revealed that the inter-protein interactions from KCNE1 had constricted the pore in KCNQ1,

which resulted in two small energetic barriers caused by residues, (1) Ser349, Ala344, Gly345;

and (2) Thr312, Ile337 and Phe340, along the ion permeation pathway. This explains the possi-

ble molecular mechanisms underpinning the slow channel activation in the KCNQ1/KCNE1

complex observed in previous experiments. Binding of small-molecule blockers of Chromanol

293B derivatives onto the KCNQ1/KCNE1 complex only enhanced these additional peaks

seen in the ligand-free KCNQ1/KCNE1 complex. Nevertheless, the effects were less pro-

nounced (in terms of the required force for ion pulling), when weak-blockers were bound in

the complex. While KCNE1 interactions and small-molecule binding affected the ion perme-

ation into the pore of the channel, they did not impact the selectivity filter residues in KCNQ1.

In fact, the release of the ion from the selectivity filter barrier always remained the most signifi-

cant rate-limiting step (requiring the largest amount of external force) in all the complexes in

this study. Thus, our study provides some qualitative and quantitative insights into the effects

of protein-protein interactions and small-molecule binding on the ion permeation processes

in KCNQ1, an important voltage-gated ion channel in the heart. The findings presented here

will have some implications in understanding the potential off-target interactions of the drugs

with the KCNQ1/KCNE1 channel that lead to cardiotoxic effects.
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S1 Table. List of known LQTS1-associated single-point mutations in human KCNQ1 chan-

nel.
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S2 Table. Ranking of the ligands by their pIC50s compared with their IC50 values and dock-

ing scores. The docking score in the table is the average from 3 scoring functions: AutoDock

Vina, NNScore 2.0 and RF-Score-VS. � Ligands used for ion permeation studies.

(PDF)

S1 Fig. Lone KCNQ1 SMD repeats.

(TIF)

S2 Fig. KCNQ1/KCNE1 SMD repeats.

(TIF)

S3 Fig. The force profiles of the SMD repeats for the selected ligand-bound KCNQ1/

KCNE1 complexes (#1, #2, #4, #6, #8 and #9).

(TIF)

S4 Fig. The backbone RMSD graphs of the proteins in the four systems during SMD simu-

lations. For KCNQ1, KCNQ1/KCNE1, and KCNQ1/KCNE1 system bound to Strong blocker

(#1) and Weak blocker (#9).

(TIF)

S5 Fig. Movement of water through the pore of the KCNQ1 channel. The water molecules

are colored from red to blue based on the simulation timestep. The protein is shown in cartoon

presentation.

(TIF)

S6 Fig. The dimensions of the pore shown in surface representation. (a) KCNQ1 without

KCNE1 before and after MD, (b) KCNQ1 in complex with KCNE1 before and after MD.

Color code: Red is where the pore radius is too tight for a water molecule. Green where there is

room for a single water molecule. Blue is where the radius is double the minimum for a single

water molecule.

(TIF)

S7 Fig. The dimensions of the pore (shown in surface representation) in KCNQ1/KCNE1

systems with the 6 docked ligands (shown in purple color). �Pore colour code: Red is where

the pore radius is too tight for a water molecule. Green where there is room for a single water

molecule. Blue is where the radius is double the minimum for a single water molecule.

(TIF)
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