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ABSTRACT
Rapid advances in immunotherapy have identified adoptive 
cell transfer as one of the most promising approaches 
for the treatment of cancers. Large numbers of cancer 
reactive T lymphocytes can be generated ex vivo from 
patient blood by genetic modification to express chimeric 
antigen receptors (CAR) specific for tumor-associated 
antigens. CAR T cells can respond strongly against cancer 
cells, and adoptive transferred CAR T cells can induce 
dramatic responses against certain types of cancers. The 
ability of T cells to respond against disease depends on 
their ability to localize to sites, persist and exert functions, 
often in an immunosuppressive microenvironment, 
and these abilities are reflected in their phenotypes. 
There is currently intense interest in generating CAR T 
cells possessing the ideal phenotypes to confer optimal 
antitumor activity. In this article, we review T cell 
phenotypes for trafficking, persistence and function, and 
discuss how culture conditions and genetic makeups 
can be manipulated to achieve the ideal phenotypes for 
antitumor activities.

INTRODUCTION
Chimeric antigen receptor (CAR) T cell adop-
tive transfer has shown great promise and is 
currently approved by multiple countries in 
treating some hematological malignancies.1 
In this therapy, T cells from patients with 
cancer are genetically modified to express 
CARs specific for cancer antigens. CARs are 
synthetic receptors that usually comprise an 
extracellular domain specific for a tumor 
antigen, a cytoplasmic domain containing 
activation and costimulatory molecules (such 
as CD3e, CD28, and 4-1BB), and a hinge 
region that links the two domains. However, 
applying CAR T cell therapies to solid tumors 
has been hampered by additional challenges 
including limited infiltration and persistence 
of CAR T cells in the tumors, and a hostile 
immunosuppressive tumor microenviron-
ment (TME).2–4

Gene expression profiles and cell pheno-
types determine if T cells can successfully 
traffic, persist and function in the tumor. 
Here, we discuss the progressive change in 

phenotypes of T cells during the course of a 
natural T cell response as well as investigate 
studies that have attempted to emulate these 
phenotypes in CAR T cells, providing a ratio-
nale for the optimum CAR T cell phenotypes 
to achieve enhanced efficacy. We propose 
three central characteristics to be consid-
ered when designing cellular therapies: the 
ability to self-renew and persist, the ability 
to traffic to and penetrate disease sites, and 
the ability to function while resisting exhaus-
tion induced by an immunosuppressive TME. 
These three characteristics can be revealed 
as phenotypes that specify markers for T cell 
differentiation, trafficking and exhaustion 
respectively. Herein, we discuss the relevance 
of these phenotypes in providing a rationale 
for the optimum design of CAR T cell therapy 
for cancers with a focus on solid tumors.

SELF-RENEWAL AND PERSISTENCE: T CELL 
DIFFERENTIATION PHENOTYPES
Naïve, memory and effector T cells
A resting naïve T cell (TN) that circulates and 
traffics through the lymphoid tissues remains 
uncommitted to its effector and memory 
fates until receiving signals from antigen-
presenting cells (APCs) alongside signaling 
downstream of their cytokine receptors. In 
response to the specific cytokine stimulation, 
the activated T cells will differentiate into a 
variety of phenotypes that together enable 
an effective immune response and establish-
ment of immunological memory.5 6

The conventional model of T cell differen-
tiation proposes that TN cells can differentiate 
into effector T cells (TEFF), specialized killer 
cells that produce cytotoxic molecules and 
effector cytokines. Most of the TEFF cells die 
during an immune response, but some of 
them survive and differentiate into memory T 
cells that are capable of mounting a memory 
response to a subsequent encounter of their 
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TCR-specific antigens. Although this conventional model 
has been widely accepted and predicts that TEFF cells can 
give rise to memory T cells, it has also been debated that 
TEFF cells are terminally differentiated and do not give rise 
to memory cells. Instead, it was proposed that a propor-
tion of memory cells are differentiated from the activated 
TN cells that never experience a full-strength effector 
state.7 In fact, a number of T cell differentiation models 
have been proposed.7–9 In this review, we have adopted 
the nomenclatures that are widely used in the field of 
adoptive T cell transfer (ACT) in figure 1.

The TEFF phenotype was originally considered ideal 
for ACT therapies due to their potent killing capacity. 
However, TEFF cells have a poor ability to expand and 
persist in vivo. Transcriptome analysis has identified 
that a less differentiated T cell signature is associated 
with superior anti-cancer activity. Fraietta et al10 studied 
41 chronic lymphocytic leukemia patients treated with 
CD19-CAR, and found that a good response was associ-
ated with CD27+CD45RO-CD8+ cell population at the 
time of leukapheresis. This phenotype is consistent with a 
resting antigen-experienced cell with long-lived memory 
characteristics.11 This study links clinical responses to T 
cell differentiation status. Consequently, the CAR T cell 

field is moving towards designing protocols to retain less 
differentiated T cells.

