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Abstract
Accurate diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) is a significant challenge. Misdiagnosis has

significant negative medical side effects. Due to the complex nature of this disorder, there is no computational expert

system for diagnosis. Recently, automatic diagnosis of ADHD by machine learning analysis of brain signals has received

an increased attention. This paper aimed to achieve an accurate model to discriminate between ADHD patients and healthy

controls by pattern discovery. Event-Related Potentials (ERP) data were collected from ADHD patients and healthy

controls. After pre-processing, ERP signals were decomposed and features were calculated for different frequency bands.

The classification was carried out based on each feature using seven machine learning algorithms. Important features were

then selected and combined. To find specific patterns for each model, the classification was repeated using the proposed

patterns. Results indicated that the combination of complementary features can significantly improve the performance of

the predictive models. The newly developed features, defined based on band power, were able to provide the best

classification using the Generalized Linear Model, Logistic Regression, and Deep Learning with the average accuracy and

Receiver operating characteristic curve[%99.85 and[ 0.999, respectively. High and low frequencies (Beta, Delta)

performed better than the mid, frequencies in the discrimination of ADHD from control. Altogether, this study developed a

machine learning expert system that minimises misdiagnosis of ADHD and is beneficial for the evaluation of treatment

efficacy.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is the

most commonly diagnosed mental disorder of children

with a worldwide prevalence of 7.2% (Thomas et al. 2015).

ADHD can remain a disorder throughout the lifetime and is

the risk factor for a wide range of other mental health

problems including defiant, disruptive, and antisocial

behaviors, emotional problems, and self-harm (Willoughby

2003; Shaw et al. 2012). The main symptoms of ADHD in

childhood are age-inappropriate inattention, hyperactivity,

and impulsivity, which can significantly impact many

aspects of behaviour as well as performance, both at school

and home (Faraone et al. 2003). At the present, diagnosis of

ADHD is often based on a comprehensive assessment by a

pediatrician, psychiatrist, or psychologist, but clinical

manifestations are not easy to detect. Methods such as

magnetic resonance imaging (MRI), Positron Emission

Tomography (PET), or Computed Tomography (CT) scan

are not yet able to accurately diagnose ADHD, and even in

developed countries, the diagnosis of this disorder is con-

troversial among specialists. The risk for false-positive

diagnosis is higher in children and diagnoses may be

incorrect (Arruda et al. 2019; Ford-Jones 2015). In the case

of misdiagnosis, incorrect medications and interventions

make the situation worse. Children are given stimulants to

increase the frequency, while no parent likes to give their

child a medication that they do not need. These drugs are

associated with side effects such as loss of appetite, high

blood pressure, heart problems, and mood disorders

(Volkow and Swanson 2013).

The brain system of humans can be envisioned as a large

and complicated network that effectively controls the

whole body. The neural tissue of the brain displays

anatomical development from childhood to adolescence

which is accompanied by changes in oscillatory patterns

and brain imaging data, as measured using both EEG and

Functional Magnetic Resonance Imaging (fMRI) (Smit

et al. 2012, 2016; Power et al. 2010), which can also be

compared in patients and healthy people. The brain net-

work of people with ADHD has many abnormalities and

differences from the brain network of healthy people, and

fMRI evaluations have revealed those developmental dis-

turbances (Tang et al. 2018). However, their validity is low

for ADHD detection while non-imaging data is more

important in this regard (Riaz et al. 2018). Abnormal

amplitude in ADHD brain waves have been reported by

many EEG studies (Ghaderi et al. 2017; Kamida et al.

2016; Li et al. 2018a). ADHD patients have various EEG

characteristics that reveal underlying neuropsychological

deviation in contrast to other normal people which can be

discriminated using machine learning algorithms which are

considered as a method for working with complicated data

(Chen et al. 2019a; Jamali et al. 2016; Sethu and Vyas
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2020). Also, EEG signals, compared with other biometrics,

have significant inherent advantages such as universality,

uniqueness, cheapness, and Accessibility (Chuang et al.

2013; Sohankar et al. 2015), so that, EEG units can be

flexibly deployed in the field including educational and

medical institutions.

In general, automated detection based on EEG/ERP

signals includes the two main tasks of feature extraction

and classification. First studies based on EEG/ERPs to

classify patients with ADHD and healthy were published in

2010 and 2011 in which classification accuracies were

achieved 90% using SVM (Mueller et al. 2011, 2010).

Nazhvani et al. in 2013, reported a classification accuracy

of 92.85% in a study where the data were analyzed using

nonlinear machine learning (Nazhvani et al. 2013). Most

studies have used supervised learning for automatic

detection approach. However, the choice of a suit-

able strategy for machine learning is difficult and thus

numerous classification strategies have been developed.

In a recent study, Muller et al. used five classification

models comprised of LR, SVM (linear kernel), SVM (ra-

dial basis function kernel), RF, and, XGBoost. The models

exhibited sensitivities between 75 and 83% and specifici-

ties between 71 to 77%. The used features in this study

were eyes-closed, eyes-open, and Visual Continuous Per-

formance Test (VCPT) signal power in a series of different

frequency bands, as well as ERP Peak Amplitudes and

latencies (Müller et al. 2019). It seems that One of the

reasons for low efficiency of ADHD detection is inappro-

priate feature selection for the models. One of the most

common EEG characteristics associated with ADHD is

power increase at low frequency (Delta, Theta) and/or

power decrease at high frequency (Beta) which are occa-

sionally combined and quantified via Theta/Beta Ratio

(TBR) (Barry et al. 2003; Arns et al. 2013; Lenartowicz

and Loo 2014). An EEG-based adjuvant assessment that

uses the TBPR to classify the brain signals of healthy and

ADHD subjects has been approved by the Food and Drug

Administration (FDA) (Saad et al. 2018). However, some

studies suggest that the TBR should be used, while other

studies strongly oppose those suggestions (Buyck and

Wiersema 2014; Liechti et al. 2013; Loo and Arns 2015).

