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Abstract: Background: Identifying those parameters that could potentially predict the deterioration
of metabolically healthy phenotype is a matter of debate. In this field, epigenetics, in particular DNA
methylation deserves special attention. Results: The aim of the present study was to analyze the long-
term evolution of methylation patterns in a subset of metabolically healthy subjects in order to search for
epigenetic markers that could predict the progression to an unhealthy state. Twenty-six CpG sites were
significantly differentially methylated, both at baseline and 11-year follow-up. These sites were related
to 19 genes or pseudogenes; a more in-depth analysis of the methylation sites of these genes showed
that CYP2E1 had 50% of the collected CpG sites differently methylated between stable metabolically
healthy obesity (MHO) and unstable MHO, followed by HLA-DRB1 (33%), ZBTB45 (16%), HOOK3
(14%), PLCZ1 (14%), SLC1A1 (12%), MUC2 (12%), ZFPM2 (12.5%) and HLA-DQB2 (8%). Pathway
analysis of the selected 26 CpG sites showed enrichment in pathways linked to th1 and th2 activation,
antigen presentation, allograft rejection signals and metabolic processes. Higher methylation levels in
the cg20707527 (ZFPM2) could have a protective effect against the progression to unstable MHO (OR:
0.21, 95%CI (0.067–0.667), p < 0.0001), whilst higher methylation levels in cg11445109 (CYP2E1) would
increase the progression to MUO; OR: 2.72, 95%CI (1.094–6.796), p < 0.0014; respectively). Conclusions:
DNA methylation status is associated with the stability/worsening of MHO phenotype. Two potential
biomarkers of the transition to an unhealthy state were identified and deserve further investigation
(cg20707527 and cg11445109). Moreover, the described differences in methylation could alter immune
system-related pathways, highlighting these pathways as therapeutic targets to prevent metabolic
deterioration in MHO patients.
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1. Introduction

Worldwide, obesity has reached epidemic proportions and at least 2.8 million people
die each year as result of overweight or obesity. According to the World Health Organiza-
tion, the prevalence of obesity has nearly tripled since 1975 [1].

Obesity is associated with higher risk of developing metabolic syndrome, type 2 diabetes
(T2D) and cardiovascular diseases, resulting in an increase in mortality. However, not all
people with obesity present the typical pattern of metabolic complications. This phenotype
has been defined as metabolically healthy obesity (MHO) and its prevalence rate varies widely,
ranging from 10% to 35% depending on the criteria used and population studied [2,3].

The MHO phenotype can progress to an unhealthy state known as metabolically
unhealthy obesity (MUO). It has been suggested that this progression could be a matter
of time [4], although there is evidence that suggests that a relevant percentage of MHO
individuals maintain their status over time [5].

Despite the growing interest in these groups of subjects, there is a great lack of
knowledge concerning the factors that determine why some obese subjects are protected
from developing metabolic complications. Different studies propose that higher insulin
sensitivity, specific distribution of fat, reduced infiltration of immune cells into adipose
tissue, and consequently, a metabolically beneficial cytokine and adipokine secretion
pattern, could be some of the mechanisms involved in the genesis of MHO [6,7].

It is estimated the 40–70% of obesity and metabolic disease has a inherited component,
but large genome-wide association studies (GWAS) have shown that only 20% of variants
in genes related to obesity can explain the predisposition to this condition [8]. Therefore, it
has been suggested that epigenetic processes may have a role in the regulation of metabolic
diseases. DNA methylation is one of the main epigenetic mechanisms, and can alter gene
expression without changing the DNA sequence by adding methyl groups at cytosine
residues. This field is still young, but it is attracting interest in various areas such as
oncology and metabolic disorders such as obesity.

Previous studies have evaluated the relationship between epigenetic variants and
metabolic diseases such as obesity and T2D [9]. It has been suggested that obesity is related
to different methylation levels in blood cells compared with those in healthy cohorts [10–12].
Also, DNA methylation data from adipose tissue show that epigenetic variation is involved
in obesity-associated comorbidities and T2D [13,14].

The aim of the present study was to analyze the long-term evolution of methylation
patterns in a subset of MHO subjects in order to search for epigenetic markers that could
predict the progression of MHO to MUO.

