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Abstract: Multiple strategies including the use of bioactive peptides and other nutraceuticals are being
adopted to maintain bone health. This study provides an improved and deeper understanding of the
pharmacological effects that a bioactive peptide IRW (Ile-Arg-Trp) extends on bone health. Our results
showed that IRW treatment protects osteoblasts against Ang II induced decline in cell proliferation
and restores protein levels of collagen type I alpha 2 chain (COL1A2) and alkaline phosphatase
(ALP) levels in MC3T3-E1 cells (p < 0.05). Apart from augmentation of these mineralization factors,
the angiotensin II (Ang II) induced apoptotic stress in osteoblasts was mitigated by IRW as well.
At the molecular level, IRW abolished the cytochrome-c release via modulation of pro-and anti-
apoptotic genes in MC3T3-E1 cells (p < 0.05). Interestingly, IRW also increased cellular levels of
cytoprotective local RAAS factors such as MasR, Ang (1–7), ACE2, and AT2R, and lowered the levels
of Ang II effector receptor (AT1R). Further, our results indicated a lower content of inflammation
and osteoclastogenesis biomarkers such as cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-
κB), and receptor activator of nuclear factor kappa-B ligand (RANKL) following IRW treatment in
MC3T3-E1 cells (p < 0.05). The use of an antagonist-guided cell study indicated that IRW contributed
to the process of cytoprotection and proliferation of osteoblasts via Runt-related transcription factor
2 (RUNX2) in face of Ang II stress in an AT2R dependent manner. The key findings of our study
showed that IRW could potentially have a therapeutic role in the treatment and/or prevention of
bone disorders.
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1. Introduction

Bone is a living mineralized connective tissue that serves important metabolic and
mechanical functions, such as supporting body structure, protecting the internal organs,
storing minerals, and also as a vital endocrine organ [1]. Bone structure and integrity are
maintained via homeostasis between bone-resorbing cells (osteoclasts) and bone-forming
cells (osteoblasts) referred to as “coupling” [2]. Any disruption in balanced coupling can
trigger a decline in bone health and subsequently the quality of life [2,3]. Among the
plethora of bone disorders, metabolic bone disorder is a common pathological mechanism
characterized by reduced bone mass and increased risk of fractures [3]. Among several
physiological mechanisms that underline bone disorders, the renin angiotensin aldosterone
system (RAAS) is critical. The RAAS dysfunction in bone has been reported to play an
important role in the pathogenesis and progression of metabolic bone disorder [4].

The RAAS is a key regulator of blood pressure, fluid-electrolyte balance, and vascular
resistance [5]. Apart from the systemic RAAS, local RAAS also plays vital pathophysio-
logical functions in different organs including the brain, eye, fat tissue, and bone [6–8].
Dysfunctional RAAS in bone tissue plays an essential role in the pathogenesis and pro-
gression of bone disorders and loss of bone mineral density (BMD) [4]. In both cell and
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animal studies, local activation of RAAS increases bone resorption while its inhibition is
associated with increased bone strength [9,10]. Among the local RAAS factors, angiotensin
II (Ang II) is a vital factor affecting the pathological process of bone resorption and BMD
loss. Ang II, the main RAAS effector, has a wide scope of action, and thus abnormalities in
its functioning have many consequences on bone health [9]. Excessive activation of Ang II
leads to bone resorption and is accompanied by stimulation of inflammatory mediators in
bone [11,12]. Multiple studies have also reported that Ang II significantly inhibits osteoblas-
tic activity and osteogenesis via interdependent mechanisms [9,13]. Further, an increase in
local RAAS factors in bone tissues of the aging mice indicates that angiotensin II also plays
a major role in age-related osteoporosis [14]. Apart from action on bone resorption, Ang II is
also related to pathological oxidative stress and inflammation surge. Ang II also stimulates
apoptosis of osteoblasts and augments cellular stress pathways (NF-κB and COX-2) [15,16].
Therefore, the therapeutic modulation of RAAS components such as angiotensin-converting
enzyme (ACE), angiotensin type 1 receptor (AT1R), and angiotensin type 2 receptor (AT2R)
play a quintessential role in fracture healing in vivo [17]. Thus, several studies have been
performed to evaluate the beneficial effect of some RAAS-targeting drug candidates on the
quality of bone.

