
fpsyt-13-906404 July 19, 2022 Time: 14:20 # 1

ORIGINAL RESEARCH
published: 25 July 2022

doi: 10.3389/fpsyt.2022.906404

Edited by:
Zhiguo Zhang,

Shenzhen University, China

Reviewed by:
Lin Liu,

Peking University, China
Feng Liu,

Tianjin Medical University General
Hospital, China

*Correspondence:
Xiao Zeng

xiaozeng1024@gmail.com
Peng Liu

liupengphd@gmail.com
Yanzhu Wang

wangyanzhu1970@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Psychiatry,
a section of the journal
Frontiers in Psychiatry

Received: 19 April 2022
Accepted: 22 June 2022
Published: 25 July 2022

Citation:
Geng B, Gao M, Piao R, Liu C,

Xu K, Zhang S, Zeng X, Liu P and
Wang Y (2022) Multivariate Pattern

Analysis of Lifelong Premature
Ejaculation Based on Multiple Kernel

Support Vector Machine.
Front. Psychiatry 13:906404.

doi: 10.3389/fpsyt.2022.906404

Multivariate Pattern Analysis of
Lifelong Premature Ejaculation
Based on Multiple Kernel Support
Vector Machine
Bowen Geng1,2†, Ming Gao3†, Ruiqing Piao1,2, Chengxiang Liu1,2, Ke Xu1,2,
Shuming Zhang1,2, Xiao Zeng1,2* , Peng Liu1,2* and Yanzhu Wang3*

1 Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China, 2 Engineering
Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian
University, Xi’an, China, 3 Department of Urology, Xi’An Daxing Hospital Affiliated to Yan’an University, Xi’an, China

Objective: This study aimed to develop an effective support vector machine (SVM)
classifier based on the multi-modal data for detecting the main brain networks involved
in group separation of premature ejaculation (PE).

Methods: A total of fifty-two patients with lifelong PE and 36 matched healthy controls
were enrolled in this study. Structural MRI data, functional MRI data, and diffusion tensor
imaging (DTI) data were used to process SPM12, DPABI4.5, and PANDA, respectively.
A total of 12,735 features were reduced by the Mann–Whitney U test. The resilience
nets method was further used to select features.

Results: Finally, 36 features (3 structural MRI, 7 functional MRI, and 26 DTI) were
chosen in the training dataset. We got the best SVM model with an accuracy of 97.5%
and an area under the curve (AUC) of 0.986 in the training dataset as well as an accuracy
of 91.4% and an AUC of 0.966 in the testing dataset.

Conclusion: Our findings showed that the majority of the brain abnormalities for the
classification was located within or across several networks. This study may contribute
to the neural mechanisms of PE and provide new insights into the pathophysiology of
patients with lifelong PE.

Keywords: machine learning, multivariate pattern analysis (MVPA), lifelong premature ejaculation (lifelong PE),
neuroimaging, diffusion tensor imaging (DTI), MRI, support vector machine (SVM)

INTRODUCTION

Premature ejaculation (PE) is one of the most common male sexual dysfunction worldwide.
According to the International Society for Sexual Medicine and European Association of Urology
Guidelines, the definition of lifelong PE was characterized by the following: ejaculation that
always or nearly always occurs prior to or within about 1 min of vaginal penetration (1).
Consistent with epidemiological data, there is approximately a 5% lifetime prevalence of PE in
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the general population (1). PE may involve multiple etiologies,
including genetics, neurobiology, endocrinology, urology,
psychology, and related factors (2). In recent years, the neural
mechanism of PE has gradually attracted people’s attention.
Undoubtedly, it is of great significance to investigate the
objective neurobiological markers for diagnosis and treatment.