For example, Ogrim et al. found that neither the TBR at Cz

nor the Theta and the Beta bands separately were signifi-

cantly different between patients and controls (Ogrim et al.

2012). Therefore, novel EEG features for ADHD detection

are needed.

In a study, the k-Nearest Neighbors (KNN) classifier

was applied to Autoregressive (AR) parameters extracted

from EEG recorded in attention activity. The accuracy of

this supervised learning model was obtained between 85

and 95% (Marcano et al. 2016). In another study (Mar-

kovska-Simoska and Pop-Jordanova 2017), to distinguish

ADHD patients based on EEG parameters, the highest level

of accuracy (99.2%) was obtained using Absolute Band

Power in the Theta band at Cz and no acceptable result was

obtained at other frequencies and locations. EEG/ERP

acquisition has been received at resting-state in most

studies, but due to the nature of the ADHD, the EEG/ERP

must be recorded in non-restful mode. In this study, the

ERP will be recorded at both visual and auditory stimula-

tion. Although some studies have obtained good results, the

problem of all studies is that only one or two features are

used for the models And algorithms were not optimum or

used features were not sufficient for a good classification

and stable result. Thus, for a valid diagnosis, the infor-

mation from EEG may need to be derived via multiple

methods. The main objective in this study is to conduct a

comprehensive analysis and compare seven machine

learning algorithms utilising the decomposed frequency

features, previously-used features, and new calculated

features, in four different frequencies and finally, intro-

ducing of the best prediction models with the highest

accuracy and the lowest error rate for a stable and credible

diagnosis of ADHD patients.

Methods

Participants

The experimental group consisted of 60 children (age

between 4 and 15 years) belonging to educational institutes

in the Manizales area with written consent from all their

parents. 30 of them were ADHD subjects and 30 were in

the control group that was diagnosed based on the clinical

criteria of the Diagnostic and Statistical Manual of Mental

Disorder (DSM-IV) (Stoica and Moses 1997). Patients with

pharmacologic management (methylphenidate, 20 mg) did

not take the drug until 24 h before the test. All subjects had

normal visual and auditory ability, no other neurological

disorders and the intelligence levels of both groups were

within normal limits (IQ range[ 80).

ERP acquisition

ERP signals were recorded according to the criteria of the

Oddball paradigm in two modes of auditory and visual

stimulation. In the auditory stimulation state, the subjects

were seated in a comfortable chair then the emission of

80 dB tone with a frequency of 1.000 Hz frequent stimulus

and 3.000 Hz for infrequent stimulus was presented ran-

domly at every 1.5 s. In visual mode, subjects were asked

to stare at a monitor one meter away, which showed a

checkerboard image with a consistent pattern as a frequent

stimulus. For rare stimuli, a target was presented in the
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center of the screen with the same pattern in the back-

ground. The test consisted of 200 stimuli, of which 80%

were non-target stimuli and the remaining 20% were target

stimuli. In both test modes, individuals were asked to press

a button while presenting an unusual stimulus. The

recording was performed using electrodes located in the

midline of the head (Pz, Cz, and, Fz) according to a 10–20

international system at a sampling rate of 640 samples per

second. Each lead position was considered as stand-alone

data and so, the total number of data increased to 6 samples

per person. ERP data were recorded using NicoletOne EEG

System (VIASYS Healthcare, USA).

Pre-processing of dataset

Raw ERP data is generally intertwined with various arti-

facts such as eye movements, blinking, muscle artifacts,

and, electrical noise. By considering a threshold of ± 100

lv, a part of these artifacts were excluded from the data.

Residual artifacts that could not be removed by filtering

due to overlap with the original signals, were removed with

the Independent Component Analysis (ICA) automatically.

by eliminating dependencies using ICA, space is created

where the compounds are independent and the general-

ization of features is improved. Finally, The cleaned data

were transformed from the time domain into the frequency

domain using fast Fourier transformation with a 1-s Han-

ning window and 50% overlap. This analysis was per-

formed with MATLAB software (version 2016).

Filtration of frequency bands

To better reflect brain activity, the ERP signals were fil-

tered using bandpass filters (elliptic order six) and were

decomposed to successive four frequency bands: Beta

(13–30 Hz), Alpha (8–12 Hz), Theta (4–8 Hz), and, Delta

(\ 4 Hz).

Feature extraction

One of the basic requirements of machine learning and

model training is discriminant features. The features that

were used are described as follows. MATLAB software

(version 2016) was used to calculate the features.

Discrete wavelet transform

Eleven features were calculated based on Discrete Wavelet

Transform (DWT). DWT is used as an efficient tool to

display a signal. By DWT, a signal is decomposed into two

levels of the low and the high frequencies called Approx-

imations and Details respectively. Therefore, Wavelet

Transform Approximation Coefficients (WT-ApCo) and

Wavelet Transform Detail Coefficients (WT-DeCo) were

calculated based on a previous study (Yong et al. 1996).