Therapeutics that inhibit the overactive local RAAS pathway, namely, angiotensin-
converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) are gaining
increasing attention as a strategy to treat metabolic bone disorders such as osteoporosis [2].
Clinical evidence now confirms that the use of aliskiren (renin inhibitor), fosinopril (ACEi),
and Olmesartan (ARB) has been shown to lower plasma Ang II and prevent BMD loss in
humans [18–20]. However, the long-term use of these medications has been associated with
serious off-target effects [21]. Therefore, natural and safe treatment and prevention options
for bone diseases such as the use of bioactive peptides are gaining attention [22,23]. Bioac-
tive peptides usually contain 2–20 amino acids with the ability to exhibit pharmacological
action at the tissue level [24]. One of the pharmacologically active bioactive peptides gain-
ing attention for its therapeutic activities is tripeptide IRW (Ile-Arg-Trp), derived from egg
white ovotransferrin [25]. Chemically, IRW is composed of three amino acids (isoleucine–
arginine–tryptophan); and has molecular weight of 473.57 g/mol, and isoelectric point of
11.12. In our previous study, IRW has been identified as a novel ACE inhibitory peptide and
an ACE2 activator that can reduce vascular inflammation and oxidative stress [26,27]. More
importantly, in our recent study, tripeptide IRW has also been found to exert osteogenic
activity and could indirectly regulate osteoclastogenesis by reducing the expression of
RANKL in osteoblasts [28]. Therefore, it is rational to hypothesize that tripeptide IRW
has the potential to prevent osteoporosis via the modulation of RAAS for bone health
management. In this present study, we investigated the effects of tripeptide IRW on Ang
II-interfered osteogenesis and cellular stress in MC3T3-E1 cells.

2. Materials and Methods
2.1. Materials and Antibodies

Tripeptide IRW was synthesized with 99.9% purity validated by HPLC-MS/MS by
Genscript (Piscataway, NJ, USA). Angiotensin II, dithiothreitol (DTT), Triton X-100, and
alkaline phosphatase activity fluorometric assay kit were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Cell growth media α-MEM (A10490), fetal bovine serum (FBS),
and Pen-Strep solution were purchased from Gibco/Invitrogen (Carlsbad, CA, USA). Di-
hydrethidium (DHE) and Hoechst 33342 were purchased from Thermo Fisher Scientific
(Thermo Fisher Scientific, Burlington, ON, Canada). Annexin V-FITC apoptosis staining
kit was purchased from Abcam (Cambridge, MA, USA). Rabbit monoclonal primary anti-
bodies against AT1R, AT2R, MasR, OPG, NFκB, and ALP were obtained from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). Rabbit monoclonal primary antibodies against
COL1A2, COX2, AT2R, RUNX2, ACE, and ACE2 were bought from Abcam (Cambridge,
MA, USA). The RANKL and GAPDH were purchased from Cell signaling technology
(Danvers, MA, USA). Goat anti-rabbit IRDye 680RD secondary antibody and Donkey
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anti-mouse 800CW secondary antibody was purchased from Licor Biosciences (Lincoln,
NE, USA). All the remaining supplies used in this study were obtained from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Cell Culture

The cell culture was performed according to our previous report [28]. Briefly, the
murine osteoblastic cell line MC3T3-E1 (subclone 4, ATCC CRL-2593) was purchased from
ATCC (Manassas, VA, USA). The osteoblasts were cultured in α-MEM supplemented with
10% FBS and penicillin-streptomycin in an incubator under 95% air and 5% CO2. The
cells were sub-cultured using 0.25% trypsin every 2 to 3 days. All the experiments were
performed on 70–80% confluent cells grown in tissue culture grade plates. Then, the
cells were treated with IRW (50 µM and 25 µM) with/without 1 µM of Ang II for BrdU
incorporation, superoxide detection, Western blotting, qPCR, and other assays.