2. Results

Table 1 presents the metabolic variables used to classify the patients included in the
study. Briefly, patients were considered as MHO if they had abdominal obesity and <2 of
the NCEP ATPIII metabolic syndrome criteria were present. At baseline, triglyceride
levels were significantly higher in the unstable MHO group (p = 0.001). No statistical
differences were found for the rest of the studied variables. At 11-year follow-up, fasting
glucose (p = 0.01), diastolic (p = 0.0159) and systolic blood pressure values (p = 0.024) were
significantly higher in the unstable MHO group.

2.1. Principal Component Analysis

Principal component analysis (PCA) analysis was carried out using the double selec-
tion of methylated CpG loci. Firstly, CpG sites that clearly discriminated the two popu-
lations at 11-year follow-up were selected; in this selection, both components explained
around 58% of the variance (Figure 1A). In this step, a total of 8200 (1%) differentially
methylated CpG loci were selected from 815,389 probes, based on component contribution
criteria. These CpG sites were tested at baseline to determine markers that discriminated
between the two populations both at baseline and at the end of follow-up (Figure 1B). Then,
those CpG sites in each component whose contribution values were relevant, were selected.
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At baseline, sites with a contribution higher than 0.04% (half the maximum contribution
value of the best variable) in component 1 and 0.25% (half the maximum contribution)
in component 2 were selected and used to establish the methylation changes during the
follow-up in the study population.

Table 1. Anthropometric and biochemical characteristics of the subjects included in the study.

Title 1 Baseline 11-Year Follow-Up

Stable
MHO (n = 9)

Unstable MHO
(n = 9) p-Value Stable MHO

(n = 9)
Unstable MHO

(n = 9) p-Value

Age 45 ± 11 53 ± 9 NS
Gender (Male/Female) 2/7 3/6 NS
Fasting glucose (mg/dl) 103.5 ± 13.3 106.6 ± 10.3 NS 90 ± 4.9 108.4 ± 16.6 0.01

BMI 28.2 ± 1.6 29 ± 4.3 NS 29.9 ± 3.4 31.1 ± 4.0 NS
Triglycerides (mg/dl) 52.7 ± 12.3 92.7 ± 37.8 0.01 82 ± 25.2 100.33 ± 53.0 NS

HDL-cholesterol 57.8 ± 12.3 51.4 ± 9.6 NS 60.7 ± 6.3 53.6 ± 8.4 0.06
DBP (mm Hg) 81.4 ± 7.5 88.6 ± 16.8 NS 75.7 ± 9.3 90.5 ± 11.5 0.015
SBP (mm Hg) 121 ± 16.9 138.6 ± 26.3 NS 126.3 ± 19.3 153.8 ± 23.2 0.024

HTA treatment (%) 0 22.2 NS 0 55.6 0.015

Data are expressed as the mean ± standard deviation, or as (percentage). p-values for continuous data were calculated using the Kruskal–
Wallis test, and for categorical data they were calculated using the chi-square test or Fisher’s exact test if the frequency was <5. BMI: body
mass index. HDL cholesterol: high density lipoprotein cholesterol. DBP: diastolic blood pressure. SBP: systolic blood pressure. HTA
treatment: arterial hypertension treatment.
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important 11-year follow-up methylation sites at baseline.

Finally, 26 significantly differentially methylated CpG sites were selected for further
analysis (Supplementary Table S1). Most of them (fifteen) were hypermethylated in stable
MHO compared to the unstable MHO population both at baseline and 11-year follow-up,
while 11 were hypomethylated. The differences between the mean methylation values in
both populations at the two study points are shown in Figure 2.
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Figure 2. Methylation levels of 26 significantly differentially methylated CpG sites identified in the double PCA selection at
baseline and 11-year follow-up.

2.2. Differentially Methylated Genes

A total of 17 genes and 2 pseudogenes were related to the 26 CpG sites identified in
the double PCA selection. The top ten significantly differentially methylated CpG sites
were associated with eight unique genes or pseudogenes; two were pseudogenes, namely,
nucleolar protein interacting with the FHA domain (NIPFK3) and DTX2P1-UPK3BP1-
PMS2P11. The rest of the sites were unique genes including zinc finger protein, FOG family
member 2 (ZFMP2), cytochrome P450 family 2 subfamily E member 1 (CYP2E1), major
histocompatibility complex, class II, DQ beta 1 and beta 2 (HLA-DQB1 and HLA-DQB2),
solute carrier family 1 (SLC1A1) and phospholipase C zeta 1 (PLCZ1). The characteristics
of these CpG loci including probe ID, location, gene region or direction of methylation are
shown in Table 2.