The development of neuroimaging techniques, such as
structural and functional MRI (fMRI) as well as diffusion tensor
imaging (DTI), provides a task-free approach and a reliable
measure of the brain mechanism. A significant difference in the
caudate nucleus volume was found between patients with PE and
healthy controls (HCs) (3). Patients with lifelong PE also had
altered gray matter volume (GMV) in the bilateral amygdala (4).
A recent study found that altered amplitude of low-frequency
fluctuations (ALFF) of the frontal cortex, the parietal cortex,
and the putamen might help distinguish premature ejaculation
from anejaculation (5). Another study investigated the neural
basis of patients with PE based on the measure of regional
homogeneity (ReHo) (6). Patients with lifelong PE showed
abnormal degree centrality (DC) value in the medial prefrontal
cortex, the precuneus, the primary somatosensory cortex, and the
orbitofrontal cortex (7). Compared to HCs, patients with PE also
showed widespread increases in fractional anisotropy (FA) and
axial diffusivity values (8). Although these studies undoubtedly
provided meaningful insights into brain functional and structural
abnormalities of PE underlying traditional intergroup statistical
methods, most of these studies applied single or two types of
neuroimaging data and involve a few indicators for comparison,
and the method that can effectively integrate multiple types of
brain images and multiple brain indicators are still unclear.

Multivariable pattern analysis (MVPA) based on machine
learning could better utilize the inherent multivariable properties
of high-dimensional neuroimaging data to classify new samples,
which works by decoding patterns of differences between brain
regions/connections by learning discriminant rules from datasets
(9). As one of the many MVPA methods, SVM is one of the most
prevalent classifiers used in neuroimaging-based classification,
and SVM models can provide confidence in the classification
in terms of the distance to the separating hyperplane (10).
A previous study indicated that the integration of structural
MRI (sMRI), fMRI, and DTI may provide more energy for
the diagnosis of schizophrenia (11). Other findings suggest that
machine learning classifiers trained based on resting-state fMRI
features of participants under anesthesia may help to distinguish
the degree of pathological unconsciousness in clinical patients
(12). Although a previous studiy applied an SVM model in
fMRI data to distinguish patients with PE from HCs (13), there
have been no reports combining three types of brain imaging
data including several structural and functional measures to
investigate the brain mechanism of PE, and the pathophysiology
and neural mechanisms of abnormal brain regions in patients
with PE need further study.

Against this background, we aimed to (1) develop an effective
SVM classifier based on the three types of neuroimaging data and
(2) detect the main brain networks involved in group separation
in order to improve the understanding of PE.

MATERIALS AND METHODS

Participants
A total of 88 right-handed adult men including 52 drug-naïve
patients with lifelong PE and 36 matched HCs were enrolled in
the present study. Patients with lifelong PE were diagnosed by
the guideline of the International Society for Sexual Medicine
(ISSM) (1). For the inclusion criteria of all patients with lifelong
PE, the Premature Ejaculation Diagnostic Tool (PEDT) score was
>11, the intravaginal ejaculation latency time (IELT) was <1 min,
and the International Index of Erectile Function (IIEF-5) score
was >21 (14). The inclusion criteria of HCs were as follows: (1)
PEDT was <5; (2) IELT > 3 min; and (3) IIEF-5 score > 21.
All participants with a history of neurological or psychiatric
disorders, of urological surgery, and of alcohol, nicotine, or drug
abuse were excluded from this study. Self-Rating Anxiety Scale
(SAS) and Self-Rating Depression Scale (SDS) were utilized to
examine the anxiety and depression \52\ 28.

MRI Data Acquisition
Individual MRI data were acquired using a 3T MRI system
(Excite, General Electric, Milwaukee, WI, United States).
Participants were asked to lie in the scanner in the supine
position, with their eyes closed and without thinking,
and the head motion were restricted with foam fillers.
The functional MRI images were collected by using the
gradient echo with the following parameters: repetition
time (TR) = 2,000 msec, echo time (TE) = 30 ms, slice
thickness = 3.5 mm, data matrix = 64 × 64, flip angle
(FA) = 90◦, field of view (FOV) = 240 mm × 240 mm, in-
plane resolution = 3.75 mm × 3.75 mm. The scan parameters of
the T1 images were as follows: TR = 8.2 ms; TE = 3.2 ms; FA = 12◦;
data matrix = 256 × 256; in-plane resolution = 1 mm × 1 mm;
FOV read = 256 mm; and slice thickness = 1 mm. The scan
parameters of DTI data were as follows: TR/TE = 10,000/85.3 ms,
FOV = 240 mm × 240 mm, slice thickness = 2 mm, data
matrix = 256 × 256, and 70 continuous axial slices with no gap.
2 Diffusion-weighted sequences were acquired using gradient
values b = 0 and b = 1,000 s/mm2 with diffusion sensitizing
gradients applied along 64 non-linear directions.

