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We propose a method for the reconstruction of volumetric fetal MRI from 2D slices, comprising super-
resolution reconstruction of the volume interleaved with slice-to-volume registration to correct for the
motion. The method incorporates novel intensity matching of acquired 2D slices and robust statistics
which completely excludes identified misregistered or corrupted voxels and slices. The reconstruction
method is applied to motion-corrupted data simulated from MRI of a preterm neonate, as well as 10 clin-
ically acquired thick-slice fetal MRI scans and three scan-sequence optimized thin-slice fetal datasets.
The proposed method produced high quality reconstruction results from all the datasets to which it
was applied. Quantitative analysis performed on simulated and clinical data shows that both intensity
matching and robust statistics result in statistically significant improvement of super-resolution recon-
struction. The proposed novel EM-based robust statistics also improves the reconstruction when com-
pared to previously proposed Huber robust statistics. The best results are obtained when thin-slice
data and the correct approximation of the point spread function is used. This paper addresses the need
for a comprehensive reconstruction algorithm of 3D fetal MRI, so far lacking in the scientific literature.

� 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Magnetic resonance imaging (MRI) of the fetal brain has re-
ceived considerable attention in recent years due to its application
in assessing fetal brain development. Clinically, it is used for
qualitative assessment of fetal brain abnormalities. Its potential
applications include detailed characterization of fetal brain devel-
opment and identification of deviations in brain growth related to
conditions such as intra-uterine growth restriction (IUGR) or
preterm birth. Development of new quantitative biomarkers will
facilitate better understanding of brain development and subse-
quent improved management of high-risk pregnancies (Rutherford
et al., 2008; Limperopoulos and Clouchoux, 2009).

Due to the long acquisition times of MRI, fetal motion presents a
major challenge as 3D MR scanning sequences are not applicable in
the presence of unpredictable and fast fetal motion. This has been
addressed by the development of ultrafast sequences which are de-
signed to acquire 2D slices and thus freeze the motion in time. The
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most common sequence used in clinical practice is single-shot fast
spin echo (SSFSE) T2-weighted imaging with an acquisition time of
1 s per slice (Prayer et al., 2004). Stacks of thick slices are acquired
in three orthogonal directions. The slice thickness is usually 3–
4 mm to obtain good contrast-to-noise ratio. Such images provide
excellent delineation of fetal brain anatomy and are suitable for
qualitative assessment of brain abnormalities. However, compro-
mised fetal brain development, e.g. during IUGR, often manifests
as more subtle changes, which can only be assessed by detailed
quantitative analysis. Studies on pre-term infants suggest that
quantitative biomarkers, such as reduced cortical volume and sul-
cation index (Tolsa et al., 2004; Dubois et al., 2008) can be used to
characterize IUGR. Quantitative analysis of brain development re-
quires volumetric data and very recently, the development of
methods for reconstruction of volumetric fetal brain MRI enabled
the emergence of quantitative studies for fetal brain development
(Damodaram et al., 2009a,b; Gholipour et al., 2011; Clouchoux
et al., 2012; Rajagopalan et al., 2011a,b; Habas et al., 2012).

In recent years, methods have been proposed to reconstruct a
fetal brain volume from stacks of 2D slices (Studholme, 2011). Such
reconstruction presents a number of challenges. Slices need to be
automatically aligned to correct for the motion between acquisi-
tion of individual slices. Slices with motion artifacts need to be
automatically excluded, and inconsistencies in intensity patterns
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resulting from the motion or acquisition settings, such as variable
scaling of the slices and differential bias fields, need to be esti-
mated and corrected for. Finally, the volume has to be recon-
structed from irregularly sampled data.

In the first approach proposed by Rousseau et al. (2006), the
reconstruction using a weighted sum of Gaussian kernels which
represent the point spread function (PSF) is interleaved with
slice-to-volume registration and is applied to clinically acquired
thick-slice data. If an interpolation approach is used to reconstruct
a volume from thick slices, undesirable blurring is introduced into
the reconstructed volume. Jiang et al. (2007) propose to acquire
many thin slices (1 mm slice thickness) and use multilevel B-
splines (Lee et al., 1997) to reconstruct the volume. One advantage
of their approach is that the spline interpolation can be tuned to
avoid blurring and the use of thin slices enhances this by achieving
more isotropic resolution. As the region of interest is oversampled,
averaging during reconstruction results in a significant reduction
of noise, thus improving the signal-to-noise ratio. Additionally,
thin slices can be aligned with significantly reduced target registra-
tion error (0.2 mm in simulated experiments). The method was
further extended by a model of the motion of the fetus during
acquisition to improve the robustness of the registration (Bertelsen
et al., 2009). Kim et al. (2010) proposed an alternative motion cor-
rection approach, which replaces slice-to-volume registration with
a multi-slice registration method constrained by a model of fetal
motion. This removes the need for the computationally expensive
reconstruction step during alignment of the slices. A modified
Gaussian weighted reconstruction is proposed to reduce the blur-
ring effect of thick slices. More recently, super-resolution methods
(Milanfar, 2007; Greenspan, 2009) in combination with slice-to-
volume registration have been proposed to reduce the blurring
effects during reconstruction of thick-slice data (Gholipour and
Warfield, 2009; Gholipour et al., 2010). During super-resolution
reconstruction, the volume has to be regularized to prevent ampli-
fication of noise and registration error, as well as to fill the under-
sampled regions. To reduce the smoothing effects of regularization,
adaptive regularisation techniques can be employed (Peyre, 2011).
Rousseau et al. (2010, 2011) proposed to extend super-resolution
reconstruction through total variation regularization or an edge-
preserving regularization technique developed by Charbonnier
et al. (1997). Kim (2011b) proposed an alternative non-iterative
solution to selectively weight the Gaussian kernels to obtain a
high-resolution volume.

Early reconstruction approaches relied on manual exclusion of
the motion corrupted slices. In more recent work, Kim et al.
(2010) implemented a rejection of motion corrupted and misregis-
tered slices based on an abnormally high mean squared intensity
difference, but in several cases slices had to be manually marked
for removal after processing. Gholipour et al. (2010) incorporated
robust statistics based on the Huber function into super-resolution
reconstruction to automatically reduce the weight of corrupted
and misaligned voxels and slices. Recently, Kim et al. (2011a)
showed that correction of bias field inconsistencies can improve
the quality of the reconstructed volume, which is especially impor-
tant for correct delineation of fetal lamination.