A more in-depth analysis was performed on these nineteen unique genes (seventeen
genes and 2 pseudo genes). All the CpG sites in each of these genes, as well as flanked
sequences were collected from the UCSC genome and checked as to whether they are
detected in the Methylation EPIC Bead. The CpG sites described in each gene were
analyzed to investigate to what extent these genes present multiple different CpG sites in
our population.

Fourteen of the nineteen genes identified (73.6%) showed multiple, significant CpG
sites. The gene with the largest difference in methylation was CYP2E1 with 50% of the
collected CpG sites differently methylated in the stable MHO and unstable MHO, followed
by HLA-DRB1 (33%), ZBTB45 (16%), HOOK3(14%), PLCZ1 (14%), SLC1A1 (12%), MUC2
(12%), ZFPM2 (12.5%) and HLA-DQB2 (8%), and several flanked sequences were identified
as differentially methylated in MUC2. None of the flanked sequences were found to be
significantly differentially methylated in the rest of the genes. The differentially methylated
CpG sites in these genes are shown in Supplementary Table S2.
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Table 2. The top ten significantly differentially methylated CpG sites in stable MHO and unstable MHO throughout the study.

Probe ID Location Gene
Symbol Gene Name p-Value Hypermethylated

cg20707527 Chr: 8 q23.1 ZFPM2 Zinc Finger Protein. FOG Family
Member 2 0.0001 Stable MHO

cg15084585 Chr: 8 q23.1 ZFPM2 Zinc Finger Protein. FOG Family
Member 2 0.0001 Stable MHO

cg20022036 Chr: 6 p21.32 HLA-DRB1 Major Histocompatibility
Complex. Class II. DR Beta 1 0.0015 Stable MHO

cg20239921 Chr: 7 q 11.23 DTX2P1-UPK3BP1-
PMS2P11 DTX2P1-UPK3BP1-PMS2P11 0.0015 Stable MHO

cg26805839 Chr: 9p24.2 SLC1A1 Solute Carrier Family 1 Member 1 0.0035 Stable MHO

cg11445109 Chr: 10 q26.3 CYP2E1 Cytochrome P450 Family 2
Subfamily E Member 1 0.0046 Unstable MHO

Cg07180987 Chr: 6 p21.32 HLA-DQB2 Major Histocompatibility
Complex. Class II. DQ Beta 2 0.0057 Stable MHO

cg05194426 Chr: 10 q26.3 CYP2E1 Cytochrome P450 Family 2
Subfamily E Member 1 0.0057 Unstable MHO

cg25828445 Chr: 12 p13.31 NIFKP3 Nucleolar Protein Interacting
with The FHA Domain 0.0067 Unstable MHO

cg07458466 Chr: 12 p 12.2 PLCZ1 Phospholipase C Zeta 1 0.0083 Stable MHO

2.3. Potential Biomarker of Transition to Unhealthy State

A backward stepwise logistic regression was performed using all the methylated
sites to evaluate the prediction power of the different methylation in these sites. The
final model selected two sites as the best markers to predict the deterioration of stable
MHO to an unhealthy phenotype. So, a higher methylation level in the site cg20707527
in the gene ZFPM2 could have a protective effect against progression to MUO (OR: 0.21,
95%CI (0.067–0.667), p < 0.0001); on the contrary, a higher methylation level of the site
cg11445109 into the gene CYP2E1 would increase the progression of the patient to MUO
(OR: 2.72, 95%CI (1.094–6.796), p < 0.0014). As the baseline triglycerides levels were
significantly different, this variable was also included in the model; however, they were
not statistically significant.

2.4. Enrichment Analysis

The 26 differentially methylated CpG sites selected through double PCA selection
were annotated by GO analysis and their functions were classified by biological processes,
molecular function, and cellular components using an enrichment analysis. The top 10 GO
terms categorized into biological processes, molecular functions and cellular components
are illustrated in Supplementary Figure S1. Biological processes were shown to be linked to
the metabolic process of a wide variety of substrates such as halogen compound, benzene,
monoterpenoid, etc. Processes not related to metabolism were protein transport, antigen
presentation and regulation of cytosolic calcium. Meanwhile, cellular components were
mainly associated with transport between membranes, especially Golgi transport or coated-
clathrin vesicles (Supplementary Table S3).