Structural MRI Preprocessing
The T1-weighted structural data analysis was preprocessed by the
CAT12 toolbox, which is based on Statistical Parametric Mapping
12 (SPM12)1 in accordance with the following procedures:
(1) T1 data was normalized to the template space; (2) the
processed images were segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF); (3) quality checks,
including displaying one slice for all images and checking sample
homogeneity, were carried out; (4) different brain sizes based on
total intracranial volume (TIV) by the ANCOVA model were
corrected; and (5) the image data with an 8 mm full-width at
half-maximum Gaussian kernel were smoothed (4).

1http://www.fil.ion.ucl.ac.uk/spm
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Functional MRI Preprocessing
The preprocessing of the fMRI imaging data was accomplished
by the DPABI toolbox (DPABI 4.5).2 First, the first five
volumes to avoid the effect of the scanning inadaptation were
removed. Then, slice-timing and head motion were corrected
for the time delay of acquisition and the alignment to the first
volume, respectively. We excluded all subjects whose maximum
translation was larger than 2 mm or head rotation exceeded
2◦. After normalizing to the Montreal Neurological Institute
(MNI) space by using the EPI template, images were resampled
at 3 mm × 3 mm × 3 mm. The nuisance factors included 24 head
motion parameters, the WM, and the CSF signal in the procedure
of nuisance covariates regression. Finally, smoothing, detrending,
and temporal bandpass filtering (0.01–0.1 Hz).

Diffusion Tensor Imaging Preprocessing
Diffusion tensor imaging (DTI) data were processed using the
PANDA, which was a pipeline toolbox for analyzing brain
diffusion imaging. The individual FA images of native space
were registered to the FA template in the MNI space. After
that, the resulting warping transformation was applied to write
the diffusion metric image, such as mean diffusivity (MD), axial

2http://rfmri.org/dpabi

diffusivity (AD), and radial diffusivity (RD), into MNI space. In
this study, the Anatomical Automatic Labeling (AAL) template
with 90 cortical and subcortical regions (45 in each hemisphere)
was applied to obtain the mean tensor-based parameters value
of each brain region. For network construction, the whole-brain
fiber tractography was obtained by a deterministic streamline
tracking algorithm. If it turns at an angle of more than 45◦ or
reaches a voxel with a FA < 0.15, the tractography terminates. In
addition, the FA matrix, the fiber number (FN) matrix, and the
fiber length matrix were computed for network analysis.

Feature Extraction and Feature Selection
In the current study, we calculated functional and structural
measures, including GMV, ReHo, ALFF, DC, FA, MD, AD, and
RD, as well as a matrix of the mean value of FA on the fiber, a
matrix of the fiber length, and a matrix of the fiber number as
the variables in the following statistical analysis. First, we used a
z-score to standardize all the features. Then, a two-stage feature
selection technique was used to select the most discriminating
features and improve the reliability of the results. Since the
number of matrix features (FA matrix, fiber number, fiber length)
is much larger than other features, a non-parametric Mann–
Whitney U test was used for preliminary selection to make all
feature dimensions similar (40 features with minimum p-value

FIGURE 1 | Flow diagram of the analysis approach employed in the study. (A) Feature selection. (B) The number of matrix features (FA matrix, fiber number, and
fiber length) was reduced by the non-parametric Mann–Whitney U test. (C) The feature matrix is extracted after dimensionality reduction. (D) The multi-kernel
support vector machine (SVM) model training.
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were retained for each type). Considering individual variation,
in order to ensure the stability of the retained variables, we
adopted the keep-one elimination method. After the Mann–
Whitney U test in the first step, we spliced the remaining features
with other features as the input for the second feature selection.
When applying L1-penalty and L2-penalty simultaneously, the
elastic net exhibited the grouping effect, i.e., selecting a group
of features with a high correlation and making their regression
coefficients to be equal. Due to the simultaneous application of
L1- and L2-penalties, the elasticity network exhibits a grouping
effect, which is a set of features with high correlation selected
so that their regression coefficients tend to be equal. Therefore,
4-fold cross-validation resilience nets were randomly shuffled
100 times with the classification accuracy as a cost function to
select the most informative set of relevant features and retain
non-zero features.