In this paper we propose a comprehensive method for recon-
struction of fetal brain MRI which builds and expands on previous
super-resolution approaches (Gholipour and Warfield, 2009;
Gholipour et al., 2010; Rousseau et al., 2010). For the first time,
we unify all the necessary elements within a common framework
to perform simultaneous super-resolution reconstruction, robust
statistics and intensity matching to achieve high quality recon-
struction. Our contribution compared to previous works is
threefold: first, we propose to estimate the differential bias fields
and slice-dependent scaling factors during super-resolution
reconstruction; second, a novel robust statistics based on an EM
framework is proposed to remove artifacts caused by motion-cor-
rupted and misaligned data. Unlike the previously proposed work
by Gholipour et al. (2010), the identified outliers are removed com-
pletely, thus further reducing the artifacts in the image. Third, we
combine the robust super-resolution reconstruction with edge-
preserving regularisation Charbonnier et al. (1997) which reduces
blurring in the reconstructed images. The reconstruction is inter-
leaved with slice-to-volume registration. We use normalized mu-
tual information as a similarity measure due to its robustness to
intensity artifacts and thus remove the need for a model of motion
to achieve good quality alignment. Our method is evaluated using
simulation of thick slice acquisition for volumetric neonatal data.
We also propose a novel leave-one-out analysis to evaluate recon-
struction results on real fetal data. Our results show that both
intensity matching and the new robust statistics result in a statis-
tically significant improvement in reconstruction performance in
simulated and real data experiments. The method produces excel-
lent results for both clinical thick slice data and optimized thin
slice data.
2. Methods

2.1. Slice acquisition model

During acquisition of fetal brain MRI, the fetus is moving freely.
The head and brain of the fetus do not deform and so undergo rigid
body motion. Several stacks of 2D slices are acquired in different
orientations, one slice at a time. If the motion of the fetal head is
relatively slow compared to the slice acquisition time, the slices
represent accurate 2D images of the fetal head, while the move-
ment can be observed between the slices. Let us denote the ac-
quired slices by Y1; . . . ;YK and voxels of the kth slice by
yjk; j ¼ 1; . . . ;Nk. We aim to find an unknown volume X, consisting
of voxels x1; . . . ; xN , which represent an accurate 3D image of the
fetal head. The spatial relationship between voxels of the acquired
slices and the reconstructed volume is represented by matrices Mk,
with each row fmk

ij; i ¼ 1; . . . ;Ng describing the spatially aligned
discretized point spread function (PSF) for the acquisition of a vox-
el yjk from volume X. The PSF is determined by the acquisition and
hence is known, but the positions and orientations of the PSF ker-
nels, determined by the spatial positions of the slices, have to be
estimated. Even though fast acquisition of a single 2D slice freezes
motion in time in most cases, a number of slices may exhibit arti-
facts due to the sudden motion of the fetus, especially for younger
fetuses. An example of motion artifacts is shown in Fig. 1. These
corrupted slices have to be identified and excluded from the recon-
struction. Movement of the fetus also means that the position of
the fetus relative to the scanner is changing. Thus the inhomogene-
ity of the magnetic field affects the intensities of slices according to
their position in the scanner, rather than their position in the fetal
head, creating inconsistencies in the reconstructed volume. Simi-
larly, individual slices are affected by different scaling factors.
Our model therefore assumes slice-dependent bias fields
Bk ¼ fbjk; j ¼ 1; . . . ;Nkg and scaling factors sk, which have to be
estimated during reconstruction. We denote scaled and bias cor-
rected slices by Y�k, and intensities of their voxels by y�jk. The rela-
tionship between acquired slices and the unknown volume, or
the slice acquisition model, can thus be expressed as

Y�k ¼MkX; y�jk ¼ sk expð�bjkÞyjk ð1Þ

In many approaches, a multiplicative bias field model is trans-
formed to an additive one by logarithmic transformation of the im-
age intensities (Wells et al., 1996; Leemput et al., 1999). To avoid
the logarithmic transformation, we work directly with the multipli-
cative bias field. For this, we use multiplicative the exponential



Fig. 1. Motion artifacts in fetal MRI shown in three orthogonal plane views. (a) A stack acquired in axial direction exhibiting a smaller amount of motion. The individual
images are of high quality but do not form a consistent representation. Structures can still be recognized in the through-plane direction. (b) A stack acquired in sagittal
direction with heavy motion. Some slices are corrupted by motion artifacts. Structures cannot be recognized in the through-plane direction.
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model proposed by Ashburner and Friston (2005) which ensures
that this bias field model is equivalent to the one proposed in works
which use a logarithmic transformation of intensities.

2.2. Point spread function

A good approximation of the PSF is essential so that high quality
reconstruction is obtained by solving Eq. 1. The exact shape of the
PSF is acquisition dependent, and Jiang et al. (2007) described the
PSF for ssFSE sequences. The in-plane PSF of the acquired slice can
be generally considered to be a sinc function with full width at half
maximum (FWHM) of its central peak equal to 1.2 � in-plane res-
olution. The PSF in through-plane direction is the slice profile. Jiang
et al. (2007) measured the slice profile of the ssFSE sequence and
found it to be approximately Gaussian, with FWHM equal to the
slice thickness. Therefore in this paper we treat the PSF as a 3D
Gaussian function with FWHM equal to the slice-thickness in the
through-plane direction and 1.2 � voxel size in-plane (an approxi-
mation of the sinc function).

2.3. Super-resolution reconstruction of a 3D volume from thick slices

Standard imaging protocols for fetal brain MRI consist of several
stacks of thick slices, to achieve fast acquisition and good signal-to-
noise ratio. During acquisition of thick slices, weighted averaging
of the MR signal is occurring in through-plane direction. If the
intensities of thick slices are only interpolated to recover a 3D vol-
ume, blurring is introduced into the reconstructed image, decreas-
ing the image definition. Knowledge of the slice acquisition model
can be used to recover a higher resolution 3D volume from multi-
ple thick slices (Gholipour et al., 2010; Rousseau et al., 2010). The
intensity corrected slice can be simulated from the reconstructed
volume X using Eq. (1). If the spatial alignment, PSF, bias fields
and scaling factors are all known, the volume X can be recovered
by minimizing the sum of squared differences of errors ejk between
voxels of intensity corrected acquired slices and simulated slices:

ejk ¼ y�jk �
X

i

mk
ijxi ð2Þ

Because of the instability of such reconstruction, regularization of
the reconstructed image X is necessary (Charbonnier et al., 1997;
Rousseau et al., 2010; Gholipour et al., 2010). To minimize the
smoothing effects of regularization on image features, edge-pre-
serving regularization can be used (Charbonnier et al., 1997; Rous-
seau et al., 2010). In this paper we follow the approach of
Charbonnier et al. (1997), who proposes the regularization term

RðXÞ ¼
X

i

X
d

u
xiþd � xi

djdj

� �
ð3Þ

where uðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
� 2 and d represents a vector between the

index of a voxel and one of its 26 neighbors. (Note that in practice
i 2 N3 and we assume isotropic resolution for the volume X.)
Parameter d controls how big the difference between neighboring
voxels must be so that it is considered to be an edge. Applying gra-
dient descent to the objective function

P
jke2

jk þ kRðXÞ results in an
updating equation for volume X:

xðnþ1Þ
i ¼ xn

i þ a
X

jk

mk
ije

n
jk þ ak

@

@xi
RðXÞ ð4Þ

where @
@xi

RðXÞ ¼ 1
d2

P
dbd

i ðxn
iþd � xn

i Þ. The value bd
i determines how

much smoothing is performed for voxel i in direction d and is calcu-
lated as

bd
i ¼

1

jdj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xiþd�xi

djdj2

q : ð5Þ
2.4. Motion correction

To correct for motion between slices we use the original scheme
proposed by Rousseau et al. (2006) and Jiang et al. (2007). Stacks
are first co-aligned using volumetric rigid registration and the first
estimate of the volume is reconstructed. Afterwards, each slice is
registered to the reconstructed volume separately. Slice-to-volume
rigid registration is interleaved with super-resolution reconstruc-
tion for a fixed number of iterations, which is determined experi-
mentally. The advantage of this simple scheme is that any
existing similarity measure can be used to maximize the quality
of the alignment. We chose normalized mutual information (Stud-
holme et al., 1999), as it is independent of the scaling factors and
has low sensitivity to low magnitude bias fields, which are typi-
cally present in MRI acquired at 1.5 T. An overview of this inter-
leaved scheme is presented in Fig. 2.