2.5. Pathway Analysis

Finally, pathway analyses were used to assess the biological pathways implicated in
the differences between the methylation status in stable MHO and unstable MHO patients
related to the 26 CpG sites identified in the double PCA selection. Immune-mediated
processes could play a role in the progression to the unhealthy state considering that
specific pathways such as Th1 and Th2 activation, antigen presentation, allograft rejection
signalling were shown to be hypermethylated in stable MHO (Figure 3).
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them were linked in a unique network with transcription factors and transcription regulators (AHR, SIP1 or HNF4A) as the
main nodes (Figure 4).
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3. Discussion

Identifying those parameters that may predict the metabolic deterioration of MHO
phenotype to unhealthy phenotype or the maintenance of metabolic healthy status over the
course of time is currently a matter of debate. Among these factors, the role of epigenetics
in the stability of MHO phenotype has attracted attention.

DNA methylation represents major epigenetic modification at the transcriptional
regulation level. The function of DNA methylation seems to vary with the genomic context
(transcriptional start sites, gene bodies, regulatory elements); in this way, DNA methylation
of gene promoters is usually associated with transcriptional silencing, while gene body
methylation has been associated with transcription enhancement [15].

Previous studies have investigated alterations in DNA methylation in adipose tissue
in relation to obesity, insulin resistance and systemic inflammation [16,17], highlighting
the relevance of this epigenetic mechanism in obesity and associated comorbidities. Addi-
tionally, modifications in the methylation profile of blood cells associated with obesity and
metabolic syndrome have been described [18,19]. However, to the best of our knowledge,
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there is no previous study that evaluates the long-term methylation changes in patients
with obesity according to their metabolic status.

Our results showed 26 CpG sites differentially methylated, both at baseline and
11-year follow-up, associated to 19 genes or pseudogenes, which deserve further investiga-
tion to decipher their potential role in the stability of MHO phenotype.

Among the pathways altered by these differences in methylation, immune-related
pathways stand out as they could be involved in MHO progression to an unhealthy state.
It is well-known that obesity is characterized by a chronic low-grade inflammatory state
accompanied by macrophage infiltration in adipose tissue. It has been shown that both
obesity and T2DM cause dysregulation of the immune system [20,21]. In our population,
CpG sites located in HLA-DRB1 and HLA-DQB2 genes were shown to be hypermethylated,
being higher than the methylation in stable MHO group. These genes belong to the human
leukocyte antigen (HLA) class II complex, which is part of the antigen processing and
presentation machinery, and a cornerstone of the adaptative immune system. In a previous
study, components of HLA class II have shown increased expression in the adipose tissue of
patients with obesity and metabolic syndrome [22]. In adipocytes of subjects with obesity,
HLA class II has been shown to play a role in triggering inflammation. Indeed, adaptive
immunity has been suggested to have a role in the onset and progression of inflammation
and insulin resistance in obesity-associated adipose tissue [23]. SNP genotyping has
indicated the role of HLA-DRB1 in T2D [24]. Some HLA-DRB1 polymorphisms have been
suggested to be protective for T2DM; the hypothesized mechanism seems to be a protective
role against autoimmune-mediated loss of insulin secretion [25]. Moreover, in obese
adolescents, the development of insulin resistance was associated with a down-regulation
of HLA-DRB1 [26].

The rest of the genes associated with the methylation sites described are involved in a
wide range of biological processes, highlighting the roles of potential biomarkers that could
predict the progression to an unhealthy state at long-term follow-up. Our results showed
that higher methylation in cg20707527 (ZFPM2 gene) and lower methylation in cg11445109
(CYP2E1 gene) could have a role in the stability of the healthy phenotype in obesity.

In our study, methylation in the ZFPM2 gene showed a different tendency between
groups; our results described two CpG sites that were hypermethylated in stable MHO,
whilst in unstable MHO, these CpG sites were hypomethylated at both baseline and 11-year
follow-up. ZFPM2, also known as FOG2, encodes a zinc finger transcription factor that reg-
ulates GATA protein activity, including GATA4, which is involved in cardiac function and
modulation of angiogenesis [27]; however, it has also been suggested that FOG2 develops
other roles. Previous studies have associated genetic variants of ZFPM2 with hypercholes-
terolemia and metabolic syndrome [28,29]. In animal models, triggering inflammation has
been shown to lead to a decrease in FOG2 expression in hepatocytes [30]. In another study,
hepatic FOG2 was shown to attenuate insulin sensitivity by promoting glycogenolysis [31].