Then Approximations Entropy (ApEn) and Details Entropy

(DeEn) were calculated. Based on the entropies, the new

features were computed including Total Wavelet Entropy

(Total WE) that is the total of Detail and Approximation

entropies, Relative Approximations Entropy (R-ApEn) that

is Approximations Entropy relative to Total Wavelet

Entropy, Relative Details Entropy (R-DeEn) that is Details

Entropy relative to Total Wavelet Entropy, Approxima-

tions Entropy that is normalized with an average of DeEn

and ApEn (ApEn-0), Details Entropy that is normalized

with an average of DeEn and ApEn (DeEn-0), Approxi-

mations Entropy that is normalized with maximum Entropy

(ApEn-1) and Details Entropy that is normalized with

maximum Entropy (DeEn-1).

Band power

The most common parameter used in studies of ADHD has

been the estimation of absolute and relative band power.

Here, to calculated Absolute Band Power (ABP) according

to a study by Hammond et al. (2011), after the raw ERP

signal is filtered through bandpass filters to represent the

ERP content in the successive frequency bands, in the

output of each bandpass filter, each sample first was

squared and then their average was computed. Relative

Band Power (RBP) is also represented by the percentage of

the amplitude in a given frequency band compared with the

total amplitude across all frequency bands. New features

were also created including Absolute Band Power that is

normalized by maximum power (ABP-0), Absolute Band

Power that is normalized by the average of powers across

all frequencies (ABP-1), Relative Band Power that is nor-

malized by maximum of row ERP power(RBP-0) and

Relative Band Power that is normalized by the average of

row power (RBP-1).

Fractal dimension

Fractal Dimension (FD) is an appropriate tool to analyze

EEG/ERP signals and provides a complexity index that

describes how the measure of the length of a curve changes

depending on the scale. There are several algorithms to

calculate FD. Here, the method of the previous paper was

used (Jahanshahloo et al. 2017).

Autoregressive

Autoregressive (AR) is used to describe a time series. This

feature estimates each sample as a weighted sum of pre-

vious samples by a recursive linear filter. Here, the stan-

dard AR method was used (Moretti et al. 2003), which can
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model the whole variety of a signal, but they are sensitive

to additive noise.

Peak amplitude

The Positive Peak Amplitude (PPA), the difference

between the positive signal peak and the mid-point of the

signal, and the Negative Peak Amplitude (NPA), the dif-

ference between the negative signal peak and the mid-point

of the signal, were used as two features that are the max-

imum and minimum value of the ERP signal respectively.

Other features

Sum of the ERP signal values (Sum), Average of the ERP

signal values (Average), Median of the ERP signal values

(Median) also were considered separately for each fre-

quency band. Also, Gender and, First Child were used as

complementary features.

Model selection

To classify patients with ADHD and healthy groups, seven

machine learning algorithms described below were used.

The ultimate goal was to achieve algorithms that could

achieve the highest accuracy in classification with the least

number of features. In this study, Rapidminer studio soft-

ware (version 9.4) was used for designing the models.

Support vector machine (SVM)

SVM is a supervised machine learning algorithm for binary

classification problems that separate data points in high

dimensional space into two classes with a hyperplane that

maximizes the gap (so-called ‘margin’) between the

hyperplane and support vectors. The standard SVM is

restricted to linearly separable data (Mueller et al. 2010),

but, sometimes some sets are not linearly separable in two-

dimensional space and thus, SVMs can efficiently perform

a non-linear classification using what is called the kernel

method (Hofmann et al. 2008). Here, dot kernel, the inner

product of x and y, were used which is defined as follows;

f(x,y) = x*y.

Deep learning (DL)

DL is a method based on Artificial Neural Networks

(ANN) that consist of multiple layers and neurons that are

hidden. The function of these layers is to activate and

rectify. This algorithm is trained using back-propagation

with random gradient descent as it applies a nonlinear

change to its input in the hierarchy and uses what it learns

to create a statistical model as output. This continues until

the outputs reach a high accuracy (Deng and Yu 2014). A

50-layer network of neurons with a rectifier linear unit was

used that selects the maximum of (0, x) where x is the entry

value (Ebrahimi et al. 2019).

Generalized linear model (GLM)

GLM develops the concept of a standard linear regressions

model and allows for response variables that have error

distribution models. The GLM model is determined by

three components (Breslow 1996), including a random

component f for the dependent variable y (an exponential

family of probability distributions), a systematic compo-

nent (linear model) g: g = Xb and a link function g such

that E(y) = g = g - 1 (g). The result of each dependent

variable can be generated from the normal, binomial,

Poisson, and, gamma distributions. Here, as regards this

dataset is binary, binomial distribution with a 0.5 threshold

value was used to classification.

Logistic regression (LR)

LR is a simplified version of the GLM operator based on

the concept of probability that uses the independent vari-

able (x) to determine the dependent variable (y). In binary

regression, input values (x) have two classes (0 or 1)

(Rausch and Zehetleitner 2017). Input values (x) are

combined linearly using coefficient values or weights

(refers to the Greek b) to determine an output value (y).

The algorithm builds a regression model to predicts the

probability that input data belongs to the labeled class as

‘‘0’’ or ‘‘1’’.

Decision tree (DT)

The DT model uses a tree structure and maps observations

of a problem to conclude the value of the target (Che et al.

2011). The technique of this model is that segments a

dataset recursively with an in-depth approach until all data

items are in a specific class. The structure of a DT model is

made of the root, internal nodes, and, terminal nodes (leaf).

