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A B S T R A C T   

Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. This study aimed to build a prog-
nostic signature for HCC patients based on immune-related genes (IRGs) and epigenetics-related genes (EPGs). 
RNA-seq data from Gene Expression Omnibus were used for dynamic network biomarker (DNB) analysis to 
identify 56 candidate IRG–EPG–DNBs and their first-neighbor genes. These genes were screened using LASSO- 
Cox regression analysis to finally obtain five candidate genes—RNF2, YBX1, EZH2, CAD, and PSMD1—which 
constituted the prognostic signature panel. According to this panel, patients in The Cancer Genome Atlas and 
International Cancer Genome Consortium were divided into high- and low-risk groups. The prognosis, clinico-
pathological features, and immune cell infiltration significantly differed between the two risk groups. The 
prognostic ability of the signature panel and expression profiling were further validated using online databases. 
We used an independent cohort of patients to validate the expression profiles of the five genes using reverse 
transcription–PCR. CMap and CellMiner predicted four small molecule drug–protein pairs based on the five 
prognostic genes. Of them, two market drugs approved by the Food and Drug Administration (AT-13387 and KU- 
55933) have emerged as candidates for HCC study. This new signature panel may serve as a potential prognostic 
marker, engendering the possibility of novel personalized therapy with classification of HCC patients.   

1. Background 

Globally, hepatocellular carcinoma (HCC) is the most common type 
of primary liver cancer, with the fourth highest cancer-related mortality 
rate [1]. Surgical resection of the tumor is the most common treatment 
method, but due to the lack of obvious early symptoms, most patients 
are diagnosed in the middle or late phase of the disease, thus missing the 
best therapeutic window for surgical resection [2,3]. Besides, the diag-
nosis and treatment of HCC is challenging, mainly due to its high met-
astatic ability and recurrence rate, and the 5-year survival rate of 
patients is below 20% [4]. 

During the development of HCC, highly activated inflammatory 
signaling and complex mutations are observed in hepatocytes from 
chronic inflamed liver tissues, which is conducive for their trans-
formation into cancerous cells [5]. The liver is a central immune 

modulator that maintains the balance of immune tolerance in the tumor 
microenvironment. The development of immune checkpoint inhibition 
has greatly changed the clinical management of HCC [6]. The mecha-
nism of immune escape-assisted tumor progression has been extensively 
studied, with a focus on two immune checkpoint proteins: programmed 
cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). 
However, the remission rate after immune checkpoint inhibition mon-
otherapy is only 20% [7]. The PD-1-blocking antibodies nivolumab and 
pembrolizumab elicited responses in less than 20% of HCC patients. 
Sorafenib is the first systemic drug for HCC approved by the Food and 
Drug Administration (FDA), but the individual patient responses to 
sorafenib vary greatly. Sorafenib combined with PD-1 or PD-L1 
demonstrated a good synergistic therapeutic effect in the treatment of 
HCC. In particular, the combination of atezolizumab (anti-PD-L1) and 
bevacizumab (anti-vascular endothelial growth factor monoclonal 
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antibody) achieved higher survival rates than sorafenib alone, thus 
emerging as a new standard in the first-line treatment of advanced HCC 
[8]. These studies indicate that HCC interacts with the immune system 
in a complex way. Biomarkers for clinical prediction are also urgently 
needed to accurately classify patients, so that their response to immune 
checkpoint inhibitors is enhanced. 

Epigenetic elements are potentially heritable elements in the genome 
that are not encoded in the nucleotide sequence [9]. Abnormal DNA 
methylation is one of the most common epigenetic modifications in 
HCC. Immune cells also show the ability to modulate DNA methylation. 
Over the past 35 years, epigenetic modifications have emerged as major 
drivers of cancer initiation and progression. Previous research on cancer 
epigenetics focused on the abnormal expression of certain 
chromatin-modifying enzymes and their regulatory roles in tumor cells. 
Nowadays, the relationship between epigenetic mechanisms and the 
tumor microenvironment is being investigated [10]. For example, 
tumor-associated macrophages were found to upregulate DNMT1 in 
gastric cancer, which silences the tumor suppressor gene G SN [11]. 
Through genome-wide DNA methylation analysis and other methods, 
many studies have identified different methylation patterns in HCC 
tissues compared with normal tissues. Genes with significant hyper-
methylation, such as EZH2 [12], CDKN2A [13], RASSF1 [14], and APC 
[15], have been studied. 