The CYP2E1 gene showed a high proportion of differentially methylated sites, and
tended to be hypomethylated in both stable and unstable MHO. Moreover, the hypomethy-
lation levels were higher in stable MHO. CYP2E1 belongs to the superfamily of enzymes,
cytochrome P450 (CYP), whose members are involved in the biotransformation of drugs,
xenobiotics and endogenous substances [32]. The increased activity of CYP2E1 may pro-
mote oxidative stress due to its ability to produce excessive reactive oxygen species [33].
This induction has been described at hepatic level in patients with non-alcoholic fatty liver
disease [34]. Additionally, CYP2E1 activity has been shown to be higher in patients with
obesity [35] and an animal model of metabolic syndrome [36]. Although the results are
contradictory, some studies have suggested an increase in CYP2E1 activity in patients with
T2D [37], and both glucose and insulin may modulate its activity [38]. All these data suggest
that CYP2E1 may have a role in metabolic alterations with an inflammatory component.

To the best of our knowledge, this is the first study to perform a longitudinal analysis
of methylation status in an obese population with a 11-year follow-up. However, our
study also presents some limitations. We used blood samples to assess differential DNA
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methylation, therefore further research on tissue-specific methylation patterns would
be necessary. We could not perform RNA analysis to relate DNA methylation to gene
expression. Due to the sample size, some relevant differences may not have been detected.
Additionally, although the Infinium EPIC array is a very useful tool to interrogate CpGs
sites, it only covers 30% of the human methylome. Finally, a validation cohort would
be necessary to confirm our results although obtaining a cohort for long-term follow-up
(11 years) makes the validation overly complicated.

For a better understanding of the MHO phenotype as well as the predictors factors in
the transition of MHO to MUO, more longitudinal studies with a larger number of subjects
will be needed. Epigenome-wide studies with samples from adipose tissue will be required
in order to increase our knowledge of the mechanisms involved in the development of the
MUO phenotype.

4. Materials and Methods
4.1. Design and Subjects

This study is part of the Pizarra study, the details of which have been previously
published [4,39]. Briefly, the Pizarra study is a prospective, population-based cohort study
of 1051 subjects aged 18–65 years from Pizarra, a town in the province of Malaga (Andalusia,
southern Spain). The cohort was re-evaluated after 11 years, and a total of 547 individuals
completed the follow-up. Blood samples at both baseline and 11-year follow-up were
available from 276 of 547 individuals who completed the follow-up. Of them, 137 patients
were obese, both at baseline and 11-year follow-up. Among 137 patients, 58 were classified
as MHO at baseline. After matching by age, 18 patients were selected to be included
in the study.

Informed consent was obtained from each participant, and the study was approved by
the medical ethics committee of the Carlos Haya Regional University Hospital of Malaga.

4.2. Classification Criteria

The NCEP ATPIII criteria were used to classify the subjects according to their metabolic
status [40]. They were considered as MHO if they had abdominal obesity (waist circum-
ference >102 cm in men and >88 cm in women) and <2 of the NCEP ATPIII metabolic
syndrome criteria were present: systolic blood pressure ≥135 mmHg or diastolic blood pres-
sure ≥85 mmHg; fasting plasma glucose concentration ≥100 mg/dL; HDL-C concentration
<40 mg/dL in men and <50 mg/dL in women; fasting plasma TG concentration ≥150 mg/dL;
or treatment with antihypertensive, lipid lowering, or glucose-lowering medications.

For this study, a subset of 18 MHO subjects at baseline were selected for genome-wide
DNA methylation analysis. Of these, 9 MHO subjects developed metabolic complications
at 11-year follow-up (unstable MHO; n = 9), whilst the other sub-set of samples remained
metabolically healthy at 11-year follow-up (stable MHO; n = 9).

4.3. Procedures

Weight and height measurements were made at baseline and 11-year follow-up. Body
mass index (BMI) was calculated as: weight (kg)/height2 (m2). Blood pressure was mea-
sured twice with a sphygmomanometer with an interval of 5 min between measurements
and the average of the two measurements was used in the analyses.