Initially, efforts were focused on generating T cell prod-
ucts with TCM (CD62L+CCR7+) and TEM (CD62L-CCR7-) 
cell phenotypes. Naturally occurring TCM cells express the 
lymph node homing molecules CD62L and CCR7 and 
are considered to have enhanced replicative capacity but 
limited effector functions. TEM cells are more cytolytic 
and express chemokine receptors and adhesion mole-
cules necessary for trafficking to peripheral tissues, rather 
than lymph nodes. TEM cells will terminally differentiate 
after a limited number of divisions, although some can 
convert to TCM.12 Klebanoff et al13 demonstrated that T 
cells generated in vitro with a CD62L+CCR7+ phenotype 
(TCM-like) have a lower expression of genes associated 
with effector functions than the CD62L-CCR7- cells (TEM-
like), predicting a less differentiated status. Importantly, 
the TCM-like cells had a preference to traffic to secondary 
lymphoid tissues, which resulted in enhanced clearance 
of tumors in the mice.13 These findings exemplified the 
benefit of a low differentiation T cell status on ACT effi-
cacy. Clinical protocols have been established for gener-
ating CAR T cell products with enriched memory-like T 
cells. For example, an early study transduced the enriched 

Figure 1  Phenotype definition and characteristics of T cell differentiation states. A widely accepted model of T cell 
differentiation in adoptive T cell transfer field dictates that T cells progress along a linear trajectory of development, with each 
differentiation phase displaying a unique phenotype with altered functionality and properties. This model proposes while some 
primed naïve T cell (TN) cells will differentiate into effector T cells (TEFF), some primed TN cells will differentiate into memory 
T cells, including stem memory T cells (TSCM), a subtype categorized by their ability to self-renew, while also possessing 
multipotent differentiation capacity, central memory T cells (TCM, long-lived), effector memory T cells (TEM), and tissue residential 
memory T cells (TRM). These memory T cells can both self-renew, and give rise to a pool of TEFF. Bcl 2, B-cell lymphoma 2; 
IL7Rα, interleukin receptors.
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CD8+CD45RA-CD62L+ TCM cells from human peripheral 
blood mononuclear cells using lentiviral vectors encoding 
a CD19-CAR.14 These TCM-CAR T cells retained their TCM-
like phenotype (CD62L+, CD28+) after expansion and 
demonstrated CD19-CAR mediated antitumor effect in 
vitro. Importantly, when adoptively transferred to NSG 
mice, these TCM-like CAR T cells were capable of human 
interleukin (IL)-15-dependent homeostatic engraftment. 
Subsequently, the safety and feasibility using these TCM-
like CAR T cells were demonstrated in a phase I trials.15 
Throughout this review, we refer to in vitro generated T 
cells with memory phenotypes as T memory-like cells.

Stem-like memory T cells
Recently, the stem-like memory T cells (TSCM)-like cells 
are considered a preferred phenotype for CAR T cell 
products because of their self-renewal capacity, ability to 
generate other T cell subsets and their increased ability to 
engraft.16 17 TSCM cells are a T memory cell subtype catego-
rized by their ability to self-renew while possessing multi-
potent differentiation capacity. TSCM cells can give rise to 
long-lived TCM, TEM, and a pool of short-lived TEFF. TSCM 
cells have stem-like properties and are phenotypically 
similar to TN cells. Both subsets express CD45RA, CD62L, 
CCR7, CD27 and CD28, but diverge in their expression 
of CD122 and CD95, markers which demarcate antigen-
experienced memory subsets (figure 1).16

The investigation of TSCM cells has been difficult, due to 
the paucity of the TSCM cells in the body, with only 2%–3% 
of circulating T cells in humans having the TSCM cell 
phenotype. TSCM cells were first described in mice, where a 
T cell subset with the naïve phenotype of CD44loCD62Lhi 
also expressed memory markers such as CD122, B-cell 
lymphoma 2 (Bcl-2), as well as stem cell antigen-1 (Sca-
1).18 Sca-1 does not have a human ortholog, but Gatti-
noni et al16 described the generation of human TSCM-like 
cells by inducing Wnt signaling in T cells in vitro. Inhi-
bition of this pathway with TWS119, a Wnt pathway acti-
vator, promoted the expression of TCF1 and LEF1, which 
have been determined to promote T cell persistence 
and self-renewal capacity.19 The resulting TSCM-like cells 
retained a CD45RO-CD62L+ naïve-like phenotype but 
expressed high levels of memory markers including CD95 
and CD122. In addition, these TSCM-like cells expressed 
all the core phenotype markers including CD122, Bcl-2 
and CXCR3,20 similar to the murine TSCM cells described 
previously.18