2.3. Western Blot Analysis

The cells were seeded on 48 well tissue culture plates at a concentration of 1× 104 cells/well
and incubated in α-MEM with 10% FBS. The cells were treated with IRW (50 µM and 25 µM)
and 1 µM of Ang II. After incubation, the culture medium was removed, and the cells
lysed in boiling Laemmle’s buffer containing 50 µM dithiothreitol (DTT) and 0.2% Triton-X-
100 to prepare samples for Western blot as described previously. These cell lysates were
run in SDS-PAGE, blotted to nitrocellulose membranes, and immunoblotted with specific
antibodies. The protein bands were detected by a Licor Odyssey BioImager and quantified
by densitometry using corresponding software (Licor Biosciences, Lincoln, NB, USA). Each
band was normalized to its corresponding band of loading control. Cell lysates from
untreated cells were loaded onto every gel. The results were expressed as a percentage of
the corresponding untreated control.

2.4. Brdu Incorporation Assay

BrdU Incorporation assay was conducted to identify proliferating osteoblasts using
BrdU (Bromodeoxyuridine/5-bromo-2′-deoxyuridine), an analog of the nucleoside thymi-
dine. The cells were seeded on 48 well tissue culture plates at a concentration of 1 × 104

cells/well and incubated in α-MEM supplemented with 10% FBS. After 4 h of incubation,
the cells were treated with IRW (50 µM and 25 µM) with/without 1 µM of Ang II. Follow-
ing 24 h of incubation, the cells were washed twice with PBS and fresh α-MEM with 1%
FBS, containing 1% BrDU for 1 h was added. The cells were then fixed in 70% ethanol
for 20 min, treated with 1N hydrochloric acid (HCl) for 20 min to antigen exposure, then
permeabilized with 0.1% Triton-X-100 in phosphate buffered saline for 5 min, and blocked
in 1% bovine serum albumin (BSA) in phosphate buffered saline for 60 min, and finally
incubated with mouse monoclonal antibody against BrDU (1:1000) at 4 ◦C. All the steps
except the addition of primary antibody were performed at room temperature. Following
overnight incubation with the primary antibody, the cells were treated with an anti-mouse
secondary antibody for 30 min in the dark. Nuclei were stained with the Hoechst 33342
nuclear dye and cells were visualized under an Olympus IX81 fluorescent microscope. For
each data point, 3 random fields were chosen. The percentage of nuclei positive for BrDU
staining was noted in each field and the mean was calculated.

2.5. Mineralization Assay

The mineralization studies were performed as described in our previous study [28].
Briefly, the degree of mineralization was determined in the 12-well plates using Alizarin
Red staining. The cultured cells were incubated with IRW (50 µM and 25 µM) and 1 µM
of Ang II. The medium was removed, and cells were rinsed twice with PBS. Thereafter,
the cells were fixed with ice-cold 70% (v/v) ethanol for 1 h. The ethanol was removed by
aspiration and cells were washed twice with Milli-Q water. The cells were then stained with
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1% (w/v) Alizarin-S Red in Milli-Q (pH 4.2) for 10 min at room temperature. After washing
with Milli-Q water, the samples were observed under light, and pictures were taken.

2.6. ALP Activity Assay

The alkaline phosphatase (ALP) activity was evaluated using the ALP assay kit accord-
ing to the manufacturer’s instructions. After completion of the experimental procedure,
the ALP levels were directly measured at OD 405 nm using a SpectraMax 340 plate reader
(Molecular Devices, San Jose, CA, USA).

2.7. Superoxide Detection

Cellular superoxide generation was detected by DHE staining according to our pre-
vious study [28]. Briefly, MC3T3-E1 cells were incubated with 50 µM and 25 µM of IRW
for 2 h, followed by treatment with Ang II (1 µM) for 30 min. Cells were then treated with
20 µM of DHE and incubated in the dark for 30 min. After washing twice with PBS, the
image was taken by the Olympus IX81 fluorescent microscope, and the total fluorescence
intensity was quantified by Image J software (version 1.53a; National Institutes of Health,
Bethesda, MD, USA).