Fig. 2. Overview of the proposed methodology.
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2.5. Voxel-wise robust statistics

Even though acquisition of 2D MR slices is fast, sudden fetal
motion may still result in corruption of some of them. Additionally,
due to the limitations of the registration methodology, the slices
will be partially misregistered and some may be completely mis-
placed. In this paper we propose a classification of each slice voxel
into two classes – inliers and outliers – within an EM framework.
The probability density function (PDF) for the inlier class is mod-
eled as a zero-mean Gaussian distribution GrðeÞ with variance r2,
and outliers are modeled by a uniform distribution with constant
density m, which can be chosen as a reciprocal of the range of val-
ues e. A mixing proportion c represents the proportion of inliers, or
correctly matched voxels. The likelihood of observing an error ejk

can then be expressed as

Pðejkjr; cÞ ¼ GrðejkÞc þmð1� cÞ

We seek to maximize the log-likelihood log PðYjUÞ ¼
P

kj log
Pðejkjr; cÞ, where parameters U consist of the reconstructed volume
X, bias field B, scaling factors S, variance r2 of the distribution of
errors ejk, and proportion of correctly matched voxels c. In this
framework, the posterior probability of a voxel being classified as
an inlier is

pjk ¼
GrðejkÞc

GrðejkÞc þmð1� cÞ ð6Þ

Parameters r and c are updated using

r2 ¼
P

kjpjke2
jkP

kjpjk
and c ¼

P
kjpjkP
kNk

ð7Þ

The first term of the objective function for super-resolution recon-
struction will change to

P
kjpjke2

jk. The updating equation for volume
X (Eq. (4)) will change to

xnþ1
i ¼ xn

i þ a
X

kj

pjkmk
ijejk ð8Þ

where the regularization term has been omitted for simplicity but
has been included in the method. At each iteration, errors ejk are cal-
culated and then redistributed to the reconstructed volume X
according to the PSF. Due to the robust statistics, values pjkejk are
redistributed instead of the errors ejk. The advantage of the pro-
posed robust statistics is that these values converge to zero with
large errors (see Fig. 3), unlike Huber statistics as used in Gholipour
et al. (2010), where errors are instead thresholded at a certain value
and thus artifacts cannot be fully removed from the reconstructed
volume. The proposed EM robust statistics is in fact a redescending
M-estimator with influence function e:GrðeÞc

GrðeÞcþmð1�cÞ, which is automat-

ically fitted to the data by estimating parameters r and c using
the EM algorithm. Nevertheless, the proposed framework is not
restricted to EM robust statistics. Using Huber robust statistics re-
sults in simply replacing Eq. (6) by pjk ¼ 1 if jejkj 6 c and
pjk ¼ c=jejkj if jejkj > c. Similarly to Gholipour et al. (2010), we set
c to 1:35 �medianðjejkjÞ.

2.6. Slice-dependent robust statistics

In the context of fetal brain MRI, voxel-wise robust statistics
cannot sufficiently deal with all types of errors. Brain MRI largely
consists of a few tissue classes with approximately constant inten-
sities. Therefore, incorrectly aligned or even corrupted slices may
contain a number of voxels which are well matched with the vol-
ume X in terms of intensity. We found that voxel-wise classifica-
tion is not sufficient to remove artifacts of motion corruption and
misregistration. This was previously reported by Gholipour et al.
(2010), who suggest to combine voxel-wise robust statistics with
slice-dependent robust statistics using the Huber function. In this
paper we also classify slices into inliers and outliers using the
EM algorithm. The classification of slices is applied to valuesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

jp
2
jkÞ=Nk

q
. Slices are classified into inliers and outliers using a

mixture of two Gaussians as a model for the PDF. We found that
due to the effects of averaging over the voxels of each slice, this
PDF is more suitable for classification of slices than a mixture of
a Gaussian and a uniform distribution used for voxel-wise statis-
tics, which was presented in Section 2.5. Standard EM estimation
of the means, variances and mixture proportions of the inlier and
outlier classes (Duda et al., 2001) are used to calculate inlier class
slice posteriors pslice

k . Consequently, the value pslice
k pjkejk is redistrib-

uted to the volume at each super-resolution iteration. This is fol-
lowed by the edge-preserving smoothing described in
Section 2.3. Robust statistics enables us to use a weighted version
of this smoothing scheme, with the weights for each voxel in the
volume given by

P
kjp

slice
k pjkmk

ij.

2.7. Intensity matching and bias correction

Acquired slices coming from the MR scanner are often inconsis-
tently scaled and affected by inconsistent bias fields. The EM
framework offers means to recover scales S and bias fields B during
the reconstruction process by minimizing FðS;BÞ ¼

P
jkpslice

k pjke2
jk.

Setting derivatives of FðS;BÞ w.r.t scales S to zero yields

sk ¼
P

jpjk expð�bjkÞyjk

P
im

k
ijxiP

jpjkðexpð�bjkÞyjkÞ
2 ð9Þ

The above equation can be interpreted as the calculation of a scaling
factor between weighted averages of intensities of the acquired and
simulated slice. The weights are derived from posterior probabilities
of belonging to the inlier class pjk and take the form pjk expð�bjkÞyjk.
As the scale factors are multiplicative parameters, similar to the bias



Fig. 3. Influence functions of EM and Huber robust statistics. During an iteration of the super-resolution algorithm, errors ejk are redistributed to update the reconstructed
volume (Eq. (4)). If robust statistics are used, values pjkejk are redistributed instead (Eq. (8)). Robust EM statistics transform large errors to values close to zero (red line) while
the Huber function only thresholds the error values at a certain value (dashed blue line). The x-axis represents error values ejk , and the y-axis represents error values after
applying robust statistics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2 Image Registration Toolkit (IRTK), www.doc.ic.ac.uk/�dr/software.
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fields, this result gives us an insight into the behavior of weights in
multiplicative models which incorporate EM classification. For cal-
culation of differential bias fields we choose the original approach
of Wells et al. (1996) for its computational efficiency. Unlike this
well established methodology though, we do not perform a logarith-
mic transformation of intensities in a pre-processing step to obtain
additive bias fields, but assume a multiplicative model. The differen-
tial bias fields can be estimated at each iteration by comparing vox-
els of the acquired slices yjk to the voxels of simulated slices

P
im

k
ijxi.