Direct evidence that a TSCM-like phenotype is desirable 
for CAR T cell products comes from a clinical trial where 
CD19-CAR T cells were adoptively transferred to patients 
with B-cell malignancies. In this study, the CD19-CAR T 
cell in vivo expansion correlated with the frequency of a 
TSCM-like phenotype within the infused product.21 In addi-
tion to the superior proliferative capacity,16 the tropism 
of TSCM-like cells may also contribute to their enhanced 
engraftment. It was demonstrated that naturally occur-
ring TSCM cells in non-human primates have tropism for 
lymphoid organs, where they receive survival signals.22 

Although further studies are needed to confirm the 
tropism of the TSCM-like cells in ACT settings, their pheno-
type including the expression of CD62L and CCR7, indi-
cates that TSCM-like cells may have a preference to traffic 
to lymphoid tissues. The resistance to apoptosis may 
also contribute to better engraftment. High expression 
of anti-apoptotic markers, such as BCL-2, is a common 
feature of TSCM-like cells.16 In fact, adoptively transferred 
TSCM-like cells were observed to persist while maintaining 
precursor potential in the patients of severe combined 
immunodeficiency disease for up to 12 years.23

To date, a number of strategies have been developed to 
generate TSCM-like CAR T cells for adoptive transfer. Early 
investigation demonstrated that Wnt signaling promotes 
the generation of TSCM-like cells in vitro.20 Subsequently, 
a clinical-grade platform using TWS119 was established 
to produce CD19-CAR TSCM.24 These CD19-CAR TSCM 
cells exhibited enhanced metabolic fitness compared 
with CAR T cells cultured using a protocol without Wnt 
signaling induction. Controversially, a number of studies 
have demonstrated that β-catenin accumulation in T cells, 
an effect induced by TWS119, leads to reduced T cell 
expansion and impaired T cell effector function, which 
could potentially damage T cell-mediated immunity.25 26

Subsequently, IL-7 and IL-15 were successfully used to 
generate TSCM-like cells from TN cells and demonstrated 
more efficiency in expanding and sustaining TSCM-like 
cells than TWS119.17 IL-7 was shown to be critical for 
the TSCM-like cells to preserve a CD45RA+CD62L+ pheno-
type, while IL-15 or IL-2 supported cell expansion, with 
IL-15 providing superior TSCM phenotype preserva-
tion compared with IL-2(17). In a separate study, it was 
demonstrated that the frequency of the CD45RA+CCR7+ 
TSCM cell-like phenotype generated using γ-cytokines in 
the CAR T cell product correlated with expansion and 
persistence of CD19-CAR T cells in patients.21 Currently, 
the efficacy of IL-7 and IL-15 generated CD19 CAR T cells 
is being evaluated in a clinical trial (NCT02652910).

Interestingly, CAR T cells expanded in IL-15 alone 
also had a TSCM-like phenotype. These TSCM-like cells had 
reduced exhaustion markers, higher antiapoptotic prop-
erties and increased proliferative capacity compared with 
the cells cultured with IL-2. In addition, these TSCM-like 
cells had decreased mammalian target of rapamycin 
complex 1 (mTORC1) activity, and improved mitochon-
drial fitness. The addition of the mTORC1 inhibitor rapa-
mycin to the CAR T cell culture with IL-2 in the absence 
of IL-15 exhibited a similar TSCM phenotype, suggesting 
that decreasing mTORC1 activity could preserve the 
TSCM-like phenotype.27 Other γ-cytokines, such as IL-21, 
have also been tested in culture to generate ‘fit’ TSCM-like 
cells. Clinical procedures using CD8+CD62L+CD45RA+ 
enriched naïve cells cultured in the presence of IL-7, 
IL-21 and TWS119 demonstrated that TWS119 has a 
synergistic effect with IL-21 to enhance TSCM genera-
tion, through stabilization of β-catenin and induction of 
maximal expression of TCF1 and LEF1. These TSCM-like 
CAR T cells demonstrated enhanced metabolic fitness 
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compared with the current standard CAR T cells, and 
mediated robust, long-lasting antitumor activity in NSG 
mice.24 A clinical trial (NCT01087294) has commenced 
to test these TSCM-CAR T cell products.