Support Vector Machine Classifier
A fourfold cross-validation strategy was used to evaluate the
classification performance, which included accuracy, sensitivity,
specificity, precision, recall, and f1. Specifically, all samples
were divided equally into four subsets, with samples from three
subsets being used to train a multi-kernel SVM classifier and
samples from another subset being used to calculate classification
metrics. The entire dataset was randomly shuffled 100 times to
avoid any bias introduced by randomly splitting the dataset,
and cross-validation was performed after each shuffle. Average
classification accuracy, sensitivity, specificity, precision, recall
f1, and area under the curve (AUC) were calculated over the
100 runs. The flow diagram for this study is illustrated in
Figure 1. Our method was implemented using the Scikit-learn
and Scipy packages for Python. Overall, the performance of
our method is assessed by various metrics including accuracy,
sensitivity, specificity, precision, recall, f1, the receiver operating
characteristic (ROC) curve, and AUC.

RESULTS

Demographics and Clinical Results
The demographics and clinical features (age, PEDT, IELT, SAS,
and SDS) of all participants are summarized in Table 1.

Feature Selection
Among the 3 types of data, 12,735 features were reduced by the
Mann–Whitney U test. Finally, 36 features (3 sMRI, 7 fMRI,
and 26 DTI) were chosen in the training dataset. Supplementary
Table 1 shows the 36 features in detail with the AAL
template. These abnormalities were located within or across the
default mode network, the affective network, the sensorimotor
network, the reward circuitry, and the frontoparietal network
(Figures 2, 3).

Support Vector Machine Analysis
After training SVM in the training dataset with the 36 selected
features, we got the best SVM model with an accuracy of 97.5%
and an AUC of 0.986 in the training dataset. Then, we used the

model to predict the status in the testing dataset with an accuracy
of 91.4% and an AUC of 0.966 (Figure 4). The results showed
that 36 selected features could distinguish the difference between
patients with PE and the general population.

DISCUSSION

Within this study, we applied a multivariate pattern analysis to
distinguish patients with lifelong PE from HCs. The accuracy was
97.5% and the AUC was 0.99 in the training dataset by applying
36 selected features in 3 types of data, and the accuracy was 91.4%
and the AUC was 0.97 in the testing dataset. To the best of our
knowledge, this is the first study to develop a multivariate pattern
method that combines the resting state sMRI, fMRI, and DTI
data in the classification of PE and HCs. Our results showed that
the majority of the structural and functional abnormalities that
contributed to the classification were located within or across the
default mode network, the affective network, the sensorimotor
network, the reward circuitry, and the frontoparietal network.

Previous studies reported their works on functional or
structural abnormalities by using traditional group-level
statistical methods. A notable finding using the SVM model
has shown important progress in distinguishing patients with
PE from HCs (13). The researchers found significant group
differences in functional connectivity (FC) in patients with
PE between the (1) left and right orbitofrontal cortices, (2)
the left rectus and right postcentral gyri, (3) the right insula
and the left pallidum, and (4) the right middle part of the
temporal pole and the right inferior part of the temporal gyrus.
Although the classification model showed good performance
(accuracy = 0.85 ± 0.14, AUC = 0.8), their study only involved
single-modal resting-state fMRI data (13). By contrast, our
proposed method applied machine learning methods to
investigate the neural mechanism of PE by combining three
types of brain imaging data with several structural and
functional measures.

The feature selection process discerned the functional and
structural abnormalities in PE largely covering the default
mode network and the sensorimotor network. The functional
elements of the default mode network comprise supporting
emotional processing, self-referential mental activity, and the

TABLE 1 | Demographic and clinical features of patients with lifelong PE and HCs.