In this flowchart, the uppermost node is the root, the

internal node indicates a test situation on a feature, each

branch demonstrates the result of the test condition, and,

each leaf node (or terminal node) is specified with a class

label. Tree building is performed in top-down with a divide

and conquers approach in two steps: tree building and tree

pruning (Jadhav and Channe 2016). The construction of

new nodes continues until it reaches the stop criteria. The

class label prediction is determined based on the majority

of samples that have reached this leaf during production

and the numerical value is estimated by averaging the

values in a leaf. Tree pruning is done in a bottom-up
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manner to improve prediction and classification accuracy

(Ebrahimie et al. 2018). For uniformity and breadth of

feature values, the maximal depth 20 and gain-ratio crite-

rion, a kind of information gain, was adjusted for each

attribute as previously (Sharifi et al. 2018).

Random forest (RF)

RF is a model made up of many individual decision trees.

Each tree spits out a class prediction and the class with the

most votes considered to be the model’s predictor. Trees

are created from the input data set after the sub-sets are

formed. Each node represents a division rule for each

feature and optimally separates the values based on the

selected parameters (Belgiu and Drăguţ 2016). In this

study, the number of trees was fixed on 100, maximal

depths 10, and, the gain_ratio criterion was also used.

Naı̈ve Bayes (NB)

NB is a low-variance classifier based on the Bayes theo-

rem. In the NB model, according to the given value class,

the value of each feature is considered independently of the

values of the other features (Han et al. 2011). This model

has a problem: if in training data the value of a given

attribute never occurs in the content of a given class, the

probability of the condition will be zero, and when this

zero value is multiplied in other probabilities, those values

also become zero. To avoid this problem, Laplace correc-

tion, adding one to each count of zero values, was used that

it has an insignificant effect on the obtained probabilities.

Preliminary classification

To limit the number of irrelevant features and achieve the

highest accuracy in models, a framework was developed

allowing us to select discriminant features and combine

them to find the best pattern for each classifier. For this

purpose, each model was first trained with only one feature

and then tested, and this analysis was repeated for all 26

features in any frequency band distinctly (totally 728 sep-

arate analyses). Figure 1 shows the results of these

classifications.

Pattern selection and final classification

As depicted in Fig. 1, for each algorithm in the individual

frequency bands some features were better in the criterion

of accuracy. A threshold (accuracy[ 50) was defined and

all of the features that had accuracy higher than 50 were

selected for each model distinctly. For example, for the

SVM model in the Alpha frequency, the selected features

include First-Child, Gender, AR, FD, ABP-0, WT-DeCo,

R-ApEn, and R-DeEn as the primary patterns. The process

of the pattern selection for all models was done in the same

way across four frequencies. In the next step, the classifiers

were trained with all of the selected features for each

model and were tested. Then, the analysis process was

repeated again and again until achieving the best combi-

nation of features and highest classification accuracy by

removing, adding, and replacing the features.

Performance evaluation

The performance of the methods was assessed in different

ways. To appraise the models built and to improve the

predictive potency of the classifiers, all prediction perfor-

mance measures were estimated using tenfold Cross-Vali-

dation (CV) (Kohavi 1995). In CV, all samples are

partitioned into K randomly subsets of equal size. This

procedure has two nested subprocesses: Training and

Testing. Of the K numbers of subset, one subset is kept as a

testing dataset and K-1 of the remaining subsets is used to

training the model. The cross-validation process is repeated

for the total number of subsets, and each subset is used

once as testing data. The final estimate is produced by

averaging the k results (Rausch and Zehetleitner 2017). In

this work, 70% of the data were used for the building of

training subsets and 30% of those were used for the testing

of models.

The performances of the models were evaluated by the

following measures:

The ratio of correctly classified examples or percentage

of right predictions is considered as accuracy:

Accuracy ¼ TPþ TNð Þ= TPþ TN þ FPþ FNð Þ:

Precision which indicates what proportion of positive

identifications was actually correct:

Percision ¼ TP= TPþ FPð Þ:

Classification error is calculated as the number of all

incorrect predictions divided by the total number of the

dataset:

Classificationerror ¼ FPþ FNð Þ= TPþ TN þ FPþ FNð Þ:

Besides, the Receiver Operating Characteristic (ROC)

was used to evaluate the performance of models at all

classification thresholds. ROC curve for binary classifica-

tion with different discrimination thresholds is displayed as

a graphical layout of true positive rate (sensitivity) versus

false positive rate (one minus the specificity):
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Sensitivity ¼ TP=TPþ FN

1� Specificityð Þ ¼ FP=FPþ TN

here TP, TN, FP, FN are the number of true positives, true

negatives, false positives, and, false negatives, respec-

tively. The Area Under the ROC Curve (AUC) can be

applied as a reliable measure of classifier performance

because it provides a single measure of overall accuracy

that is not dependent on a particular threshold. The maxi-

mum value of AUC is 1 that denotes a perfect prediction

(Bradley 1997).

Results

Feature selection based on the classification

To investigate the contribution of each feature to the pre-

dictive model, a different method was used. First, the

classification was performed with only one feature. Fig-

ure 1 shows the feature importance across different pre-

dictive models in Separate frequencies. Features that were

very accurate in the classification had to be selected.

Several features, such as Total WE, R-DeEn, R-ApEn,

Gender, and some others, had the same results in all clas-

sifiers, while a few of them had varied results. For example,

Fig. 1 Preliminary classification results for 4 frequency bands; heat

map showing the accuracy of the prediction models for Attention

Deficit/Hyperactivity Disorder. The color scale indicates the value of

the accuracy, the intensity increases from red to yellow. Each column

represents one model, and each row represents a feature. In each of

the frequency bands, 182 times the execution has been performed, so

that at each run, only one of the algorithms and a single feature is used
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the GLM, LR, and, SVM had high accuracy using ABP-0

in the Delta frequency. In addition to these three models,

DL had high accuracy using this feature in the Beta band.

the NB and SVM models had moderate accuracy in the

Alpha frequency. In contrast, none of the models did have

significant accuracy using ABP-0 in the Theta band

(Fig. 1). Although this was a primary classification, it

helped a lot in the selection of important patterns to

increase the accuracy of the models for the next steps.