In this study, we used multiple statistical methods to construct 
diagnostic and prognostic models of HCC based on key immune-related 
genes (IRGs), epigenetics-related genes (EPGs), and their closely related 
neighbor genes identified via dynamic network biomarker (DNB) anal-
ysis. The prognostic model, consisting of five key genes, divided HCC 
patients into high- and low-risk groups, and was statistically correlated 
with the immune status as well as the prognosis of patients. Further-
more, we performed molecular docking, CellMiner analysis, and 
drug–gene profiling using CMap to explore drug repositioning for HCC. 

2. Material and methods 

2.1. Data source and clinical information 

For this study, we selected a dataset from Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/geo) that satisfied the following 
criteria. Inclusion criteria: data on HCC associated with chronic liver 
disease, which evolved from precancerous lesions and early HCC (eHCC) 
into advanced cancer; larger sample size; Homo sapiens; and expression 
profiling. Exclusion criteria: cell line data and missing adjacent normal 
samples. The dataset GSE114564 was selected, and the data matrix was 
preprocessed using the “GEO2R” package in R. This dataset contains 
next-generation sequencing RNA-seq data on 118 cases, including 
healthy (n = 15), chronic hepatitis (n = 20), cirrhosis (n = 10), 
dysplastic nodules (n = 10), eHCC (n = 18), and advanced HCC (n = 45) 
[16,17]. The causes of these patients include HBV, HCV, alcohol and 
others [17]. Next, we mapped the full list of 2490 IRGs and EPGs to the 
data matrix to obtain their expression profiles in healthy to advanced 
HCC cases for DNB analysis. Besides, we obtained transcriptome 
profiling data on 424 samples (normal and tumor specimens) and the 
corresponding clinical information on HCC patients from the Cancer 
Genome Atlas (TCGA; https://portal.gdc.cancer.gov/), and data on 
another independent 231 tumor specimens from the International 
Cancer Genome Consortium (ICGC; https://dcc.icgc. 
org/projects/LIRI-JP). 

2.2. IRGs and EPGs 

The full list of IRGs was downloaded from ImmPort (https://www. 
immport.org/home) on Feb 2, 2022. We extracted 720 EPGs from the 
EpiFactors database (https://epifactors.autosome.ru/). The full list of 
IRGs and EPGs is provided in Supplementary Table S6. 

2.3. DNB analysis 

The DNB method, widely employed to identify the tipping point or 
critical transition in disease progression, has proven effective in estab-
lishing disease markers. The DNB theory is based on the fact that strong 
fluctuations in several molecules (DNB members) cause dramatic 
changes in biological systems. 

CI = CVI
PCCin

PCCout 

CVI is the average coefficient of variance (CV) of DNBs, PCCin is the 
average Pearson correlation coefficient (PCC) of molecules in the 
candidate cluster, and PCCout is the average PCC of molecules inside as 
well as outside the cluster [18]. 

IRGs and EPGs extracted from GSE114564 were subjected to DNB 
analysis to obtain IRG–EPG–DNBs (IEDs), which were individually 
mapped to the integrated functional linkage networks to obtain their 
respective first-neighbor genes. The network was constructed using 
various databases. The available functional linkage information for 
Homo sapiens was downloaded and combined from the following data-
bases: KEGG (www.genome.jp/kegg), TRED (www.rulai.cshl.edu/cgi- 
bin/TRED/), BioGrid (https://thebiogrid.org), IntAct (https://www.ebi. 
ac.uk/intact/), MINT (https://mint.bio.uniroma2.it/), UniProt (https:// 
www.uniprot.org/), PINA (https://omics.bjcancer.org/pina/home.ac-
tion), and STRING (https://cn.string-db.org/). This integrated func-
tional linkage protein–protein interaction (PPI) network was built using 
Cytoscape (version 3.8.2) [19]. 