HC (n = 36) PE (n = 52) P-value

Ages (years) 31.69 ± 0.47 30.40 ± 0.75 0.1923

IIEF-5 score 24.17 ± 0.22 23.83 ± 0.12 0.1426

IELT (min) 10.72 ± 0.87 0.6500 ± 0.03 0.000***

PEDT 1.028 ± 0.32 16.98 ± 0.25 0.000***

Anxiety 30.50 ± 0.27 39.08 ± 0.82 0.000***

Depression 30.67 ± 0.36 40.81 ± 0.46 0.000***

PE, premature ejaculation; HC, healthy controls; IIEF-5, International Index of
Erectile Function; IELT, intravaginal ejaculatory latency time; PEDT, premature
ejaculation diagnostic tool.
***, P < 0.001 by a two-sample t-test.
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FIGURE 2 | Nineteen features separately of structural MRI (sMRI) (GMV), fMRI (ReHo, ALFF, DC, and FC), and DTI (FA, MD, AD, and RD) data for discriminating
between patients with PE and healthy control subjects. (A) Three ROIs have the smallest p-value for the sMRI measure. (B) Seven ROIs have the smallest p-value for
fMRI measures. (C) Nine ROIs have the smallest p-value for the DTI measure. The dark blue region indicates the frontoparietal network, the light blue region indicates
the affective network, the indigo region indicates the default-mode network, the orange region indicates the sensorimotor network, the yellow region indicates the
reward circuitry, and the dark red region indicates the other areas in the AAL template.

recollection of prior experiences (15). The relevant brain regions
involved in the current study included the precuneus (16), the
hippocampus, the thalamus, the medial part of the superior
frontal gyrus, and the angular gyrus, which have been previously
reported to be associated with PE (17). For instance, a previous
study found a significantly decreased short-range functional
connectivity density in the thalamus and increased long-range
functional connectivity density in the precuneus (18). Patients
with PE also had decreased FC between the left nucleus
accumbens and the bilateral thalamus (19). A DTI study using
nodal strength investigated the difference in group-specific hub
regions, including the precuneus and hippocampus, as well
as increased global efficiency, strength, and decreased shortest
path length in the medial part of the superior frontal gyrus
(8). In addition, our results also suggest that the sensorimotor
network may have a role in distinguishing patients with PE
from HCs. Several regions are known to be reported in the
recent study (20). A recent neuroimaging study showed that
abnormal neural activation responses to visual erotic stimulation
in patients with lifelong PE were related to the sensorimotor
processing region (21). Patients with lifelong PE had increased

DC value in the primary somatosensory cortex (7). Taken
together, these findings suggest that an altered default mode
network and the sensorimotor network may provide a reliable
neuroimaging-based interpretation of PE, which may indicate
that the abnormalities in the default mode network and the
sensorimotor network are related to defective function of
self-referential processing, self-focused attention, and sensory
information processing in patients with PE.

The observed group differences in the reward circuit and the
affective network are particularly noteworthy when comparing
patients with PE with HCs. The reward circuit comprises the
ventral tegmental area dopaminergic neurons, which innervate
several regions of the part of the ventral striatum, the prefrontal
cortex, the amygdala, and the hippocampus, as well as other
areas (22). It plays an important role in the recognition of
environmental rewards, initiation of consumption, and response
to aversive stimuli (23). Previous studies reported these so-
called brain reward regions in patients with PE compared to
HCs (3, 24). Especially, structural covariance changes of the
striatum were found in patients with lifelong PE (25). Patients
with PE also had significantly increased mean caudate nucleus
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FIGURE 3 | Seventeen matrix features of DTI data for discriminating patients with PE and healthy control subjects. (A) The results of the FA matrix, the FN matrix,
and the length matrix. (B) Only FA matrix. (C) Only FN matrix. (D) Only Length matrix. The dark blue spot indicates the frontoparietal network, the light blue spot
indicates the affective network, the indigo spot indicates the default-mode network, the orange spot indicates the sensorimotor network, the yellow spot indicates
the reward circuitry, and the dark red spot indicates the other areas in the AAL template.

volume, while the decreased mean amygdala volume was shown
in patients compared to HCs (3, 4). In other respects, previous
studies reported structural and functional abnormalities of the
abovementioned regions in patients with PE. As expected, the
current results involve several regions in the affective network,

such as the amygdala, the temporal pole, the pallidum, and
the parahippocampal cortex. In particular, the amygdala is
considered the basis for emotion regulation processes (26) and
also is connected in complex ways with other reward regions
(22). Further, in our results, the features of the amygdala both
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FIGURE 4 | The ROC curve of the SVM model. The blue line is the ROC curve of the training dataset, and the orange line is the ROC curve of the testing dataset.
ROC, receiver operating characteristic.

in sMRI (GMV) and DTI (RD) were available as biomarkers for
PE. We thereby speculated that the pathophysiology of PE might
be related to the ineffective emotional regulation process and
integration of reward information. In this case, these findings
may provide us with a better understanding of the neural
mechanism of PE.