Classification performance assessment

The results of this study showed that the simultaneous use

of several right features has a significant role in improving

the accuracy of classification. For this purpose, the classi-

fications were performed using the primary patterns based

on the important features. Although their accuracy

improved compared to when only one feature was used in

the models, the results were still not acceptable. So the

classification was repeated several times and each time the

combination of features was changed, by deleting, adding,

and replacing them, to discover a specific pattern for each

model that can increase prediction accuracy to the highest

level. According to Table 1 in the Delta frequency, GLM,

LR, and, DL had the best results using only two features.

SVM did not perform well compared to the previous three

models, because despite having more number features, it

had a classification error (%3.70) and its accuracy did not

exceed %96.30. The NB model had the lowest efficiency

compared to the others, and its best status was a combi-

nation of the three features including Gender, First Child,

and ABP-0. No other features were found that could

improve the accuracy of this classifier. At the Theta fre-

quency (Table 2) GLM and LR were able to discriminate

between ADHD and non-ADHD children with 100%

accuracy. In this frequency, one of the main features of

GLM, in addition to the features used for it in the Delta

band, was WT-ApCo. Although DL had a precision of

%100, its accuracy compared with the Delta band

decreased and it had a Classification error(%1.85). SVM

represented the worst performance in this frequency. As

well as at the Alpha frequency (Table 3), three models

including GLM, LR, and DL had the highest accuracy and

precision using only two features while the Classification

error was also zero. After that, SVM had the best perfor-

mance using five features. But according to the results in

Table 4, the three algorithms of GLM, LR, and DL had

remarkable results in the Beta band and it seems that they

are almost the same in the used patterns and performance in

the frequencies of Beta, Alpha, and Delta. The best results

for DT were obtained at this frequency (accuracy 97.22).

Although the performance results for SVM were the same

at both Beta and Alpha frequencies, it was better evaluated

at the Beta band in general because it was able to achieve

the same performance with fewer features.

According to Tables 1, 2, 3 and 4 GLM and LR in all

four frequency bands were equally and excellently able to

distinguish ADHD in children, and frequency did not have

much effect on the performance of these algorithms. DL

also was well evaluated in all frequencies except the Theta

band, which was slightly reduced in performance. DT had

better results in the Beta and the Delta bands, respectively

than other frequencies. Beta and Alpha bands are appro-

priate for SVM To some extent, and the Theta frequency is

not recommended for classification by SVM at all.

Although RF performed relatively well at the Beta fre-

quency and the overall performance of RF was much better

than NB, these two models do not seem to be appropriate

classifiers for detecting ADHD.

Contributing features

The high performances achieved by supervised learning are

due to the ability of the calculated features. Results showed

Table 1 Algorithm performance

using the best optimum

combination of multiple

features for the Delta frequency

band dataset

Classifier Feature(s) used (pattern) Performance analysis (%)

Accuracy Precision Prediction error

NB Gender, First child, ABP-0 78.70 81.36 21.30

GLM ABP-0, ABP-1 or RBP-0 or RBP-1 100.00 100.00 –

LR ABP-0, ABP-1 or RBP-0 or RBP-1 100.00 100.00 –

DL ABP-0, ABP-1 or RBP-0 or RBP-1 100.00 100.00 –

DT ABP-0, ABP-1 95.37 94.55 4.63

RF ABP-0, ABP-1 91.67 90.91 8.33

SVM ABP-0, FD, RBP, WT-ApCo, WT-DeCo, DeEn 96.30 93.10 3.70

Using ‘‘or’’ among features means that the importance of these attributes are the same and can be used

instead of each other

Bold indicates models with high accuracy
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that if multiple features are used simultaneously, they can

increase or decrease the efficiency of the predictive model,

therefore the election of features with a Strengthening

effect for each other is very substantial. Tables 1, 2, 3 and 4

show specific and optimal patterns for the models. Of the

26 attributes, modified features based on band power

including ABP-0, ABP-1, RBP-0, and RBP-1, that were

first used in this study, were identified as the best features

that could describe ERP signals for ADHD discrimination

as well. Among these, ABP-0 was recognized as the most

key feature, so that by removing it, the efficiency of the

algorithms was greatly decreased and there was no

replacement for it, while ABP-1, RBP-0, and, RBP-1 had

the almost same value and could be used instead of

together.

Table 2 Algorithm performance

using the best optimum

combination of multiple

features for the Theta frequency

band dataset

Classifier Feature(s) used (pattern) Performance analysis (%)

Accuracy Precision Prediction error

NB Gender, First child, ABP-0 75.93 81.36 24.07

GLM ABP-0, WT-ApCo, RBP-0 or RBP-1 100.00 100.00 –

LR ABP-0, RBP-0 or RBP-1 100.00 100.00 –

DL ABP, ABP-0, ABP-1 or RBP-0 or RBP-1 98.15 100.00 1.85

DT Gender, First child, ABP, AR 78.70 94.55 21.30

RF Gender, First child, ABP, ABP-0, ABP-1, AR 77.78 90.91 22.22

SVM NPA, PPA, AR, R-ApEn, DeEn, ApEn, ApEn-1 72.22 93.10 27.78

Using ‘‘or’’ among features means that the importance of these attributes are the same and can be used

instead of each other

Bold indicates models with high accuracy

Table 3 Algorithm performance using the best optimum combination of multiple features for the Alpha frequency band dataset