As our model of the bias field is a multiplicative exponential, the dif-
ferential bias field that is still present in the corrected slice voxels y�jk
at the ðnþ 1Þth iteration can be estimated from the residual
rjk ¼ logðy�jk=

P
im

k
ijxiÞ. If the slices are not perfectly aligned or if they

are corrupted by sudden fetal motion, this will be reflected in resid-
uals rjk. To take advantage of the robust statistics, the differential
bias field can be obtained by a weighted Gaussian smoothing. For
multiplicative models, information about well matched voxels in
form of pjk transforms into weights wjk ¼ y�jkpjk. Thus the update
equation for bias fields becomes

bðnþ1Þ
jk ¼ bn

jk þ
P

lw
ðnþ1Þ
lk GrB ðd

k
jlÞr
ðnþ1Þ
lkP

lw
ðnþ1Þ
lk GrBðd

k
jlÞ

ð10Þ

where dk
jl represents the spatial distance between voxels jk and lk,

and rB is the standard deviation for the smoothness of the bias field.
Note that Eqs. (9) and (10) can converge to a whole subspace of
solutions. Scale sk is equivalent to subtracting a constant log sk from
the bias field of slice k. Even though the concept of scale is some-
what redundant in the presence of bias field estimation, we prefer
to retain it to put additional constraints on the subspace of solu-
tions. We require the product of all scales to be equal to one, and
bias fields for all slices to have zero means. This helps to stabilize
overall scaling of the image. In our experiments we observed that
if such constraints are not set, the intensity range of the recon-
structed volume decreases with each iteration and would eventu-
ally converge to a zero image. Indeed a reduction of intensity
values would decrease the absolute values of the errors ejk and con-
sequently the value of the objective function. Note that the method
does not correct the bias field in the reconstructed image X, but only
differential biases between the slices. Thus the algorithm can con-
verge to an estimate of a 3D volume corrupted by any smooth bias
field.

3. Implementation

3.1. Data preprocessing

Fetal MR images are acquired as stacks of slices using a standard
single-shot fast spin-echo (SSFSE) T2-weighted sequence, with
several stacks in each of the three orthogonal directions. During
scanning the fetus can move in relation to the mother, and rigid
alignment, which is used to correct for motion, cannot account
for such changes. Presence of maternal tissue in the image can
therefore increase the alignment error in the region of the fetal
brain. We therefore create a fetal head mask in all the stacks in
the pre-processing step. One of the stacks, typically the one with
least motion and artifacts, is chosen as a target. The fetal head is
then manually segmented in the target volume. This only takes a
couple of minutes due to the large voxel size in the through-plane
direction. In case of thin-slice data, the target volume can be first
downsampled, then manually brainmasked and upsampled to the
original resolution. The mask is then smoothed using a Gaussian
filter and thresholded. Other stacks are automatically aligned with
the target using the volumetric rigid registration implemented in
IRTK.2 The registration is initialized with different orientations and
the images are aligned using gradient descent. The result with the
highest similarity, in this paper normalized mutual information
(Studholme et al., 1999), and sufficiently large overlap is chosen to
provide an initial alignment of the stacks. The mask is automatically
transferred to all other image slices in the stack. All stacks are
cropped and padded according to the mask. As the images in our
database are sometimes inconsistently scaled, we calculate a scaling
factor for each masked stack to set the mean intensity to a pre-de-
fined value. This ensures a good quality initialisation for intensity
matching and standardisation of parameter d for edge-preserving
smoothing.
3.2. Slice-to-volume registration

The motion correction of individual slices is performed using ri-
gid registration implemented within the IRTK software package.
After the volumetric registration of the stacks, the algorithm iter-
ates between reconstruction and slice-to-volume registration for
a pre-defined number of iterations. We choose 12–16 iterations
for younger fetuses which typically exhibit lots of motion, and 6–
9 iterations for older fetuses, for whom the motion is more re-
stricted. To decrease the risk of the algorithm getting trapped in
a sub-optimal solution, we use a smoothing scheme, where param-
eter k, which determines the amount of smoothness in the recon-
structed image, is set large for the first iterations and then is
gradually decreased. We experimentally determined suitable val-
ues for k to be 0:16d2 or 0:08d2 for the first motion correction iter-
ation. The smoothing at the final step is mostly determined by the
magnitude of the noise in the data, typically k ¼ 0:02d2;0:01d2 or
0:005d2. This temporally adaptive smoothing scheme helps the
algorithm to converge faster and improves the accuracy of the final
alignment of the slices.

http://www.doc.ic.ac.uk/~dr/software
http://www.doc.ic.ac.uk/~dr/software
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3.3. Volumetric reconstruction

At each iteration of motion recovery, the estimate of the volume
has to be reconstructed using the latest estimate of the alignment
of the slices. The first step is the calculation of matrices Mk, which
consist of positioning and orienting Gaussian kernels according to
the transformation between each slice and volume followed by
sampling to the grid of the volume. The initial estimate of the vol-
ume is calculated using weighted Gaussian reconstruction (Rous-
seau et al., 2006; Ohbuchi et al., 1992). The slices are then
simulated from the volume, and compared to the acquired slices
to calculate the errors ejk (Eq. (2)). Next, the expectation step is per-
formed, where voxel weights pjk (Eq. (6)) and slice-dependent
weights pslice

jk are calculated. This is followed by the maximization
step, in which we calculate robust statistics parameters, namely
the variance r and mixing proportion c for voxels-wise statistics
(Eq. (7)) and means, variances and mixing proportions for classifi-
cation of inlier and outlier slices. The maximization step is com-
pleted by calculation of scaling factors sk (Eq. (9)) and bias fields
bjk (Eq. (10)). The standard deviation for smoothness of the bias
field was experimentally set to 12 mm. Finally, the super-resolu-
tion step is performed in which volume X is updated according
to Eq. (8), followed by the weighted version of edge-preserving
smoothing (Section 2.3). During edge-preserving smoothing, the
parameter d determines how much difference in intensity the
neighboring voxels have to prevent the smoothing. We set d
approximately to the half of the difference between intensity
means of gray matter and white matter. The super-resolution
reconstruction is run for a pre-defined number of iterations. We
found that the relative error of the objective function converges
very slowly due to the super-resolution component, especially if
a low weight is given to smoothing. Additionally, the number of
iterations is a very stable indicator of the sharpness of the resulting
image. We therefore run 10 expectation–maximization (EM) itera-
tions of volume reconstruction during each motion correction iter-
ation, and 30 EM iterations during final reconstruction to obtain
high-contrast final volume.

3.4. Summary of the reconstruction algorithm

1. Volumetric registration of stacks against template stack.
2. Masking of the head and cropping of all stacks.
3. Intensity matching of the stacks.
4. Motion correction: For each motion-correction iteration.