Tissue resident T memory cells
After the resolution of an immune response, T cells that 
entered into an inflamed tissue can be retained in the 
tissue where they become resident T memory cells (TRM) 
cells. The function of TRM cells is to provide regional 
surveillance for reinfection, therefore TRM cells do not 
recirculate in the blood like other T cells. Phenotypically, 
human and murine TRM cells express similar markers 
which are essential for their tissue retention. These 
include the constitutive expression of CD69 and CD49a, 
which bind to extracellular matrix components (figure 1). 
TRM cells also lack the expression of CD62L and CCR7 
that normally enable entry into lymphoid tissue.

TRM cells have been identified in almost all organs, and 
their expression profiles vary in different tissues, enabling 
their tissue-specific retention.28 In the case of TRM cells 
in epithelial tissues, integrin CD103 binds to E-cadherin 
and promotes TRM adhesion to epithelial cells. In human 
tumors of epithelial origin, including the tumors of 
breast, lung, ovary and bladder, patients with the greatest 
portion of CD103+CD8+ TRM-phenotype cells in their 
tumors have the best survival.28 This phenomenon could 
be explained by an enhanced cytotoxic effect of the TRM 
cells than the CD103- T cells.29

In addition to their direct cytotoxic activity, TRM cells 
can produce large amounts of cytokines that can activate 
and attract other anti-tumor immune cells. The presence 
of TRM is associated with a higher density of T cell infil-
tration in lung and breast tumors.30 31 TRM cells have also 
been demonstrated to promote tumor antigen spreading 
by activating cross-presenting dendritic cells (DCs) to 
prime and expand new cytotoxic T cells with different 
tumor-antigen specificities. This resulted in broader 
protection against cancers, especially from cancer cells 
lacking TRM targeted antigens.32 Recently, TRM cells were 
proposed to be a mediator in checkpoint blockade thera-
pies. Analysis of several tumor types have shown TRM cells 
expressing high levels of programmed cell death protein 
1(PD1), exhibiting rapid expansion,33 cytotoxic effects34 
and expression of cytotoxicity genes following anti-PD1 
treatment.35

Due to their quick and robust immune responses at the 
tumor site, promoting ACT cell differentiation into TRM 
cells in vivo may be important for the long-term control 
of the disease. Recruitment of activated T cells into tissues 
depends on the cytokine/chemokine receptors and adhe-
sion molecules expressed by T cells. Therefore, ACT 
products must express or obtain these factors in order to 
effectively traffic to tumors and establish residency. Addi-
tionally, strategies for reprograming the TME for optimal 
TRM generation is desired. To achieve this, a study used 
intratumoral delivery of the β-glucan curdlan, whose 
receptor dectin-1 is expressed by DCs and macrophages. 

The β-glucan curdlan reprogramed tumor infiltrating 
DCs and induced CD8+ T cells to differentiate into TRM 
cells which resulted in inhibited cancer progression in 
a humanized murine breast cancer model.36 Localized 
radiotherapy that has been widely used to reprogram 
TME37 could also be considered to enhance TRM gener-
ation. A recent study demonstrated that post irradiation, 
tumor infiltrating T cells were reprogrammed to express 
a similar transcriptome to that of TRM cells, which are 
also radioresistant. These reprogrammed T cells retained 
their motility, ability to produce interferon (IFN)-γ and 
mediated antitumor responses.38 Despite the potential 
benefit of an ACT product with a TRM-like phenotype, 
little has been reported on generating such cells in vitro.

MIGRATION AND PENETRTION INTO TUMORS: T CELL 
TRAFFICKING MOLECULES
T cell infiltration from the blood into the tumor is a multi-
step process. Activated T cells gain expression of tissue 
homing molecules, which include adhesion molecules 
and chemokine receptors.39 The first step in T cell infil-
tration requires the slowing of T cell movement by the 
interaction of selectin ligands on T cells to the selectin 
molecules on endothelial cells. T cells then ‘roll’ slowly 
along the blood vessel surface, which provides an oppor-
tunity to encounter chemokines produced by the tissue. 
Chemokine receptors on T cells bind to the chemokines, 
thereby initiating the activation of T cell-expressed inte-
grins, such as lymphocyte function-associated antigen-1 
(LFA-1) and very late antigen-4 (VLA-4). The binding 
of the activated integrins to their cognate ligands on 
the vessel surface mediates firm arrest of T cells. This is 
followed by transmigration through endothelial cell junc-
tions of the blood vessels into tissues along a gradient 
of chemokines. Inefficient trafficking and infiltration of 
T cells into the tumor have been identified as a major 
hurdle for using CAR T cells in treating solid tumors.39 
We show in figure 2 that three families of molecules are 
essential for T cell trafficking and can be exploited in the 
design of CAR T cells for improved trafficking.