Classifier Feature(s) used (pattern) Performance analysis (%)

Accuracy Precision Prediction error

NB Gender, First child, FD, AR, ApEn-1, ABP-0, ABP-1 75.93 75.00 24.07

GLM ABP-0, RBP-0 100.00 100.00 –

LR ABP-0, RBP-0 100.00 100.00 –

DL ABP-0, RBP-0 100.00 100.00 –

DT ABP, ABP-0, ABP-1 91.67 92.45 8.33

RF Gender, First child, ABP, ABP-0, RBP-1, RBP-0, WT-DeCo, AR, R-DeEn, R-ApEn 77.78 84.09 22.22

SVM ABP-0, ABP-1, AR, FD, R-DeEn 98.15 100.00 1.85

Bold indicates models with high accuracy

Table 4 Algorithm performance

using the best optimum

combination of multiple

features for the Beta frequency

band dataset

Classifier Feature(s) used (pattern) Performance analysis (%)

Accuracy Precision Prediction error

NB Gender, First child, PPA, ABP-0, AR, FD 78.70 81.36 21.30

GLM ABP-0, RBP-0 or RBP-1 100.00 100.00 –

LR ABP-0, RBP-0 or RBP-1 100.00 100.00 –

DL ABP-0, RBP-0 or RBP-1 100.00 100.00 –

DT ABP-0, ABP-1 97.22 96.36 2.78

RF ABP-0, ABP-1 95.37 92.98 4.63

SVM ABP-0, ABP-1 98.15 100.00 1.85

Using ‘‘or’’ among features means that the importance of these attributes are the same and can be used

instead of each other

Bold indicates models with high accuracy
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Comparison of the efficiency of models

It is important to conduct an evaluation that employs

multiple performance indices. Thus, the models were

evaluated using other indices including ROC and AUC

which are commonly used in machine learning. As

described above, to draw a ROC curve, a positive or neg-

ative confidence value for each specimen must be provided

by the classifier. If the model has the predictive ability, the

ROC curve is placed above the diagonal, and conversely, it

has no ability to predict. Figure 2 summarizes the ROCs

comparisons between the proposed models at different

frequencies. All the curves have fallen above the diagonal

that means they have all very sensitive. In medical diag-

noses, a high true-positive rate is more desirable than a

lower false-positive rate. Ideally, when the classifier’s

ability to predict is 100%, the ROC curve coincides with

the y-axis. Also, AUC is commonly used as a natural cri-

terion to describe the performance of the classifier based on

the ROC curve. According to Fig. 2, the AUCs values for

GLM, LR, DL in all frequencies, and, SVM in the Alpha

and Beta bands are equal to 1 and an AUC of 1 is equiv-

alent to perfect discrimination. After them, the maximum

of AUCs with a value of 0.99% and 0.98% were for RF in

the Delta and Beta bands, respectively. As well as SVM in

the Delta frequency and DT in the Beta frequency attained

AUC of 0.96 and NB also had no significant results com-

pared to others.

Discriminative frequencies

The results of this study showed that ERP spectral char-

acteristics can be used to identify ADHD children. Seven

machine learning models were applied to different fre-

quency bands. The results derived from their average

accuracy and classification errors showed that the high

frequencies (Beta) and low frequencies (Delta) perform

better than the mid frequencies for differentiation of

ADHD (Fig. 3). This is a general conclusion and com-

parison between different frequencies, but for the middle

bands, some models have very high efficiency. For the

Delta band, This corresponds with previous studies

(Öztoprak et al. 2017), but for other frequencies, especially

Beta, this is the first great result to be reported.

Fig. 2 ROC curves obtained from seven machine learning algorithms in four frequency bands when proposed features in Tables 1, 2, 3 and 4 are

used. Generalized Linear Model, Logistic Regression, and Deep Learning display a perfect discrimination in all four frequencies

1344 Cognitive Neurodynamics (2022) 16:1335–1349

123



Discussion

In this paper, a comprehensive study was conducted that

utilized multiple strategies such as Event-Related Potential

(ERP), Different levels of brain frequency, Complementary

features, and Various algorithms to reveal hidden potentials

of ADHD children’s brain waves and tried to build clas-

sifiers that can effectively detect candidates for ADHD in a

machine learning approach. This study can be particularly

interesting for various reasons. First, Analysis is based on

ERP data with both auditory and visual stimulation, which

makes the possibility to follow cognitive processes non-

invasively at the millisecond scale. second, opposite to

previous researches where one or two frequency bands

have been emphasized, In the current findings, it seems that

all four frequencies (Delta, Theta, Alpha, Beta) can sepa-

rately be used to distinguish brain waves in ADHD pre-

diction. Third, new features were defined, and through the

innovative method of selection and combination of fea-

tures, a specific pattern was identified for each model that

could increase the efficiency of the model. Finally, With

the strategies used, various machine learning algorithms

were compared in similar conditions, and the highest

accuracy was obtained for each model compared to pre-

vious studies.

The focus of this study was on ERP data because the

event-related data are more sensitive and provide better

performance than spontaneous EEG data recorded while

the participants are at a resting state. Various studies have

shown that patients with ADHD display brain alterations

using ERP attributes (Müller et al. 2019; Lenartowicz and

Loo 2014; Öztoprak et al. 2017; Li et al. 2018b; Kaur et al.