(a) If not the first iteration perform slice-to-volume
registration.

(b) Update smoothing parameter a.
(c) Calculate matrix M of discretized oriented PSFs.
(d) Gaussian weighted reconstruction of the volume.
(e) Reconstruction of the volume: For each super-resolution

iteration.
i. Estimate robust statistics posteriors (Eq. (8).

ii. Estimate robust statistics parameters (Eq. (8).
iii. Estimate the scales and bias fields (Eq. (8).
iv. Super-resolution: Update volume (Eq. (8).
v. Edge-preserving smoothing (Eq. (4).)
Fig. 4. Simulation of fetal brain MRI from a neonatal subject with GA 27 weeks.
First row: Neonatal volume. Second row: Simulated coronal stack with 6 slices with
large displacement to simulate misregistered outliers. Third row: Simulated
transversal stack with three corrupted slices. Fourth row: Reconstruction using
six stacks, which include stacks shown in the second and third row, demonstrates
the good performance of the method when compared to neonatal volume int the
first row. Fifth row: The difference between original and reconstructed image.
4. Results

Evaluation of the methodology for reconstruction of fetal MRI is
a non-trivial task due to the lack of ground truth. It therefore be-
came a standard to simulate acquisition of 2D slices corrupted by
motion from neonatal 3D MRI (Rousseau et al., 2006; Jiang et al.,
2007; Kim et al., 2010; Gholipour et al., 2010). In this paper we per-
form such simulation using MRI of a preterm neonate. Additionally,
for the first time, we propose to evaluate the reconstruction of the
clinical fetal data in a leave-one-out fashion, by excluding one
stack and comparing the reconstructed volume to acquired slices
in the excluded stack.

4.1. Simulated experiment

To simulate the acquisition of fetal brain MRI, we used a T2-
weighted fast-spin echo image of a preterm neonate with gesta-
tional age (GA) of 27 weeks, acquired at Hammersmith Hospital,
London, on a 3T Philips Intera system with MR sequence
parameters TR = 8620 ms, TE = 169 ms, and voxel sizes 1 mm �
1 mm � 1 mm. The image was acquired as several stacks of 2D
slices, with slice thickness 2 mm and slice overlap 1 mm. The in-
plane resolution was 1 mm. The volume was reconstructed using
the method proposed by Jiang et al. (2007). Though this image
was acquired with a sequence similar to fetal sequences, the neo-



Table 1
Six simulations used for evaluation. For each simulation we show number of stacks
(second column) and average motion calculated as the average distance of a voxel in a
simulated slice to its original location in the volume X� (third column). The fourth
column gives the average voxel-wise magnitude of the bias field in all stacks, where
bias fields in each slice have zero mean. The numbers in brackets give maximum
slice-dependent average bias magnitude.

Stacks Motion (mm) Bias magnitude

Simulation 1 3 1.34 0.07 (0.09)
Simulation 2 3 1.50 0.03 (0.05)
Simulation 3 3 2.38 0.06 (0.12)
Simulation 4 6 1.43 0.07 (0.09)
Simulation 5 6 1.84 0.05 (0.09)
Simulation 6 6 1.92 0.06 (0.12)

Table 2
Methods used to reconstruct simulated MR stacks for quantitative evaluation.

Method Robust statistics Intensity correction

Full EM Yes
Huber Huber Yes
No robust No Yes
No matching EM No
Reference EM No

Table 3
NRMSE and PSNR (in brackets) between image reconstructed from simulated stacks
and original volume, averaged over simulations from 3 stacks, 6 stacks and all
simulations. Last column presents p-value for NRMSE of all simulations, showing
statistical significance of performance compared to the full method.

3 Stacks 6 Stacks All p-Value

Full 0:112ð26Þ 0:082ð29Þ 0:097ð27Þ
Huber 0:123ð25Þ 0:091ð28Þ 0:107ð27Þ 0:004
No robust 0:160ð23Þ 0:126ð25Þ 0:143ð24Þ 0:001
No matching 0:150 ð24Þ 0:111ð26Þ 0:131ð25Þ 0:002
Reference 0:119ð25Þ 0:085ð28Þ 0:102ð27Þ 0:206

Table 4
TRE between known and recovered alignment of the simulated slices, averaged over
simulations from 3 stacks, 6 stacks and all simulations. Last column presents p-value
for all simulations, showing statistical significance of performance compared to the
full method.

3 Stacks (mm) 6 Stacks (mm) All (mm) p-Value

Full 0.83 0.72 0.77
Huber 0.92 0.74 0.83 0.039
No robust 1.05 0.80 0.95 0.001
No matching 0.96 0.78 0.87 0.015
Reference 0.76 0.65 0.72 0.160
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nate was still during acquisition and motion artifacts were there-
fore negligible. Additionally, as the neonate is asleep during scan-
ning, longer acquisition times are possible, enabling dense
sampling of the neonatal head. Thus the quality of reconstructed
neonatal MRI acquired this way is comparable to 3D neonatal
MRI, with the advantage that the occasional motion artifacts can
be corrected for.

The neonatal image is shown in the first row of Fig. 4. From this
volume X�, the stacks of 2D slices with a slice thickness of 3 mm
and in-plane resolution 1 mm�1mm were simulated in three
orthogonal directions, 26 slices per stack. First, the motion of the
slices was randomly generated. The resulting transformations were
then used to calculate the matrices Mk defined in Eq. (1) and voxels
yjk of slices Yk were simulated as

P
im

k
ijx
�
i . We added Gaussian noise

with r ¼ 0:025l ðl denotes image mean) to the simulated slices,
as well as random bias fields which have been smoothed with a
Gaussian filter using r ¼ 12 mm. Additionally, slices were multi-
plied by random scaling factors in the range [0.8,1.2]. Six slices
per three orthogonal stacks were assigned displacements large en-
ough so that the registration algorithm is unable to recover the cor-
rect position of the slice (see Fig. 4, second row). This was done to
test the capability of the method to robustly exclude misaligned
slices. We also added motion corruption to five slices per three
orthogonal stacks (see Fig. 4, third row). We simulated three sets
of three stack simulations and three sets of six stack simulations,
see Table 1. The fourth row of Fig. 4 shows the volume recon-
structed from six stacks using the proposed method.

To perform a quantitative evaluation, the simulated stacks were
used for reconstruction of a volumetric high-resolution image
using four different methods: (1) the full method proposed in this
paper, (2) the method with Huber robust statistics and intensity
matching proposed in this paper, (3) the method without robust
statistics and with intensity matching proposed here, (4) the meth-
od with EM robust statistics proposed here, but without intensity
matching. To establish the capability of the proposed method to re-
cover correct intensity matching, we also reconstructed the image
from the stacks which have not been corrupted by any bias fields
and scaling factors (reference method). No intensity matching
was applied. The summary of the five methods is shown in Table 2.