Selectins and selectin ligands
Selectins are a family of calcium-dependent adhesion 
molecules and two members have been identified on 
endothelium. P-selectin (CD62P) is expressed by acti-
vated blood vessels and mediates weak interaction 
and rolling of T cells along the vascular endothelium. 
Decreased vascular P-selectin expression has been asso-
ciated with cancer progression in melanoma40 and 
colorectal cancer.41 It has been demonstrated that in 
malignant primary tumors and in metastatic lesions of 
melanoma or colorectal cancers, P-selectin expression 
was nearly absent and hardly any leukocytes infiltration 
was detected.40 41 P-selectin cannot be induced by inflam-
matory mediators (tumor necrosis factor (TNF)-α, IL-1β, 
and lipopolysaccharide (LPS)) in humans.42
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E-selectin (CD62E) is not constitutively expressed by 
all endothelial cells but can be induced by TNF-α, IL-1β, 
and LPS. E-selectin binding allows intimate contacts 
between the inflamed endothelium and T cells, slowing 
T cell rolling to much lower velocities than that of P-se-
lectin, favoring subsequent T cell arrest.43

A major ligand for both P- and E-selectins on T cells is 
P-selectin glycoprotein ligand-1 (PSGL-1), whose binding 
to selectins requires appropriate glycosylation. Glycosyl-
transferases add carbohydrate moieties to PSGL-1 that 
form the sialylated fucosylated O-linked glycan, sialyl 
Lewis x (sLeX). Although PSGL-1 is expressed by most T 
cells, TN lack the proper terminal glycosylation therefore 
cannot bind selectins.44 Other selectin ligands on T cells 
have also been identified, including TIM1,45 CD44 and 
CD43.46 Blocking T cell binding to P/E selectin with a 
monoclonal antibody exhibited poor T cell infiltration 
into tumors.47

Strategies enhancing expression of selectins and selectin 
ligands could be exploited for increasing engineered T 
cell trafficking to tumors. Because E-selectin expression 
can be induced by de novo synthesis on endothelial cells 
in response to inflammatory stimuli,48 methods which 
temporarily enhance inflammation specifically in the 
TME could be used prior to adoptive transfer. In fact, 
intratumor injection of toll-like receptor (TLR) agonists 
enhanced adoptively transferred T cell infiltration into 
tumors and lead to significant tumor regression in murine 

cancer models.49 Other strategies such as using onco-
lytic virus coding cytokines, and local radiotherapy that 
enhances local E-selectin expression can also be explored. 
Oncolytic virus encoding TNF-α and IL-2 has been shown 
to possess potent antitumor activity in immunocompetent 
Syrian hamsters.50 A clinical trial is currently in progress 
to study the use of this oncolytic virus in treating advanced 
melanoma (NCT04217473). Irradiation was found to 
induce the expression of E-selectin and ICAM on human 
endothelial cells. The induced E-selectin expression and 
increased adhesion of leukocytes was observed on the 
irradiated endothelial cells.51 Localized irradiation of 
tumors combined with ACT has demonstrated promise in 
murine tumor models, with increased T cell infiltration to 
the tumors that lead to tumor regression.52

Glycosyltransferases could be exploited to enhance the 
expression of selectin-binding glycoforms of PSGL-1 and 
CD44 on CAR T cells. In humans, there are four glycosyl-
transferase isoenzymes specialized to create sLeX: FT3, 5, 6 
and 7.53 Mondal et al54 showed that CAR T cells expanded 
in standard culture conditions of CD3/CD28/IL2 had 
decreased expression of the sLex moiety and reduced 
ability to bind E-selectin compared with the T cells 
without stimulation. The activated CAR T cells uniformly 
expressed high levels of Type 2 sialyllactosamines, the 
precursor of sLeX, that can be converted to sLeX via cell 
surface fucosylation. After being surface fucosylated by 
the addition of purified FT6 enzyme, all the CAR T cells 

Figure 2  T cell homing events into tumor tissue. T cell infiltration into the tumor from the blood is a multistep process 
involving a variety of molecules such as (1) selectins and their ligands, (2) chemokines and their receptors, and (3) integrins and 
their ligands. Strategies manipulating these three family of molecules essential for T cell trafficking for enhanced CAR T cell 
infiltration into tumors are discussed in the main text. The first step in T cell infiltration requires the initiation of T cell rolling, or 
slowing of T cell movement, in the blood stream. This is facilitated by the interaction of selectin molecules on the blood vessel 
with their target ligands on the T cell. Next, chemokine receptors on the T cell bind to their cognate chemokines, produced by 
tissues or endothelium, thereby initiating the activation of integrins on the T cell. Integrins, when bound to their cognate ligands 
on the vessel surface, mediate firm arrest of T cell movement. Finally, the T cell is able to migrate through the cell junctions of 
the blood vessels into tissues, along a gradient of chemokines. CAR, chimeric antigen receptors; LFA-1, lymphocyte function-
associated antigen-1; VLA-4, very late antigen-4.
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displayed elevated levels of sLeX. As a result, CAR T cells 
had strikingly higher rolling and adhesion on E-selectin+ 
cells and 10-fold enhanced infiltration into bone marrow, 
where E-selectin is constitutively expressed.54