Our main analysis of features revealed that certain
regions located in the frontoparietal network (including the
prefrontal cortex and lateral parietal cortices) and other regions
(including temporal and occipital cortex) were associated with
PE. The control system, consisting of several sub-systems
(“frontoparietal,” “cingulo-opercular,” and “dorsal attention”
portion), is considered to be involved in highly adaptive control
processes, time-extended control processes, and coordinated
attention to external stimuli (27). It is widely believed that
the control system, especially the frontoparietal network, can
communicate extensively with a variety of systems throughout
the brain (28). A prevalent view is that the prefrontal cortex
serves as a source of inhibitory control over other brain areas
(29). According to previous studies about PE, multiple brain
regions with abnormalities of function and structure were in
the frontoparietal network. For example, patients with lifelong
PE had decreased amygdala-related FC in the inferior frontal
gyrus, which is a specialized response inhibition area (4). The
increased DC value in the medial prefrontal cortex was found
in patients with PE compared with HCs (7). Patients with PE
also had decreased FC between the nucleus accumbens and the
orbitofrontal cortex (19). In our study, the abnormalities in
the frontoparietal network might reflect the information that
patients with PE had abnormal processing of extending the
control process, coordinating attention to external stimulation,
and inhibitory controls during ejaculation. Further, there are
also other regions worthy of attention reported in our study.
The findings suggested that the temporal and occipital cortices
were associated with PE, which was mentioned by previous
studies (30).

The current study has several limitations. First, although
the sample of our study was larger than previous studies, the

sample size was relatively small. Second, future studies should use
longitudinal data that may reduce possible confounders. Finally,
besides the AAL-90 atlas, future studies should further detect
subtle anatomical differences between different atlases.

CONCLUSION

In conclusion, based on three types of imaging data and machine
learning approaches, our study showed that the majority of the
brain abnormalities for the classification were located within or
across several networks. This study may contribute to neural
mechanisms associated with PE and provide new insights into the
pathophysiology of patients with lifelong PE.

DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Northwest Women’s and Children’s Hospital
Ethics Committee. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

BG and PL: conceptualization. MG and YW: data curation. BG
and RP: methodology. MG, CL, SZ, and KX: investigation. RP,

Frontiers in Psychiatry | www.frontiersin.org 7 July 2022 | Volume 13 | Article 906404

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-906404 July 19, 2022 Time: 14:20 # 8

Geng et al. Multivariate Pattern Analysis of LPE via SVM

CL, and XZ: software. BG: writing – original draft. BG, YW, PL,
and RP: writing – review and editing. MG: funding acquisition.
YW, PL, and XZ: resources. All authors contributed to the article
and approved the submitted version.

FUNDING

This study was financially supported by the National
Natural Science Foundation of China (No. 62001370),
the China Postdoctoral Science Foundation Grant (No.
2019M650985), the Young Science and Technology stars
in Shaanxi Province (No. 2021KJXX-56), the Health
Research Talent Project of Xi’an Health Commission (No.
2021yb61), the Project for improving public scientific
quality of Shaanxi province (No. 2021PSL115), and

the Shaanxi Provincial Health Research Fund Project
(No. 2022D006).

ACKNOWLEDGMENTS

We thank the Assisted Reproduction Center, Northwest Women
and Children Hospital Affiliated with Xi’an JiaoTong University
for behavioral and neuroimaging data acquisition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyt.
2022.906404/full#supplementary-material

REFERENCES
1. Althof SE, McMahon CG, Waldinger MD, Serefoglu EC, Shindel AW, Adaikan

PG, et al. An update of the international society of sexual medicine’s guidelines
for the diagnosis and treatment of premature ejaculation (PE). SexMed. (2014)
2:60–90.

2. Jannini EA, Ciocca G, Limoncin E, Mollaioli D, Di Sante S, Gianfrilli D,
et al. Premature ejaculation: old story, new insights. Fertil Steril. (2015)
104:1061–73. doi: 10.1016/j.fertnstert.2015.08.035

3. Atalay HA, Sonkaya AR, Ozbir S, Culha MG, Degirmentepe RB, Bayraktarli
RY, et al. Are there differences in brain morphology in patients with lifelong
premature ejaculation? J Sex Med. (2019) 16:992–8.