We compared the reconstruction results with the original data
in two different ways. Firstly, the reconstructed images were di-
rectly compared to the original neonatal image used for simula-
tion. The reconstructed images were first rigidly aligned with the
original volume and resampled. Subsequently, the reconstructed
image was scaled and bias corrected to match the original volume,
using the intensity matching method developed in this paper (Eqs.
6, 7, 9, 10). The intensity error between the reconstructed image
and the original image was then calculated as the normalized root
mean squared error (NRMSE), defined as root mean squared error
divided by the average intensity of the original volume:
NRMSEðX 0;X�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðx0i � x�i Þ

2
=N

q
P

ix
�
i =N

ð11Þ

where x0i represent voxels of the resampled and intensity-matched
reconstructed volume. We also give a value of peak signal to noise
ratio (PSNR) which can be expressed as

PSNRðX 0;X�Þ ¼ 20log10
MAXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðx0i � x�i Þ
2
=N

q
0
B@

1
CA ð12Þ

where MAX was set to maximum value of the original neonatal
image.

Secondly, we also calculated the target registration error (TRE)
between the simulated and the estimated transformations. TRE is
defined as

TREðT0;T�Þ ¼
P

jkðdistðT 0kðujkÞ; T�kðujkÞÞP
kNk

ð13Þ

where ujk denote locations of voxels in the simulated slices.
T� ¼ fT�1; . . . ; T�Kg denote the simulated transformations and trans-
formations T0 ¼ fT 01; . . . ; T 0Kg refer to recovered alignment of the
slices to the reconstructed volume, composed with the transforma-
tion of the reconstructed volume to the original volume, as esti-
mated using rigid registration implemented in IRTK. Operator
distð:; :Þ refers to Euclidean distance. The TRE is averaged over all
voxels in the slices located within the region of interest, which in
the case of neonatal data is obtained by excluding the dark
background. To obtain a sensible TRE in the experiments below,



Table 5
Ten clinical datasets. We show the gestational age of the fetus, the number of good
quality stacks used for the reconstruction, the number of the slices after brainmask-
ing, the number of the slices included in the reconstruction after exclusion of
corrupted and misregistered slices using EM robust statistics and slice thickness.

GA Stacks Slices Included slices Slice thickness (mm)

20w 5 72 64 4
21w 5 62 49 4
23w 5 79 60 3–4
25w 4 62 47 4
25w 7 140 120 4
26w 5 92 78 3–4
27w 5 112 96 3–4
33w 5 130 120 3
34w 5 121 115 4
37w 6 154 141 4
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we excluded slices which were not expected to be correctly aligned,
but were instead expected to be excluded during the reconstruc-
tion, as the quality of their alignment does not affect the quality
of the reconstruction. The criteria for exclusion were: (1) the slice
has been corrupted during simulation; (2) during simulation the
slice has been assigned a large displacement outside the capture
range of the registration method; (3) the slice cannot be correctly
registered due to a small region of interest. Slices falling into any
of these tree categories were excluded from further calculations,
and therefore the TRE presented below only reflects the quality of
alignment of the slices contributing to the reconstructed volume.

Quantitative evaluation of the six simulated datasets is shown
in Tables 3 and 4. The average NMRSE, PSNR (Table 3) and TRE
(Table 4) are shown for the three 3-stack reconstructions (column
1), the three 6-stack reconstructions (column 2) and all six recon-
structions (column 3). In column 4 we present the p-value to eval-
uate whether the performance of each method is significantly
different to our proposed method. The p-value was calculated
using paired Student’s t-Test with two-tailed distribution. In all
cases, the proposed method performed better than the method
with Huber statistics. Exclusion of either robust statistics or inten-
sity matching resulted in a substantial drop in performance. All
these differences in performance were statistically significant
(p-value 0.05). The results achieved using the proposed method
were similar (not significantly different for p-value 0.05) to the ref-
erence reconstruction, in which no scaling factors or bias fields
were applied to simulated slices and no intensity matching was ap-
plied during reconstruction. Thus we can conclude that intensity
matching successfully removes inconsistencies in bias fields and
scaling factors. The quantitative results also show that in the pres-
ence of motion artifacts, using six stacks results in better registra-
tion accuracy and reconstruction results compared to using only
three stacks.

Fig. 5 compares slice weights assigned by EM and Huber robust
statistics for reconstruction from six simulated stacks. It can be
seen that EM robust statistics assign zero weights to all corrupted
and obviously misregistered slices, while Huber statistics only re-
duce their weights. Several slices have rather small TRE, but were
assigned relatively small weights (below 0.5) by EM robust statis-
tics. Visual inspection revealed that these are slices with high
information content, where a small displacement can result in a
relatively large intensity error. Conversely, some slices with small
regions of interest and low information content, which are
Fig. 5. Comparison of slice weights using (a) EM and (b) Huber robust statistics, plotted a
slices which have been deliberately assigned large displacements during simulation are
with little information to guide registration towards correct alignment. The corrupted and
while their weight is only reduced when Huber robust statistics are used. (For interpreta
version of this article.)
especially prone to misregistrations, can exhibit rather small inten-
sity errors despite larger TRE and are thus not excluded.

4.2. Reconstruction of clinical fetal data

We have applied our reconstruction method to 10 clinical fetal
brain MRI with gestational ages (GA) 20, 21, 23, 25 (2 cases), 26, 27,
33 and 37 weeks (see Table 5). The data were acquired at John
Radcliffe Hospital, Oxford, on a Philips Achieva 1.5T scanner with
a dedicated body coil, using a T2 weighted single shot turbo spin
echo sequence with parameters TR = 32805 ms, TE = 100 ms, flip
angle 90�. The slice thickness was 3 or 4 mm with a slice gap of
0.5 mm. The slices were acquired with in-plane resolution
1:235 mm� 2:276 mm and automatically resampled on the scan-
ner to resolution 0:75� 0:75 mm. The scanning time was 33 s
per sequence. Several stacks were acquired in each of the three
orthogonal directions, usually between 1 and 3, with 4–12 stacks
overall. As only resampled slices were available, the FWHM of
the PSF (modeled as a 3D Gaussian) could only be correctly set in
through-plane direction, equal to the slice thickness. For the in-
plane direction the FWHM was simply set to the voxel dimension
of the resampled slice (0.75 mm).

The reconstructed data were subjected to detailed visual
inspection. We were able to achieve high-quality results for all
10 datasets. The proposed method is capable of reconstruction of
very challenging datasets, such as the subject with 20 weeks GA
for which only 64 slices with thickness 4 mm were available (see
gainst TRE calculated for each slice. Corrupted slices are shown as red circles and the
denoted by green crosses. Black asterisks denote slices with small region of interest

misplaced slices are completely removed using EM robust statistics (zero weights),
tion of the references to color in this figure legend, the reader is referred to the web



Fig. 6. Brain MRI of a 20 week old fetus reconstructed from only 64 slices of 4 mm thickness using the proposed method. First row: (a) An acquired slice. (b) The same slice
simulated from the reconstructed volume. (c) Corresponding plane from the reconstructed volume. Second row: Axial and transversal planes orthogonal to the acquired slice
shown in (a): original stacks (d and e) and the reconstructed volume (f and g).