It will be interesting to investigate if other glycosyl-
transferases can also be used to enhance sLeX expression 
on CAR T cells. Cytokines such as IL-4, IL-12 and G-CSF 
have been reported to increase the expression levels of 
glycosyltransferases in T cells55 and CAR T cells secreting 
IL-12 have been reported to eradicate cancers.56 Various 
mechanisms have been linked to the enhanced efficacy, 
and it remains a question whether sLeX expression was 
increased on the IL-12-CAR T cells.

Chemokines and chemokine receptors
While a number of chemokines have been reported to 
be important for the migration of T cells into tumors, 
CXCR3 is one of the most important receptors in this 
process. CXCR3 has been found to be expressed on 
tumor infiltrating lymphocytes (TILs) isolated from 
human melanoma, colorectal and breast cancers, and 
a number of murine tumor models have shown the 
importance of CXCR3 in T cell trafficking into tumors.39 
In brief, CXCR3-dependent T cell recruitment into 
tumors has been proposed to operate on a positive feed-
back loop. CXCL9 and CXCL10, ligands for CXCR3, 
are produced by immune cells, endothelial cells and 
cancer cells in response to IFN-γ.57 T cells that have been 
recruited into inflamed tissue can locally produce IFN-γ, 
increasing the expression of CXCR3-ligand chemokines 
which can recruit additional CXCR3+ T cells—strength-
ening the CXCR3-T cell infiltration loop.58 CAR T cell 
therapies could benefit from treatments enhancing 
CXCR3 ligands in the TME. For example, reagents such 
as 5-aza-2’deoxycytidine that enhance the expression 
of CXCL9 and CXCL10 in the TME59 could be used to 
enhance CAR T cell infiltration to the TME. Similarly, 
reagents enhancing CXCR3 expression on CAR T cells 
should also be considered. Newick et al60 has shown that 
genetic inhibition of protein kinase A activity in CAR T 
cells increased their CXCR3 expression and improved 
CAR T cell trafficking to CXCL10 resulting in enhanced 
tumor control in tumor-bearing mice.60

There is often a mismatch of the chemokine receptors 
expressed by tumor reactive T cells and the chemok-
ines in the tumor. Ensuring the homing phenotypes of 
the CAR T cells match the chemokines in the tumor can 
greatly enhance CAR T cell infiltration into the tumor. 
One approach is to transduce chemokine receptors into 
CAR T cells. This approach has been validated in solid 
tumor xenograft models. CAR T cells that were trans-
duced to express CCR2b had improved infiltration into 
tumors in models of CCL2+ neuroblastoma and malig-
nant pleural mesothelioma, resulting in increased treat-
ment efficacy.61 62 Enforcing expression of IL-8 receptors 
CXCR1/2 on CAR T cells, to target IL-8 secreting tumors, 
increased CAR T cell tumor infiltration and enhanced 
tumor control in a murine model of glioblastoma.63

Recently, CAR T cells have been developed to produce 
CCL19 to recruit additional T cells and APCs to tumor 
tissues, and IL-7 to enhance the proliferation of survival 
of T cells. It has been demonstrated that enhanced inter-
action of APCs with CAR T cells in vivo is beneficial for 
the anti-tumor effect of CAR T cells.64–67 Tumors from 
IL-7/CCL19-CAR T cell treated mice showed signifi-
cantly enhanced infiltration of T cells and APCs, and 
colocalisation of CAR T cells and APCs were significantly 
increased in the tumors. The treatment induced eradi-
cation of all the established tumors in murine models 
of mastocytoma and Lewis lung carcinoma. CAR T cells 
in long-term surviving mice developed a CD44+CD62L+ 
central memory phenotype.68 Thus, this study elegantly 
combined the strategies enhancing CAR T cell memory 
and trafficking and generated a superior antitumor effect.