2020). However, the pre-processing method may also

improve the performance of EEG data. For example, sim-

ilar studies using the EEG spectrum with successful clas-

sification ([ 94%) (Pereda et al. 2018; Dea et al. 2019),

suggest that different strategies to reduce its dimensionality

may affect its classification ability. Therefore, it is

important to adopt a data-based approach. Various machine

learning techniques were introduced based on the ERP

component. Evidence shows that the activity of brain

waves can be increased during voluntary behaviour (Karch

et al. 2016) and ERP signal is a better criterion for sepa-

rating these distinctions (Sabeti and Boostani 2020). Vahid

et al. (Vahid et al. 2019), used an ERP signal in the range

between 0.5 and 20 Hz for DL classification and obtained

an accuracy of 83%. In another recent study, Muller et al.

(2019), applied an LR and SVM method on event-related

data in the domain of 0.5–50 HZ and achieved an accuracy

of around 85%. It is well-known that ERP data cannot

alone provide sufficient information for discriminating

between ADHD and healthy cases. ERPs were decomposed

into four frequency bands (\ 4 HZ, 4-8HZ, 8-12HZ,

13-30HZ). The finding indicated that features extracted

from Separate frequencies are better able to reveal differ-

ences in ADHD brain changes. Several studies confirm this

(Markovska-Simoska and Pop-Jordanova 2017; Öztoprak

et al. 2017; Kiiski et al. 2019; Jouzizadeh et al. 2020;

Shephard et al. 2018). In this context, similar studies sug-

gested that certain frequencies were major in ADHD

classification. Markovska et al. (Markovska-Simoska and

Pop-Jordanova 2017), found that the EEG patterns are

following brain Maturational processes, and Delta and

Theta bands have discriminator features in ADHD chil-

dren. A classification analysis showed that Alpha modu-

lation has a high capability to recognize ADHD in children

(Guo et al. 2019). Few studies have been performed based

on ERP. Ghassemi et al. (Ghassemi et al. 2010), applied a

KNN classifier on several frequency features that were

extracted from different independent ERP components.

They obtained high accuracy (92%) in the Gama band. To

identify discrimination frequencies in ADHD approaches,

seven machine learning algorithms were applied to the

Delta, Theta, Alpha, and, Beta bands. In contrast to pre-

vious studies, the result showed that there is no significant

difference between frequencies in the average (Fig. 2).

However, slow and high frequencies were a little better in

comparison to middle frequencies.

The next factor that makes this work more prominent

than previous studies is the definition of new features,

finding complementary features, and combining them to

create specific patterns for each algorithm to building the

best discrimination system. To understand the importance

of each feature, initially, only one feature was used for the

classifiers. For example, to classify the Alpha frequency

dataset by DL model, Initially, the classification was per-

formed only with Gender as a discriminate feature and the

second time, the classification was performed with First-

Child, the third time, the classification was performed with

NPA, and so it went on. Therefore, 26 separate classifica-

tions were performed for DL in the Alpha band and this

Fig. 3 Pediction mean accuracy and Prediction mean error for

frequency bands
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was repeated for the other algorithms at each frequency. In

this way, the classification accuracy for each feature was

obtained in all models (Fig. 1). The highest accuracies

were between 70 and 75%. To increase efficiency, the

features with an accuracy above 50 were selected and all

used together for classifiers. For example, in the Alpha

band for DL (first column on the left in Fig. 1), Gender,

First-Child, AR, ABP, ABP.1, RBP.0, RBP.1, WT.ApCo,

WT.DeCo were selected and again the classification was

performed with all of these. It was observed that the effi-

ciency of the models did not increase significantly when

several features were used. It seems that increasing com-

plexity causes overfitting and also reduces the generaliz-

ability of the model. To resolve this issue, the combination

of the features was changed, by removing and replacing

them. In the example above, first, Gender was removed and

classification was performed with the remaining 8 features.

Next time First-Child was removed and gender was added

to the combination again. The third time, both were

removed from the classification and the efficiency of the

model was measured. This was repeated until the highest

accuracy was achieved, and finally ABP-0, RBP-0 were

obtained as the best discriminatory combination for the DL

model at the Alpha frequency (Table 3). This method was

repeated to achieve the discriminatory and specific com-

bination of features for each model at each frequency.

These results proved that some of the features, when used

together, can increase the performances of models much

more than when they are used alone, in other words, they

have synergistic effects. conversely, some of them, when

combined, reduce the efficiency of the model probably due

to the increased complexity and inconsistency. Thus,

finding complementary features can be forward progress

for most machine learning-based methods. The features

listed in Tables 1, 2, 3 and 4 were obtained after repeating

the classification several times and are introduced as the

best combination for each model at different frequencies.

Also, the new features that were defined based on band

power, including Absolute Band Power-0 (ABP-0), Abso-

lute Band Powe-1 (ABP-1), Relative Band Power-0 (RBP-

0), and, Relative Band Power-1 (RBP-1) were identified as

the most effective features. These can complement each

other’s effects and increase the efficiency of the models to

the maximum. ABP-1, RBP-0, and RBP-1 were almost of

equal value and could sometimes be used instead of each

other, but ABP-0 was much more valuable than the others

as if by removing it, the accuracy of the models were

remarkably reduced and it could not be replaced by any

other feature. The importance of power-based features has

been confirmed by previous studies (Kamida et al. 2016;

Markovska-Simoska and Pop-Jordanova 2017; Tenev et al.

2014; Khoshnoud et al. 2018). However, their performance

was significantly improved due to the changes made in this

analysis.

In addition to the strategies mentioned above that were

used to improve the performance of the models, finding the

appropriate algorithm for the data type is the most impor-

tant factor in the success of artificial intelligence-related

tasks. Here we compare seven machine learning models

under similar conditions to find out which algorithm is

more efficient in distinguishing the decomposed ERP data

of healthy and ADHD children. The highest accuracies in

this study are related to GLM and LR in all frequencies

(100%), DL in the Delta, Beta, and, Alpha bands (100%),

DL in the Theta band (98.15%), SVM in the Alpha and

Beta bands (98.15%) and DT in the Beta band (97.22%).