Fig. 7. An example of the bias field estimated during reconstruction of the 23 week old fetus: (a) An acquired slice. (b) The scaled and bias-corrected slice. (c) The
corresponding plane of the reconstructed volume. (d) The estimated bias field.

Fig. 8. Artifacts in the reconstructed volume of the 23 weeks old fetus caused by a corrupted slice. (a) Initialization using Gaussian weighted reconstruction (Rousseau et al.,
2006). (b) Reconstruction without robust statistics. (c) Reconstruction with EM robust statistics. (d) The corrupted slice. (e) The posteriors pjk. (h) The error between the
corrupted slice and the corresponding simulated slice with an overlaid 0.5 isoline of the posteriors. The red arrow points to the skull in the misaligned corrupted slice, which
appears as an artifact in the reconstructions if no robust statistics are used. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

1558 M. Kuklisova-Murgasova et al. / Medical Image Analysis 16 (2012) 1550–1564
Fig. 6). Fig. 7 shows an example of the estimated bias field. Fig. 8
demonstrates the effectiveness the EM robust statistics in dealing
with corrupted or misaligned slices. Fig. 8a shows the initialization
of the reconstruction with obvious artifacts caused by a corrupted
slice (Fig. 8d). If no robust statistics are used, the artifacts are still
present in the final reconstruction (Fig. 8b). These are successfully



Fig. 9. Reconstructed fetal brain MRI of a subject with GA 23 weeks using only five stacks of slices. First row: One of the acquired stacks. Second row: Reconstructed volume.

Fig. 10. Reconstructed fetal brain MRI of a subject with GA 26 weeks using only five stacks of slices. First row: One of the acquired stacks. Second row: Reconstructed volume.
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removed using EM robust statistics (Fig. 8c). The posteriors and the
errors for this slice are shown in Fig. 8e and f. Figs. 9–11 present
the reconstructed volumes of the subjects with GA 23, 26 and
34 weeks, respectively.

4.3. Leave-one-out analysis of clinical data reconstruction

In previous studies, quantitative evaluation of fetal reconstruc-
tion methods was limited to simulated experiments, as there is no
ground truth volume available for the real fetal data. In this paper
we propose a new way of quantitatively evaluating reconstruction
of the real data using leave-one-out strategy. In the absence of
volumetric data, we can measure how well the reconstructed vol-
ume matches a stack of slices, which has been excluded from the
reconstruction, by aligning these slices to the volume and simulat-
ing the acquisition. We can then perform a quantitative test by
comparing these simulated slices the acquired slices in the evalu-
ation stack. For each of the 10 clinical datasets, one stack was cho-
sen for evaluation and another three to five stacks were chosen to
reconstruct the volumetric image, depending on availability. The
evaluation stacks were checked for corrupted slices and registered
to the reconstructed volume, followed by iterating between slice-
to-volume registration and intensity-matching proposed in this
paper. The process converged when the sum-of-squared-



Fig. 11. Reconstructed fetal brain MRI of a subject with GA 34 weeks using only five stacks of slices. First row: One of the acquired stacks. Second row: Reconstructed volume.

Table 6
Average NRMSE obtained from leave-one-out evaluation of 10 clinical datasets. Last
column shows p-value, showing statistical significance of performance compared to
the full method.

Method NRMSE p-Value

Full 0:117� 0:011
Huber 0:120� 0:012 0.02
No robust 0:125� 0:015 0.03
No matching 0:129� 0:024 0.02
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differences between slices of the evaluation stacks and correspond-
ing slices simulated from the reconstructed stack achieved no fur-
ther improvement. After convergence, the NRMSE was calculated
similarly to Eq. (11), except that averaging was performed over
the voxels of the evaluation stack and normalized by the average
intensity of the reconstructed volume. Table 6 shows quantitative
results of this leave-one-out evaluation using the first four meth-
ods summarized in Table 2. Exclusion of either intensity matching
or robust statistics results in drop of performance compared to the
full method proposed in this paper, which is statistically significant
(p-value 0.05), as shown by the third column of Table 6. The pro-
posed method also achieves a statistically significant improvement
compared to the method with Huber statistics, while Huber statis-
tics still performs better compared to using no robust statistics. In
Fig. 12 we present the reconstruction results of the leave-one-out
analysis using the four methods quantitatively evaluated in Table 6.
We can observe artifacts of misregistration (Fig. 12c) and intensity
inconsistencies (Fig. 12d) if no robust statistics or no intensity
matching are applied during reconstruction. Fig. 12b demonstrates
artifacts of incomplete removal of misregistered or corrupted slices
using the Huber function, which may also negatively influence the
registration accuracy. None of these artifacts are present when
both intensity matching and EM robust statistics are used
(Fig. 12a). Nevertheless, we can still observe discontinuities in
the coronal and sagittal view of Fig. 12a. These are caused by an
insufficient number of slices used for reconstruction and conse-
quently an incomplete coverage of the volume. The reconstruction
quality can be enhanced by providing additional data (compare
with Fig. 9).
4.4. Sufficient number of stacks

When deciding on a scanning protocol for acquiring fetal brain
MRI, it is important to understand how many stacks of slices are
needed so that unnecessary stress on the patient is not imposed.
Additionally, increasing the number of stacks demands more com-
puting resources in terms of memory and computational time. One
of the most demanding parts of the algorithm is the computation
of matrices Mk, which consists of discretized oriented 3D Gaussians
(PSF). As calculating Mk on the fly is too time-consuming, we only
calculate it once for each motion-correction iteration and store it
throughout super-resolution iterations. The amount of RAM
needed for storage of Mk can be quite large, especially for older
subjects. Even when Mk were stored, computational times for the
experiments described in this paper were in the range of several
hours. In our experiments we observed that in presence of motion
artifacts, five stacks acquired by the clinical protocol described at
the beginning of Section 4.2 are generally sufficient to produce
good results. Reconstructed volumes presented in Figs. 6, 9, 10
and 11 were all obtained using five stacks. We performed an exper-
iment with the subject with GA 27 weeks, for which 10 good qual-
ity stacks were available. The leave-one-out analysis showed that
performance did not improve significantly for more than five
stacks, though some marginal improvement was still achieved
with nine stacks. Similar results were obtained for the subject with
GA 33w. Even though these results are just preliminary, they can
serve as a guidance when deciding on the scanning protocol for fe-
tal brain MRI.
4.5. Reconstruction of data acquired using optimized sequences

Previous methods tried to produce high-resolution reconstruc-
tions of fetal brain MRI in one of the two ways: Jiang et al.
(2007) used thin slices and dense oversampling of the space fol-
lowed by B-spline interpolation, while Gholipour et al. (2010)
and Rousseau et al. (2010) used super-resolution techniques to
reconstruct clinical thick slice data. In this section we investigate
whether super-resolution techniques can also improve reconstruc-
tion of densely sampled thin slice data. We reconstructed three