Integrins and integrin ligands
Rolling of T cells along endothelium is transient unless 
firm adhesion mediated by integrins occurs. Integrins 
are cell-surface heterodimers which consist of both an 
alpha (α) and a beta (β) chain. Multiple α and β integrin 
subunits are expressed on T cells and the α and β subunits 
couple to form integrins that bind their ligands on endo-
thelium. The binding of integrins to their ligands trans-
mits signals to T cells and endothelium bidirectionally.69

In resting T cells, the integrin LFA-1 is in a default 
low affinity ‘bent’ conformation. On encountering 
chemokines on endothelium, LFA-1 is converted into an 
extended form with an intermediate affinity (figure  2). 
The subsequent conformational changes promote LFA-1 
transition into an active high affinity and fully extended 
form, supporting T cell arrest through binding to inte-
grin ligands on the endothelium.69 Another important 
integrin is VLA-4. Similar to LFA-1, after the activation 
and conformational change, VLA-4 binds to its ligand 
vascular cell adhesion molecule-1 (VCAM-1) on blood 
vessels.69

Although CAR T cells have been designed to target 
integrin expressing cancer cells,70 to our knowledge, 
strategies altering CAR T cell expression of integrins for 
improved T cell infiltration are underexplored. Alter-
natively, treatments that induce the integrin receptor 
expression on tumor vessel cells can be used in combina-
tion with CAR T cells to improve T cell infiltration. It was 
reported that the administration of recombinant adeno-
virus encoding IL-12 upregulated VCAM-1 expression on 
tumor endothelium and mediated the recruitment of 
adoptively transferred T cells.71

RESISTING LOSS OF T CELL FUNCTION: MARKERS OF T CELL 
EXHAUSTION
In order to avoid causing damage to normal tissues, T cells 
downregulate their functions and develop a phenotype 
termed as exhaustion. An early study in chronic lympho-
cytic choriomeningitis virus (LCMV) infected mice found 
that some viral-specific T cells persisted for a long-time, 
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proliferated in vivo, but were unable to generate an effec-
tive antiviral response. These T cells were engaged in 
continuous but ineffective actions and were likened to 
‘Sisyphus’, the Greek king, who was tasked to perform the 
fruitless job of rolling a boulder up a hill only to see it roll 
down again.72

Exhausted T cells (Tex cells) represent a distinct popula-
tion with a unique phenotypic, epigenetic and transcrip-
tional profiles. The ontogeny of Tex cells is still poorly 
understood, but the exhausted state can be induced in 
T cells at any differentiation stage and these Tex cells 
continue to produce exhausted progeny. Thus, exhaus-
tion is a parallel program to T cell differentiation.73 The 
development of Tex cells is progressive—beginning with 
the loss of IL-2 production, lower proliferative capacity, 
and reduced cytotoxic abilities. In further stages of 
dysfunction, T cells have an impairment in their ability to 
produce cytokines such as IFN-γ and TNF-α.74 Correlating 
with the progressive accumulation of functional impair-
ments is the expression of well-defined immune check-
point markers, which include inhibitory receptors such as 
PD1, LAG3, TIM3, CTLA4, and TIGIT (figure 3).

Functionally impaired T cells have been widely docu-
mented in solid tumors such as renal cell carcinoma, non-
small cell lung cancer and melanoma.75–79 While difficult 
to dissect the development of Tex cells in humans, Schi-
etinger et al80 used a murine cancer model and demon-
strated that the unresponsive Tex cells could develop at 
the prephase and early phase of the tumor growth, due to 
persistent antigen exposure. Although Tex cells in tumors 
are similar to those generated in chronic viral infection, 
they are not identical. For example, tumor Tex cells lose 
Eomesodermin (EOMES) expression while LMCV Tex 
cells express high levels of EOMES.80 Factors such as the 
immunosuppressive TME and the lack of co-stimulation 
in tumor settings may contribute to the difference.

The identification of a PD1+TCF1+CD8+  T cell subset 
presents a link between T cell memory and exhaus-
tion. These cells were identified in cancers of mice 
and humans and have stem cell-like properties while 
displaying exhausted features. PD1+TCF1+CD8+ T 
cells can expand to produce terminally differentiated 
PD1+TCF1- T cells while maintaining a pool of progenitor 
PD1+TCF1+ T cells. Tumor control elicited by checkpoint 