2.8. Apoptosis Assay

Cell apoptosis was measured using the Annexin V-FITC apoptosis staining kit ac-
cording to the manufacturer’s instructions. The cells were seeded on 6-well tissue culture
plates at a concentration of 1 × 104 cells/well and incubated in α-MEM with 10% FBS until
confluence. After being treated with IRW (50 µM and 25 µM) with/without 1 µM of Ang II,
the adherent cells were washed once with PBS, then trypsinized, and centrifuged at 500× g
for 5 min. The cell pellets collected were resuspended in 500 µL 1X Annexin V binding
buffer, and 5 µL of Annexin V-FITC and propidium iodide was added. Then, the mixture
was incubated at room temperature for 5 min in dark and analyzed by flow cytometry
(Ex = 488 nm; Em = 530 nm).

2.9. RNA Extraction and qPCR

RNA extraction and qPCR were performed as described in our recent report [29]. The
cells were cultured in 100 mm dishes and treated with IRW (50 µM and 25 µM) and 1 µM
of Ang II. After incubation, the culture medium was removed, and total RNA was isolated
from cells with TRIzol reagent according to the manufacturer’s instructions. cDNA was
synthesized from 1 µg of total RNA using the high-capacity cDNA reverse transcriptase kit
(Thermo Fisher Scientific, Burlington, ON, Canada). The primers used in the study were
synthesized by Integrated DNA Technologies (IDT) with no additional modifications.

2.10. Statistical Analysis

All data are presented as mean ± SEM (standard error of the mean) with at least
3 independent experiments. Data were analyzed using one way analysis of variance
(ANOVA) with Dunnett’s post hoc test for comparisons to control. The PRISM 6 statistical
software (GraphPad Software, San Diego, CA, USA) was used for the analyses. p < 0.05
was considered significant.

3. Results
3.1. Impact of IRW Osteoblastic Activity against Ang II Stress in Bone Cells

The treatment of Ang II (1 µM) led to a significant decline in BrdU positive osteoblasts
indicating an impeded cell proliferation (p < 0.05) (Figure 1A). Treatment with IRW (50 µM
and 25 µM) successfully mitigated the cytotoxicity induced by Ang II and lead to an
increase in BrdU positive cells, compared to both vehicle and Ang II groups (p < 0.05)
(Figure 1A). Similarly, treatment with IRW (50 µM and 25 µM) successfully alleviated
the Ang II-induced decline in COL1A2 and ALP expression in MC3T3-E1 cells (p < 0.05)
(Figure 1B,C). Further, Ang II-induced increase in RANKL, a vital factor of osteoclastic bone
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resorption, was diminished following IRW (50 µM and 25 µM) treatment in MC3T3-E1 cells
(p < 0.05) (Figure 1D). However, cellular levels of OPG remained unaffected by both Ang II
stress and IRW treatment (Figure 1E). The osteoblast mineralization (Figure 1F) and ALP
activity in both cells (Figure 1G) and media (Figure 1H) further confirmed the ability of
IRW to counter Ang II-induced decrease in osteoblastic activity and trigger osteogenesis in
MC3T3-E1 cells (p < 0.05) (Figure 1F,G).