2.4. Construction and validation of a prognostic EPG signature using 
univariate, multivariate, and least absolute shrinkage and selection 
operator (LASSO)-Cox analysis 

To evaluate the prognostic value of candidate genes, their relation-
ship with overall survival (OS) in TCGA data was explored using Cox 
regression analysis. The LASSO-Cox regression model ("glmnet" pack-
age, version 4.1) was used to screen diagnostic markers. The penalty 
parameter (λ) was determined by the lowest standard. Logistic regres-
sion was used to build a prognostic signature panel model. A risk score 
was calculated for each patient in TCGA and ICGC, and they were 
segregated into high- or low-risk groups based on the median risk score. 
The OS of patients in the high- and low-risk groups was analyzed using 
the “survival” (version 3.3)and “survminer” (version 0.4.7) packages in 
R (version 4.2.1). P < 0.05 was considered statistically significant. 

2.5. Predictive nomogram for TCGA and ICGC data 

A nomogram is a clinically applicable tool for predicting the 1-year, 
2-year, and 3-year survival rates of HCC patients. Three clinical features 
each were selected from TCGA and ICGC: age, gender, and stage, and 
gender, tumor grade, and existence of prior malignancy, respectively. 
The “RMS” (version 6.7) package from R was applied to establish no-
mograms using the Cox method, which could evaluate the prognostic 
significance of these features with clinical data, such as survival time 
and survival status. 

2.6. Tumor-infiltrating immune cell analysis 

We assessed the immune microenvironment of both the risk groups. 
The CIBERSORT algorithm identified 22 types of tumor-infiltrating 
immune cells. The composition of the immune infiltrates was calcu-
lated for both the groups. The ESTIMATE algorithm was used to further 
analyze the tumor microenvironment of HCC patients from both the 
groups. Finally, we calculated the stromal, immune, and ESTIMATE 
scores for both the groups. 
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2.7. Changes in genetic expression, co-expression, and neighbor gene 
network analyses of the five candidate genes 

Gene expression from the TCGA and Genotype-Tissue Expression 
data was validated using GEPIA (http://gepia.cancer-pku.cn/index. 
html). Gene expression profiles from the Human Protein Atlas (HPA) 
dataset (https://www.proteinatlas.org/) were explored using immuno-
histochemistry. Gene mutation analysis in HCC samples from TCGA was 
performed using cBioPortal (www.cbioportal.org/), an interactive 
platform to visualize and analyze genetic data from cancer studies. 
Calculating the mutation landscape of 5 genes in high and low risk group 
samples in the TCGA was performed in “Maftools” (version 2.16.0) 
package in R. 

The five candidate genes were mapped to the integrated functional 
linkage PPI network previously constructed during DNB analysis to 
identify genes closely related to them. These genes were strictly 
screened by edge selection criteria with physical association, or exper-
imentally validated, as known as high confidence scores. 

The core genes from the PPI network were identified using Cyto-
Hubba and CytoNCA, both of which are Cytoscape applications. Cyto-
Hubba can predict and explore important nodes and subnetworks in a 
given network using several topological algorithms, such as Maximal 
Clique Centrality. We selected the top 20 nodes ranked by Maximal 
Clique Centrality. Similarly, CytoNCA evaluates the central nodes of 
networks. We selected the top 20 nodes ranked by degree value. The 
overlapping genes in these two algorithms were identified as core genes 
for drug repositioning. 