4. Geng BW, Gao M, Wu JY, Yang G, Liu C, Piao R, et al. Smaller volume
and altered functional connectivity of the amygdala in patients with lifelong
premature ejaculation. Eur Radiol. (2021) 31:8429–37. doi: 10.1007/s00330-
021-08002-9

5. Chen JH, Yang J, Huang XF, Wang Q, Lu C, Liu S, et al. Brain functional
biomarkers distinguishing premature ejaculation from anejaculation by ALFF:
a resting-state fMRI study. J Sex Med. (2020) 17:2331–40. doi: 10.1016/j.jsxm.
2020.09.002

6. Chen JH, Wu WK, Xiang ZL, Wang Q, Huang X, Lu C, et al. Aberrant
default mode network and auditory network underlying the sympathetic
skin response of the penis (PSSR) of patients with premature ejaculation:
A resting-state fMRI study. Andrology. (2021) 9:277–87. doi: 10.1111/andr.1
2914

7. Gao M, Feng NN, Liu X, Sun J, Hou G, Zhang L, et al. Abnormal degree
centrality in lifelong premature ejaculation patients: an fMRI study. Brain
Imaging Behav. (2021) 15:1412–9.

8. Chen J, Yang J, Huang X, Lu C, Liu S, Dai Y, et al. Variation in brain subcortical
network topology between men with and without PE: a diffusion tensor
imaging study. J Sex Med. (2020) 17:48–59.

9. Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends Cogn Sci. (2006) 10:424–30. doi:
10.1016/j.tics.2006.07.005

10. Ang L, Zalesky A, Yue WH, Howes O, Yan H, Liu Y, et al. A neuroimaging
biomarker for striatal dysfunction in schizophrenia. Nat Med. (2020)
26:558–65.

11. Guo SX, Huang CC, Zhao W, Yang AC, Lin CP, Nichols T, et al. Combining
multi-modality data for searching biomarkers in schizophrenia. PLoS One.
(2018) 13:e0191202. doi: 10.1371/journal.pone.0191202

12. Campbell JM, Huang ZR, Zhang J, Qin P, Northoff G, Mashour GA,
et al. Pharmacologically informed machine learning approach for identifying
pathological states of unconsciousness via resting-state fMRI. Neuroimage.
(2020) 206:116316. doi: 10.1016/j.neuroimage.2019.116316

13. Xu ZL, Yang XJ, Gao M, Liu L, Sun J, Liu P, et al. Abnormal resting-state
functional connectivity in the whole brain in lifelong premature ejaculation

patients based on machine learning approach. Front Neurosci. (2019) 13:448.
doi: 10.3389/fnins.2019.00448

14. Rhoden EL, Teloken C, Sogari PR, Souto CAV. The use of the simplified
international index of erectile function (IIEF-5) as a diagnostic tool to study
the prevalence of erectile dysfunction. Int J Impot Res. (2002) 14:245–50.
doi: 10.1038/sj.ijir.3900859

15. Raichle ME. The brain’s default mode network. Ann Rev Neurosci. (2015)
38:433–47.

16. Li R, Utevsky AV, Huettel SA, Braams BR, Peters S, Crone EA, et al.
Developmental maturation of the precuneus as a functional core of the default
mode network. J Cogn Neurosci. (2019) 31:1506–19.

17. Gao M, Geng B, Jannini T, Wu J, Wang Y, Zhang Y, et al. Thalamocortical
dysconnectivity in lifelong premature ejaculation: a functional MRI study.
Urology. (2021) 159:133–8. doi: 10.1016/j.urology.2021.10.010

18. Lu JM, Zhang X, Wang HT, Qing Z, Han P, Li M, et al. Short- and long-
range synergism disorders in lifelong premature ejaculation evaluated using
the functional connectivity density and network property. Neuroimage Clin.
(2018) 19:607–15. doi: 10.1016/j.nicl.2018.05.025

19. Geng BW, Gao M, Wu JY, Liu C, Piao R, Yang G, et al. Functional connectivity
of nucleus accumbens is associated with lifelong premature ejaculation in
male adults a resting-state fMRI study. Clin Neuroradiol. (2021). doi: 10.1007/
s00062-021-01105-2

20. Feng NN, Gao M, Wu JY, Yang G, Piao R, Liu P. Higher inter-hemispheric
homotopic connectivity in lifelong premature ejaculation patients: a pilot
resting-state fMRI study. Quantitat Imaging Med Surg. (2021) 11:3234–43.
doi: 10.21037/qims-20-1103

21. Zhang B, Lu JM, Xia JD, Chen F, Chen Y, Qing Z, et al. Functional insights into
aberrant brain responses and integration in patients with lifelong premature
ejaculation. Scient Rep. (2017) 7:460. doi: 10.1038/s41598-017-00421-3

22. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev
Neurosci. (2013) 14:609–25.