3.2. Cytoprotective Role of IRW against Apoptotic Activity of Ang II in Bone Cells

Ang II induces oxidative stress and apoptosis through mitochondria-dependent mecha-
nisms [30]. Our results confirmed that Ang II (1 µM) induced apoptosis and oxidative stress
in MC3T3-E1 cells as evident by flow cytometry and DHE assay (p < 0.05) (Figure 2A,B).
Like the BrdU assay (Figure 1A), treatment with IRW (50 µM and 25 µM) successfully
mitigated the apoptosis and oxidative stress compared to the Ang II stress group (p < 0.05)
(Figure 2A,B). At the molecular level, IRW treatment (50 µM and 25 µM) modulated both
pro-survival and pro-apoptotic members of the apoptosis cascade. IRW treatment (50 µM
and 25 µM) significantly increased pro-survival Bcl-2 and decreased pro-apoptotic Bax
leading to lowering of cytochrome-c release (p < 0.05) in MC3T3-E1 cells (Figure 2C,D,F).
However, the mRNA content of caspase-3 was marginally altered after treatment with IRW
(50 µM and 25 µM) (Figure 2E).
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Figure 1. The effect of IRW on promoting osteoblastic activity against Ang II stimulation. (A) Os-
teoblast cells MC3T3-E1 were pre-treated with IRW (50 µM and 25 µM) for 2 h prior to Ang II
(1 µM) and then co-cultured for 24 h. BrDU incorporation assay (A) was performed as described
in methodology and the BrDU positive cells were counted; (B–H) osteoblast cells MC3T3-E1 were
pre-treated with IRW (50 µM and 25 µM) for 2 h prior to Ang II (1 µM) and then co-cultured for
24 h. Whole cell lysates were used for the Western blotting analysis of COL1A2 (B), ALP (C), RANKL
(D), and OPG (E). (F) Osteoblast cells MC3T3-E1 were cultured in mineralization medium (MEM-α
medium with ascorbic acid and β-glycerophosphate) and treated with IRW (50 µM and 25 µM) and
Ang II (1 µM) for 15 days. Alizarin Red staining was performed, and the images were captured.
(G,H) Osteoblast cells MC3T3-E1 were pre-treated with IRW (50 µM and 25 µM) for 2 h prior to Ang
II (1 µM) and then co-cultured for 24 h. Both the culture medium (G) and whole cell lysates (H) were
collected for ALP activity analysis. All results are representative of 4~6 independent experiments
and expressed as mean ± SEM. Mean without a common letter indicated p < 0.05.

3.3. IRW Modulates RAAS Factors against Ang II Stress in Bone Cells

Similar to cytotoxic initiation of oxidative stress and apoptosis, Ang II (1 µM) induced
a decline in cytoprotective angiotensin 1–7 (Ang 1–7), while IRW treatment reversed the
Ang II driven decline in Ang 1–7 in MC3T3-E1 cells (p < 0.05) (Figure 3A) confirming its
cytoprotective nature. This was accompanied by increased ACE2 levels in MC3T3-E1 cells
as well (p < 0.05) (Figure 3B). As both ACE2 and Ang 1–7 have emerged as key protective
pathways, their increase supplements the antioxidant and anti-apoptotic properties of IRW
in osteoblasts (Figures 1 and 2) [27,31]. Similarly, an increase in pro-apoptotic AT1R levels
by Ang II stress (1 µM) was reversed by IRW treatment (Figure 3C) [32]. Further, IRW
treatment led to a significant increase in AT2R and Mas receptor (MasR) in MC3T3-E1
cells (p < 0.05) (Figure 3D,E). These results showed that IRW successfully modulated the
pro-stress and pro-survival members of the RAAS pathway in MC3T3-E1 cells.
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Osteoblast cells MC3T3-E1 were pre-treated with IRW (50 µM and 25 µM) for 2 h prior to Ang II
(1 µM) and then co-cultured for 24 h. (A) Cells were collected, fixed, and the cell apoptosis rate was
measured by flow cytometry; (B) DHE staining was performed to measure the levels of oxidative
stress; (C–F) total RNA was extracted using TRIzol, converted to cDNA, and then the gene expression
of mitochondrial apoptotic markers (C) Bcl-2, (D) Bax, (E) Caspase 3, and (F) Cytochrome C was
measured by qPCR (quantitative PCR). All results are representative of 4~6 independent experiments
and expressed as mean ± SEM. Mean without a common letter indicated p < 0.05.

3.4. IRW Mitigates Inflammation Induced by Ang II Stress in Bone Cells

As inflammation skews the process of coupling towards bone resorption [33], its
inhibition can play important role in the restoration of bone health. Our results showed
that Ang II (1 µM) triggered a strong increase in inflammatory markers including COX2
and NF-κB (Figure 4A,B). This increase in both biomarkers was attenuated back to the
basal levels following treatment with IRW (50 µM and 25 µM) in MC3T3-E1 cells (p < 0.05)
(Figure 4A,B). These results support the earlier findings of cytoprotection by IRW in MC3T3-
E1 cells (Figure 1).