Fig. 12. Reconstructions of the 23 week old fetus from four stacks using four methods evaluated in Table 6: (a) Reconstruction with EM robust statistics and intensity
matching (Full). (b) Reconstruction with Huber robust statistics and intensity matching (Huber). (c) Reconstruction with no robust statistics and intensity matching (No
robust). (d) Reconstruction with EM robust statistics and no intensity matching (No matching). Red arrows in column (b) show artifacts caused by incomplete removal of
misregistered or corrupted slices when Huber robust statistics are used. Blue arrows in column (c) point to artifacts caused by misregistered or corrupted slices when no
robust statistics is used. Green arrows show artifacts of intensity inconsistencies in column (d). Compare to Fig. 9 where all five stacks of the same dataset were used for
reconstruction using our method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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thin-slice datasets with GA 23, 28 and 36 weeks, acquired at Ham-
mersmith Hospital, London (see Fig. 13a). The images were ac-
quired on Philips Achieva 1.5T scanner with parameters
TR = 15000, TE = 140–180 and excitation pulse of 90�. The datasets
consist of eight stacks of thin slices, with in-plane resolution
1.176 mm, slice thickness 2.5 mm and slice overlap 1.25 mm. The
sequences were designed to acquire approximately isotropic data.
The PSF in-plane is a sinc function in both direction, and most of
the signal is contained within four in-plane resolution units. This
is approximately matched by a Gaussian with FWHM 2.5 mm
which is a good approximation of the slice profile. The slice overlap
of 50% of the slice thickness was chosen to ensure dense samples
even when there is no movement.

The approximately isotropic nature makes these data suitable
for reconstruction using multilevel B-splines (Lee et al., 1997).
We reconstructed these datasets with multilevel B-splines com-
bined with intensity matching and a simplified version of robust
statistics (we exclude slices with weights smaller than 0.5) and this



Fig. 13. Reconstructed fetal brain MRI of a subject with GA 28 weeks using eight stacks of data acquired using optimized sequences. (a) One of the acquired stacks. (b)
Reconstruction using multilevel B-splines. (c) Super-resolution reconstruction with PSF derived from the voxel spacing (FWHM 1.176 mm in-plane and 1.25 mm through-
plane). (d) Super-resolution reconstruction with PSF matched to the data (FWHM 1.4 mm in-plane and 2.5 mm through-plane). The same motion correction parameters,
determined by application of the full algorithm, were employed in all cases, with only the final reconstruction being performed using the three different reconstruction
approaches. Intensity matching and robust statistics were used during all three reconstructions.
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method produced good results (see Fig. 13b). To investigate
whether super-resolution techniques could further improve the re-
sults, we also reconstructed these datasets using our proposed
method. In the first experiment the PSF was set to match the res-
olution of the stacks with FWHM matched to the voxel size in each
direction (see Fig. 13c). In the second experiment the PSF was cho-
sen to closely approximate the real acquisition of the data. FWHM
of the 3D Gaussian in-plane was set to FWHM of the central lobe of
the sinc function (1.2 � in-plane resolution), and in through-plane
direction to the slice thickness. The results shown in Fig. 13d
suggest that the super-resolution reconstruction with the PSF cor-
rectly matched to the data can produce high-definition and high-
resolution fetal brain volumes. We can observe that the definition
of the structures is improved using the super-resolution technique
compared to B-spline interpolation. The best results are achieved
when the PSF reflects the true acquisition properties of the data,
producing images with the best contrast-to-noise ratio.
5. Discussion

In this paper we described an algorithm which is designed to
deal with the major artifacts in fetal brain MRI. We proposed a
practical solution, which produced excellent results which can be
used for further image analysis. We combined techniques best sui-
ted for the task in our opinion, sometimes at the expense of more
rigorous theoretical modeling, e.g. by choosing different objective
functions for reconstruction and motion correction. The develop-
ment of a more rigorous mathematical framework, which would
theoretically unify all elements in a single objective function,
therefore remains an open problem at present.

We proposed to use a multi-resolution approach which makes
use of temporal relaxation of the regularization requirement. Thus
at the beginning of the process, when slices are not well aligned,
the influence of a single slice is decreased, preventing registration
of the slice against itself. We found this approach to be very effec-
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tive especially in cases where a large amount of motion is present
and only a small amount of data is available, often the case when
reconstructing MRI of young fetuses. Such data are prone to getting
trapped in a sub-optimal solution, when a misaligned slice is visi-
ble in the reconstructed volume rather than being correctly
aligned. This happens largely due to the use of a redescending
influence function to perform robust statistics which makes the
convergence to the global optima not guaranteed. Thus the main
goal of using a multi-resolution approach is to encourage the
motion correction to find the global optima. If the amount of
motion is small and more slices are available for reconstruction,
the influence of the multi-resolution scheme is small and compara-
ble results are obtained with and without temporally adaptive
smoothing. We believe this is because the algorithm is initialised
close to the global optimum, and a larger amount of data means
that the global optimum is better defined.

In our preliminary experiments we estimated that five stacks of
thick-slice clinical data (3–4 mm thick) with a gap (0.5 mm) are
sufficient for good reconstruction of the fetal brain volume which
is suitable for further analysis. Indeed, increasing the number of
stacks may result in further improvement. In their work, Rousseau
et al. (2010) established that under ideal conditions, three
orthogonal stacks of thick slices with no gaps are sufficient if
super-resolution reconstruction is combined with edge-preserving
regularisation. They performed a reconstruction of fetal MRI of a
sedated fetus demonstrating good results. However, up to nine
stacks were needed when Gaussian noise was added. Gholipour
et al. (2010) determined that nine stacks were needed to maximize
the performance of the reconstruction, even though good recon-
structions could be achieved with smaller number of stacks. As
our clinical data contain gaps and motion-corrupted slices (and
no sedation was used), it is natural that more than three stacks
are needed to obtain good coverage of the volume. Our preliminary
results are therefore in line with findings of the previous works.

6. Conclusion

In this paper we proposed a comprehensive methodology for
reconstruction of fetal brain MRI. The method can deal with data
with both large and small slice thickness as well as motion corrup-
tion and intensity artifacts present in fetal brain MRI. We described
a particular implementation of the proposed framework, which
produces excellent results. Moreover, the framework is flexible
and different elements, such as the similarity measure for motion
correction, robust statistics and the volume reconstruction can be
changed or further developed. We proposed a novel robust statis-
tics which completely removes identified outliers and thus enables
us to reconstruct the volume from a small number of stacks. We
also showed that proposed intensity matching is essential to pro-
duce artifact-free reconstructions. The method produced excellent
results for clinical data, which are often acquired by protocols
aimed at short scanning times and visually plausible images but
are not optimal for the 3D reconstruction purposes. Thus the meth-
od is widely applicable, including situations when optimization of
sequences is not possible or the data have already been acquired
for other purposes. When our proposed methodology was applied
to optimized densely sampled thin-sliced data, we achieved high-
definition reconstructions, suitable for further image analysis and
detailed quantification fetal brain development.
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