At baseline and 11-year follow-up, blood samples were collected after a 10–12 h fast. The
serum was separated, and blood and serum samples were immediately frozen at −80 ◦C until
analysis. Biochemical variables were measured in duplicate. Blood glucose was measured
using the glucose oxidase method (Bayer, Leverkusen, Germany). Enzymatic methods were
used to measure total cholesterol, triglycerides, and high-density lipoprotein cholesterol.

4.4. DNA Methylation Assay

DNA was extracted from peripheral blood using the QIAmp DNA Blood Mini Kit
(Qiagen, Hilden, Germany) following the manufacturer’s instructions. DNA concentration
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was quantified with a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
using Qubit dsDNA HS Assay Kit Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA) After quantification, a total of 500 ng of genomic DNA was bisulfite-treated using
a Zymo EZ-96 DNA Methylation™ Kit (Zymo Research Corp, Irvine, CA, USA) and was
purified using a DNA-Clean-Up Kit (Zymo Research Corp, Irvine, CA, USA).

Over 850,000 methylation sites were interrogated with the Infinium Methylation
EPIC Bead Chip Kit (Illumina, San Diego, CA, USA) following the Infinium HD Assay
Methylation protocol, and raw data were obtained from iS (Illumina) software.

4.5. Methylation Data Analysis

We used statistical programming language R 3.5.1 (https://www.r-project.org/, ac-
cessed on 1 April 2021) to perform the methylation data analysis. Raw data files (idat
files) were read with the minfi package [41] to calculate raw β-values. Normal-exponential
out-of-band (NOOB) normalization [42] was used to correct the background. Probes lo-
cated at sexual chromosomes or near SNPs were removed from the analysis. Low quality
probes (those with a detection p-value > 0.01 in at least 10% of samples) were also removed.
Finally, beta-mixture quantile (BMIQ) normalization [43] was applied to correct for the two
different bead designs in the microarrays. For the differential methylation analysis, we
transformed β-values to M-values.

4.6. Statistical Analysis

Statistical analysis and comparison were performed using R software (3.5.1) to study dif-
ferences in anthropometric and biochemical variables with the Kruskall–Wallis test for continu-
ous data and the chi-square test for categorial data. Data are expressed as the mean ± standard
deviation, or as a percentage. Values were statistically significant when p < 0.05.

Principal Component Analysis (PCA)

Two complete datasets of normalized CpGs sites were obtained at baseline and the
11-year follow-up. Principal component analysis (PCA) was implemented using native
R implementation through R Studio Software 1.2.5033 (version 3.5.1). Classical PCA can
be considered as a projection-based approach to find the low-dimensional space that best
represents a cloud of high-dimensional points [44]. Firstly, we performed PCA on the
dataset of the 11-year follow-up and used the most important CpG sites in both components
as subsets for the dataset. Around 1% of them were selected (8200 CpG sites). These sites
were tested at baseline and those with a contribution higher than 0.04% (half the maximum
contribution value of the best variable) in component 1 and 0.25% in component 2 were
selected and used to establish the methylation changes through the follow-up of the
study population.

To validate the importance of the selected CpG sites in the PCA, a comparative analysis
was performed for each site. Differences between groups were established by using the
Kruskal-Wallis test.

Differentially methylated CpG sites identified at both baseline and 11-year follow-up
were used to perform a backward stepwise logistic regression to evaluate the prediction
power of these sites for the progression to a metabolically unhealthy obesity state.

4.7. Gene Ontology and Pathway Testing

These CpG sites were studied using two different approaches; on one hand, Gene
ontology (GO) was used to determine the main processes associated with the selected CpG
sites by using AmiGO, a web application that allows users to query, browse and visualize
ontologies and related gene product annotation (association) [45]. On the other hand, the
selected CpG sites were analyzed through ingenuity pathway analysis software from QIA-
GEN. This software allowed us to determine which canonical pathways were related with
the selected CpG sites and to establish the more relevant processes altered in both groups at
the follow-up. Finally, statistical analysis was performed using R software (3.5.1 version).

https://www.r-project.org/
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5. Conclusions

In conclusion, we described differentially methylated sites that could have a role
in the stability/worsening of MHO phenotype; among them, two potential biomarkers
have been suggested (cg20707527 and cg11445109). Moreover, the described differences in
methylation could alter immune system-related pathways, suggesting these pathways as
therapeutic targets to ameliorate metabolic deterioration in MHO patients.
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