3.5. IRW Mitigates Cellular Stress Induced by Ang II in AT2R Dependent Manner in Bone Cells

In order to understand the underlying mechanisms supporting the osteogenic/
cytoprotective role of IRW, the expression of vital protective RAAS receptors AT2R and
MasR was inhibited using their specific inhibitions in the presence and absence of IRW
(50 µM). The use of MasRi (A779, 1 µM) and AT2Ri (PD123319, 1 µM) efficiently inhibited
MasR and AT2R, respectively, in MC3T3-E1 cells (p < 0.01) (Figure 4A,B). Next, our results
showed that IRW treatment (50 µM) exhibited a significant increase in RUNX2, a vital
factor for osteoblast proliferation, in presence of MasRi (A779, 1 µM). However, in presence
of AT2Ri (PD123319, 1 µM), the ability of IRW to increase RUNX2 was diminished in
MC3T3-E1 cells (p < 0.05) (Figure 5B,D).
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analysis. (A) The RIPA buffer extracts were used for measuring Ang (1–7) levels using ELISA and the
protein expression of (B) angiotensin-converting enzyme 2 (ACE II), (C) angiotensin II receptor type
1 (AT1R), (D) angiotensin II receptor type 2 (AT2R), and (E) Mas receptor (MasR) were measured
using Western blot. All results are representative of 6 independent experiments and expressed as
mean ± SEM. Mean without a common letter indicated p < 0.05.
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protein expression of (A) cyclooxygenase-2 (Cox2) and (B) NF-κB p65. All results are representative of
6 independent experiments and expressed as mean ± SEM. Mean without a common letter indicated
p < 0.05.
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Osteoblast cells MC3T3-E1 were pre-treated with IRW (50 µM and 25 µM) for 2 h prior to Ang II
(1 µM) and then co-cultured for 24 h with or without AT2R (PD123319) and MasR (A779) inhibitors
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experiments and expressed as mean ± SEM. Mean without a common letter indicated p < 0.05 while
** indicates p < 0.01.