Figure 3  Markers of T cell exhaustion. T cell dysfunction occurs when there is chronic exposure to antigen, such as in the 
context of cancer. This loss of function is referred to as T cell exhaustion. T cell exhaustion includes the loss of IL-2 production, 
decreased proliferative capacity, and reduced cytotoxic abilities, including impairment in granzyme B, IFN-γ and TNF-α 
production. Along with the loss of functionality, T cells increase the expression of inhibitory receptors such as PD1, LAG3, Tim3, 
CTLA4, and TIGIT. Some of the key regulators of T cell exhaustion include the transcription factors TOX and NR4A (NR4A1, 
NR4A2, and NR4A3). IFN-γ, interferon-γ; IL-2, interleukin 6; TNF-α, tumor necrosis factor-α.
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blockade treatments is dependent on the existence of 
intratumoral PD1+TCF1+CD8+ T cells and argues that 
checkpoint blockade expands and differentiates a stem 
cell-like progenitor cell population, rather than reverse 
a terminal T cell exhaustion program.81 Interestingly, a 
separate study demonstrated that a memory-precursor-
like PD1-TCF1+CD8+ TIL subset expanded on checkpoint 
blockade and provided a wave of TEFF cells to sustain an 
effective anti-tumor response. The checkpoint blockade 
impacted the PD1- population indirectly due to the 
expression of checkpoint receptors on other immune 
cells in the TME.82 However, evidence has shown that 
PD1+ T cells have limited potential to give rise to durable 
memory T cells, and after the cessation of the PD-L1 
blockade treatment, the reinvigorated Tex cells became 
exhausted again. Although there was a transcriptional 
rewiring, Tex cells were in a stable epigenetic state that 
cannot be reverted following therapy.83

The effectiveness of CAR T cell treatment is depen-
dent on the degree of T cell exhaustion. It was demon-
strated that T cell exhaustion in cell culture limited the 
antitumor efficacy of CAR T cells. A GD2-CAR T cell 
containing CD3ζ and CD28 signaling domains showed 
high expression of surface inhibitory receptors such as 
PD1, TIM-3 and LAG3, exhaustion-associated transcrip-
tion factors T-bet and Blimp-1, produced cytokines poorly 
in response to antigen compared with CD19.28ζ CAR T 
cells. The GD2-CAR T cells have basal levels of ζ-phos-
phorylation (tonic signaling) whereas CD19 CAR T cells 
do not. Ablating the tonic signaling (by exchanging 
the CAR costimulatory domain from CD28 to 4-1BB) 
reversed the exhaustion phenotype. Interestingly, varying 
degrees of exhaustion, including decreased tumor clear-
ance in mouse models, reduced cytokine production, 
and increased expression of multiple inhibitory recep-
tors, were identified in other CAR products, and 4-1BB 
signaling ameliorated exhaustion.84

The nuclear factor TOX is a crucial regulator for the 
development of Tex cells. Ectopic expression of TOX in 
TEFF cells induced exhaustion and deletion of TOX in Tex 
cells abrogated exhaustion.85 In CD8+ T cells, inhibiting 
the interaction of NFAT1 with AP-1 increased the exhaus-
tion transcriptional program in the T cells and decreased 
their ability to control infection and tumor growth in 
murine models.86 In addition, NR4A and TOX also main-
tain the exhaustion program73 87 (figure 3).

A number of strategies have been used in CAR T cells to 
reduce exhaustion, including knocking out exhaustion-
associated genes, such as NR4A and Cbl-b. The NR4A or 
Cbl-b knockout CAR T cells in the tumors had surface 
markers similar to TEFF and increased cytokine produc-
tion compared with wild type, which resulted in enhanced 
antitumor immunity.87 88 Rescuing AP-1 signaling could 
also reverse the exhausted state. Overexpression of JUN 
rescued CAR T cell exhaustion and greatly increased the 
anti-tumor efficacy of CAR T cells in multiple animal 
models.89 CAR T cells deficient in TOX and TOX2 showed 
reduced expression of inhibitory receptors and were 

more effective against human CD19 tumors,90 demon-
strating knocking out TOX and its related molecules can 
be a strategy to reduce an exhaustion phenotype.

Further studies are needed to optimize manufacturing 
conditions for CAR T cells to receive appropriate TCR 
stimulation, cytokines and other supplements. Addition-
ally, other avenues to decrease CAR T cell exhaustion 
and increase CAR T cell fitness can be explored, such as 
genetic modifications of CAR T cells by knocking out/in 
exhaustion related molecules, as well as pairing CAR T 
cell therapy with other therapies which can reduce CAR 
T cell exhaustion.

CONCLUDING REMARKS
Key challenges facing effective CAR T cell therapies for 
solid cancers include inefficient infiltration into tumors, 
limited in vivo persistence and a hostile TME. Under-
standing intrinsic T cell factors and properties which 
occur during a natural immune response can help inform 
the design of a CAR T cell phenotype which can over-
come these challenges.

Understanding T cell differentiation and the corre-
sponding functional properties has led to new thinking 
around the optimal T cell differentiation state for ACT. 
Understanding the homing properties of T cells has 
allowed T cells engineered with receptors to increase 
tumor infiltration. Understanding the nuclear factors 
involved in T cell memory formation and exhaustion will 
allow for the generation of new therapeutics targeting 
these factors. Current research points in the direction of 
developing an ACT product with an early memory pheno-
type absent of exhaustion markers that would be an ideal 
phenotype for an effective treatment product.
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