23. Stamatakis AM, Stuber GD. Activation of lateral habenula inputs to the ventral
midbrain promotes behavioral avoidance. Nat Neurosci. (2012) 15:1105–7.
doi: 10.1038/nn.3145

24. Lu JM, Yuan LH, Jin JX, Yang S, Zhang W, Li M, et al. Brain cortical
complexity and subcortical morphometrics in lifelong premature ejaculation.
Front Human Neurosci. (2020) 14:283. doi: 10.3389/fnhum.2020.00283

25. Wu JY, Gao M, Piao RQ, Feng N, Geng B, Liu P. Magnetic resonance imaging-
based structural covariance changes of the striatum in lifelong premature
ejaculation patients. J Magnet Reson Imaging. (2021) 55:443–50. doi: 10.1002/
jmri.27851

26. Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, et al.
Functional connectivity of the human amygdala using resting state fMRI.
Neuroimage. (2009) 45:614–26.

27. Cole MW, Repovs G, Anticevic A. The frontoparietal control system: a central
role in mental health. Neuroscientist. (2014) 20:652–64.

Frontiers in Psychiatry | www.frontiersin.org 8 July 2022 | Volume 13 | Article 906404

https://www.frontiersin.org/articles/10.3389/fpsyt.2022.906404/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.906404/full#supplementary-material
https://doi.org/10.1016/j.fertnstert.2015.08.035
https://doi.org/10.1007/s00330-021-08002-9
https://doi.org/10.1007/s00330-021-08002-9
https://doi.org/10.1016/j.jsxm.2020.09.002
https://doi.org/10.1016/j.jsxm.2020.09.002
https://doi.org/10.1111/andr.12914
https://doi.org/10.1111/andr.12914
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1371/journal.pone.0191202
https://doi.org/10.1016/j.neuroimage.2019.116316
https://doi.org/10.3389/fnins.2019.00448
https://doi.org/10.1038/sj.ijir.3900859
https://doi.org/10.1016/j.urology.2021.10.010
https://doi.org/10.1016/j.nicl.2018.05.025
https://doi.org/10.1007/s00062-021-01105-2
https://doi.org/10.1007/s00062-021-01105-2
https://doi.org/10.21037/qims-20-1103
https://doi.org/10.1038/s41598-017-00421-3
https://doi.org/10.1038/nn.3145
https://doi.org/10.3389/fnhum.2020.00283
https://doi.org/10.1002/jmri.27851
https://doi.org/10.1002/jmri.27851
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-906404 July 19, 2022 Time: 14:20 # 9

Geng et al. Multivariate Pattern Analysis of LPE via SVM

28. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
et al. Functional network organization of the human brain. Neuron. (2011)
72:665–78.

29. Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, O’Reilly RC. A
unified framework for inhibitory control. Trends Cogn Sci. (2011) 15:453–9.

30. Zhang TT, Tang DD, Cai HH, Zhang C, Zhu J, Zhang X, et al. Selective
functional hyperconnectivity in the middle temporal gyrus subregions in
lifelong premature ejaculation. J Sex Med. (2020) 17:1457–66. doi: 10.1016/j.
jsxm.2020.05.006

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Geng, Gao, Piao, Liu, Xu, Zhang, Zeng, Liu and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Psychiatry | www.frontiersin.org 9 July 2022 | Volume 13 | Article 906404

https://doi.org/10.1016/j.jsxm.2020.05.006
https://doi.org/10.1016/j.jsxm.2020.05.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles

	Multivariate Pattern Analysis of Lifelong Premature Ejaculation Based on Multiple Kernel Support Vector Machine
	Introduction
	Materials and Methods
	Participants
	MRI Data Acquisition
	Structural MRI Preprocessing
	Functional MRI Preprocessing
	Diffusion Tensor Imaging Preprocessing
	Feature Extraction and Feature Selection
	Support Vector Machine Classifier

	Results
	Demographics and Clinical Results
	Feature Selection
	Support Vector Machine Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