4. Discussion

Osteoporosis is a common bone disorder characterized by low BMD and impaired
bone microstructure which leads to increased bone fragility and fracture risk [34]. Apart
from being a global healthcare challenge, osteoporosis instills a major economic burden
costing approximately USD 17.9 and CAD 4.6 billion per year in the USA and Canada,
respectively [34,35]. Among vital factors contributing to the etiology of osteoporosis is
the overactivation of the local RAAS system in bone tissues and its blockade has been
shown to improve the osteoporotic incidence [36,37]. Animal studies have shown that
the increased expression of Ang II-induced bone loss via RANKL-mediated osteoclasts
increase [14]. Similarly, in humans, overexpressed RAAS genes such as AT1R expression
and the RANKL/OPG ratio were negatively related to BMD in osteoporosis patients [38].
Different RAAS modulators can diminish osteoclasts and boost osteoblasts through AT1R,
OPG/RANKL, ACE2/Ang (1–7)/Mas cascades [2,10,13,20,28,37]. Therefore, targeting
the local RAAS in bone tissue is an efficient and logical strategy to counter a decline
in bone health. With a global increase in aging demographics, the importance of the
nutrition-mediated prevention of osteoporotic incidence is increasing tremendously. In the
present study, we showed the ability of dietary peptide IRW to counter Ang II stress in
osteoblasts, its mode of cytoprotection, and underlying mechanisms of action in MC3T3-E1
cells (Figure 6).
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Over the past few decades, there have been rapid advancements in interventions
using bioactive peptides for osteoporosis and bone health. Similar to our findings, both
food-derived bioactive peptides and endogenous proteins-derived peptides have exhibited
osteogenic activities. Among food derived peptides, casein phosphopeptides (CPP) were
first shown to exhibit bone protecting properties in vivo [39]. Similarly, peptide rich colla-
gen, blue mussel, and shark protein hydrolysates were shown to exhibit osteogenic effects
in vivo [21,40,41]. Similar to our findings, Pro-Hyp, a collagen derived dipeptide (0.1 and
1 mM) exhibited an increase in Runx2 and Collα1 gene expression in MC3T3-E1 cells [42].
Like IRW, low-molecular weight peptides derived from collagen also inhibited apoptosis
and promote the proliferation and differentiation of MC3T3-E1 cells by activating the
PI3K/Akt signaling pathway [43]. Similarly, milk derived tripeptides IPP and VPP (5 and
50 µM) exhibited an increase in osteogenesis genes in osteoblasts differentiated from human
mesenchymal stem cells [44]. These results were confirmed in a follow-up study indicating
that IPP (50 µM) stimulated an increase in mineralization accompanied by an increase in
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RUNX2 and depleted the RANKL/OPG ratio [45]. Additionally, a tripeptide KSA derived
from the bone tissue of the marine fish promoted the proliferation and mineralization of
MC3T3-E1 cells [46]. Our findings were also similar to tetrapeptide MPDW (37.5, 75, and
150 µM) which improved bone mineralization in both human osteoblastic cells (MG-63) and
murine mesenchymal stem cells (D1) [47]. Likewise, peptides NAVPITPTL (30 ng of BSA
equivalents/mL) and VLPVPQK (50 and 100 µg/kg/d for 8 weeks) were derived from buf-
falo milk exhibited osteogenic effects in cells and in ovariectomized rats [48,49]. Similarly,
peptides derived from endogenous proteins such as KIPKASSVPTELSAISTLYL (human
BMP-2; 73–92 peptide) exhibited osteogenic effects in C3H10T1/2 cells and repairs rat
tibial bone defects in vivo [50]. Our findings are also similar to two peptides obtained from
human BMP-7, GQGFSYPYKAVFSTQ, and VEHDKEFFHPRYHHR improved expression
of osteogenic genes and enhanced bone formation in different cells [51,52]. Our results are
also akin to denosumab, a key RANKL targeting drug in the treatment of osteoporosis [53].
Similar to IRW, a recently developed drug called teriparatide also exhibited an extremely
efficacious osteogenesis effect [54]. It will be interesting to see if IRW supplementation
in humans is tolerable and if the osteogenic effects are translated clinically as well [23].
In summary, our experiments align with multiple evidence indicating osteogenic and
cytoprotective efficiency of food derived peptides and related molecules.