Accuracy alone may not be a sufficient criterion for vali-

dation of the model, so AUC was calculated for all models

based on sensitivity and specificity. The requirements for

an ideal ADHD marker, as defined by Thome et al. (2012),

are diagnostic sensitivity and specificity values[ 80%.

Thus, the majority of classifiers used are evaluated in

optimal to excellent state. In addition, a tenfold cross-

validation technique was used to evaluate all models. The

LR model is practically a type of GLM which is often used

in ADHD machine learning studies. In a cross-sectional

analysis, Liechti et al. (Liechti et al. 2013), applied the LR

model on the Theta/Beta ratio feature based on EEG, but

found only 53% accuracy in ADHD prediction. Recent

studies have shown that this feature has not been able to

successfully classify ADHD and healthy subjects (Dijk

et al. 2020; Kiiski et al. 2020). Recently, Muller et al.

(2019), compared two sets of features included peak

amplitudes and latencies of independent ERP components,

and decomposed ERP using LR. The AUC obtained was

84% and 85% respectively. These results show that

although decomposed ERP signal improved performance,

it seems that appropriate features have not been used. Our

analysis proved that regression-based models can be

introduced as the most powerful algorithms in ADHD

patients’ diagnosis if the appropriate feature set is used.

Recently, several DL approaches in ADHD detection

have been considered. Dubreuil et al. (2020), trained a

Convolutional Neural Network (CNN) with a four-layer

architecture in combination with a filtering and pooling

model using decomposed multi-channel EEG/ERP time–

frequency, Independent of manual feature selection, and

reported that the event-related spectrograms provide

greater accuracy (88%) compared to resting state (66%). In

another study, Mohammadi et al. (2016) used Multi-layer

perceptron (MLP) to classify EEG signals of 30 healthy

and 30 ADHD children using linear features. The use of

manual features increased the classification accuracy to

93.64%. In another similar study, Chen et al. (2019b), used

three different models include MLP, SVM, and, CNN to
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classify ADHD and compared their performance. CNN

with 94.67% accuracy was better than MLP and SVM

models. Although the implementation of various methods

can improve the performance of an algorithm, due to the

nature of DL, which is basically compatible with big data,

these results are generally obtained from small-size data

that can not be dependable for diagnostic tasks. In this

study, to moderate the size of the dataset, qualified features

that are extracted directly from the ERP were used to train

the artificial neural network and the number of hidden

layers was increased to 50 layers which Improved the

complexity and efficiency of the model. Compared with

previous DL models, the method used here so far has the

best classification result for DL in separate frequencies

(accuracy 100% in Delta, Beta, Alpha bands and, accuracy

98.15% in Theta band) which can be suggested for vali-

dation with bigger data. The SVM is also a classifier that

has been used more for ADHD research. In a study based

on ERP data, Oztopark et al. (2017), used a Time–Fre-

quency Hermite-Atomizer (TFHA) technique for the

extraction of high-resolution time–frequency domain fea-

tures and SVM-Recursive Feature Elimination to classify

ADHD and healthy groups. They obtained high accuracy

(100%) and introduced the Delta band as the most con-

tributing frequency band. In this study, SVM only gained

better accuracy (98.15) in the alpha and beta bands. The

difference between these results and the findings of this

article is due to several factors such as optimizing the

algorithm, feature type, and, feature extraction techniques

and also confirms this hypothesis that classification per-

formance in each frequency can be improved by optimizing

this technique. NB, RF, and, DT were less commonly used

to classify brain signals. The highest accuracies for NB and

RF were 87% and 83% respectively that were obtained by

Altinkaynak et al. (2020). In this paper, NB had the lowest

performance compared to other models, and its perfor-

mance did not improve with the method of this article. It

does not seem to be a good model for the classification of

the EEG/ERP data. However, DT was first used in this

study and it was better on average than RF. These results

suggest that in addition to the fact that some algorithms are

inherently better at classifying brain signals, the use of

different strategies can reduce or improve their

performance.

This study has several limitations. First, the dataset used

was small. It is better to use more data for supervised

learning, especially for deep learning that is inherently

compatible with big data. Second, age range between 4 to

15 was evaluated, but, to define a standard protocol, it is

necessary to age segregation for children, adolescents, and,

adults because, with age, the symptoms of ADHD and

brain characteristics also change. Third, the subtypes of

ADHD including ADHD-I, ADHD-H, and ADHD-C were

not analyzed in this study. Finally, this study was per-

formed on healthy and ADHD subjects, while a computa-

tional expert system for ADHD diagnosis should be able to

distinguish ADHD from other mental disorders. This

requires further investigation with big data.

Conclusion

In this study, seven machine learning algorithms were

examined to achieve the best autonomic model for the

diagnosis of ADHD. The findings suggested that multiple

factors are involved in determining a successful guideline

for classifying the brain signals of ADHD patients and

healthy subjects. The high performances of classifiers in

the present study are due to the calculated discriminative

features, feature selection method, and, certainly, identifi-

cation of complementary features and combination of

them. The developed machine learning pipeline can be

used for other diseases with brain signal recordings and the

information obtained in this study can be very helpful for

developing an expert diagnostic system. Overall, our

results provide new insight about accurate machine learn-

ing that can minimize misdiagnosis also be used to evaluate

the effectiveness of treatment.
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