At the molecular level, apart from the modulation of the RAAS cascade, IRW also
impacted apoptosis and inflammation pathways, both critical to the process of bone resorp-
tion. Mechanistically, caspase-3 activity plays a crucial role in osteoblast apoptosis [55].
The release of activated caspase occurs via Bcl2 family members including the apoptotic
members Bad, Bax, and Bid, and anti-apoptotic Bcl-2 [56]. Disruption in normal bone
remodeling is characterized by apoptosis of bone cells, especially osteoblasts, leading to
diseases such as osteoporosis [57]. For example, osteoblast apoptosis occurs extensively
in the proximal femur in osteoporotic subjects [58]. Therefore, anti-apoptotic processes
including inhibition of caspase and modulation of Bcl-2 proteins present an effective
approach. Research evidence has previously shown that increased expression of Bcl-2
prevents apoptosis of osteoblast through cytochrome C release inhibition [59]. Casp3Inh
(Z-DEVD-FMK), a tetrapeptide caspase-3 inhibitor, has shown to exhibit cytoprotection in
MC3T3-E1 cells and improve BMD in vivo as well [55,60,61]. Our results showed efficiency
and pro-survival modulation of these key players (Bcl2, caspase-3, and cytochrome-c) in
the apoptosis cascade. Similar to IRW, anti-apoptosis drugs such as alendronate, hormones,
estrogens, and androgens also inhibit apoptosis of osteoblasts in cell and in vivo [61–63].
Similar to apoptosis, modulation of inflammatory biomarkers such as COX2, RANKL, and
NF-κB by IRW supplements its overall pharmacological and osteogenic activity. These
findings are in line with a previous study showing COX2 knockout leading to protection of
bone tissue in vivo [64]. Similar to IRW, dexamethasone has been shown to inhibit inflam-
mation via disruption of the NF-κB pathway [65]. Additionally, the active form of vitamin
D, a major player in bone health, binds to the nuclear vitamin D receptor leading to the
downregulation of NF-κB [66]. Similarly, curcumin, a vital antioxidant and cytoprotective
agent inhibits RANKL induced NF-κB osteoclastogenesis in RAW 264.7 cells [67]. Taken
together, IRW shows strong cytoprotective activity and boosts osteoblasts proliferation
via synergistic activation of RAAS and inflammatory pathways. We also show AT2R as
the pivotal receptor controlling the osteogenic activities of IRW. Ang II is a vital hormone
member of the RAAS cascade which acts through AT1R and AT2R [68]. Between these two
receptors, AT1R is a proinflammatory role while AT2R is involved in anti-inflammatory
effects in different cell types [69–71]. The discovery of compound 21, an AT2R agonist,
has further validated the pharmacological and anti-inflammatory role of AT2R [72]. IRW
mimics the effects of AT2R agonist as it inhibits the NFκB surge triggered by Ang II in
MC3T3-E1 cells [68,73]. These effects of IRW can be summed as the “counter-regulatory”
to Ang II triggered AT1R stimulation. The role of AT2R in tissue repair and regeneration
has been shown in both cell and animal models, thus supporting the cytoprotective and
osteogenic role of IRW [74].
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Our study has some limitations and research gaps. Firstly, the choice of a single cell
line MC3T3-E1 cells limits the applicability of the results across species. The use of multiple
cell types including Saos-2 and MG-63 would have better shown the osteogenic ability
of IRW. Next, the lack of animal study limits the human applicability as a study using
ovariectomized and/or hypertensive rats can better help understand the pharmacological
impact of IRW on bone health in vivo. Another limitation is the lack of probing for MAPK
p44/p42 pathway and STAT translocation, which are a vital downstream target of AT2R
activation [74]. Additionally, a comparison of IRW with the AT2R agonist compound
21 could hence support and highlight the pharmacological potential of the tripeptide. Yet,
despite these limitations, our findings confirm the cytoprotective, anti-inflammatory, and
osteogenic role of IRW against Ang II stress in osteoblasts (Figure 6). However, further
research is needed to clarify the impact of IRW on bone tissue using animal models of
bone diseases.

5. Conclusions

Dietary peptide IRW is a unique pharmacological peptide with a diverse spectrum
of biological activities. Among these anti-inflammatory, renin angiotensin aldosterone
system (RAAS), and bone rejuvenation are of vital interest. In the current study, we showed
the ability of IRW to counter angiotensin II (Ang II) stress and replenish bone synthesis
factors such as RUNX2 and COL1A2 in MC3T3-E1 cells. Our results showed IRW exhibited
cytoprotective activity against Ang II stress in MC3T3-E1 cells as evident by sustained
and proliferating osteoblasts. This was also accompanied by a decrease in Ang II-induced
oxidative stress and pro-apoptosis factors such as Bcl2, Bax, caspase 3, and cytochrome C.
As the RAAS pathway plays a vital role in bone health and countering Ang II stress, our
results showed an increase in levels of ACE2, AT2R, and angiotensin (1–7); and depleted
levels of AT1R following IRW treatment. The pharmacological impact of IRW in bone
cells was further supported by a decline in RANKL, COX2, and NF-κB. Using inhibitors of
AT2R and MasR, we elucidated that the ability of IRW to stimulate bone anabolism was
dependent on AT2R in MC3T3-E1 cells. However, further in vivo investigations using Ang
II-focused bone health models are warranted to see in vivo translation of findings from
this cell study, and IRW’s possible role(s) as therapeutic in osteoporosis and metabolic
bone diseases.
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