2.8. RNA extraction and reverse transcription–quantitative PCR 
(RT–qPCR) validation 

Total RNA was extracted using TRIzol reagent (Invitrogen, CA, USA) 
according to the manufacturer’s protocols. cDNA was synthesized using 
reverse transcriptase (TOYOBO, Osaka, Japan). RT–qPCR was per-
formed using the Power SYBR Green PCR Master Mix (TOYOBO, Osaka, 
Japan) on the Applied Biosystems Step-one PCR system (Thermo Fisher 
Scientific, CA, USA). Briefly, multiplex one-step RT-PCR was carried out 
in a final reaction volume of 25 μL containing 2 × SYBR Green Realtime 
RT-PCR Master Mix, 0.4 μM primers, and 0.5 μL of template cDNA. The 
primers used are listed in Table S7. Gene expression levels were quan-
tified and normalized to the expression of the reference gene, ACTB, 
using an optimized comparative Ct (ΔCt) method. 

2.9. Drug repositioning and molecular docking 

CMap (https://clue.io/; accessed on 20 June 2022) is an integrative 
platform that contains data on drugs or drug candidates from large 
perturbational datasets in the clinical experimental, investigational, and 
approved-for-treatment stages. Drugs likely to interact with the core 
genes were retrieved from CMap [44]. The correlation between hub 
genes and the drug response was predicted using the CellMiner database 
(https://discover.nci.nih.gov/cellminer/). 

Molecular docking was carried out to further verify the effective 
binding of the selected compounds to the core target. The structure 
energy was minimized using the ChemBioDraw 3D module. The crystal 
structure of the candidate target was obtained from the Protein Data 
Bank (https://www.rcsb.org/). The PDB IDs of EZH2 and YBX1 are 4w2r 
and 1h95, respectively. The 3D structures of small molecule compounds 
were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/) 
in Structure-Data File format. 

The receptor structure was modified using AutoDockTools 1.5.621 
(dehydration and hydrogenation) and exported in the PDBQT format. 
After defining the grid on the active site of the receptor protein, docking 
was performed using Autodock Vina 1.1.2, and the output score was 
displayed in kcal / mol. PyMOL 2.3.0 and BIOVIA Discovery Studio 2016 
were used for result processing and visualization. 

2.10. Data processing 

A series of R packages, including "survminer"(version 0.4.7), "survi-
val"(version 3.3), and "time-ROC"(version 0.4), were used to perform 
time-dependent receiver operating characteristic (ROC) curve analyses. 
A P-value ≤ 0.05 was considered to be statistically significant. 

3. Results 

3.1. Dynamic changes in IRGs and EPGs during hepatocarcinogenesis 

The DNB algorithm could effectively identify the critical transition of 
IRGs and EPGs in HCC by calculating the dramatic changes of CI value in 
their expression correlated with disease progression (Fig. 1a). Three 
criteria were levied for selecting DNBs (Fig. 1b): (1) high fluctuation in 
candidate IED expression with larger CVs; (2) high correlation between 
candidate IEDs (high PCCin); and (iii) weak association between IEDs 
and non-IEDs (low PCCout). eHCC was defined as the critical stage with 
the maximum confidence interval (CI) value. Then, we individually 
mapped the IEDs to the whole-gene regulation networks to construct a 
series of networks whose structure illustrated the dramatic changes and 
expression fluctuations in DNBs (Fig. 1c). We identified 55 IEDs that had 
high CVs, fluctuated strongly, and shared close relationships with each 
other during eHCC (Table S1). Co-expression relationships between IEDs 
dramatically changed when the biological system approached the crit-
ical stage. We mapped individual IEDs to the integrated functional 
linkage network to obtain their first-neighbor genes. A total of 529 genes 
were identified (Table S2), which, along with the 55 IEDs, were used as 
seed genes for subsequent studies. 

3.2. Construction of prognostic models based on IEDs and closely related 
neighbor-genes 

The set of 529 DNBs and their neighbor-genes were subjected to 
LASSO-Cox regression analysis using 10-time cross-validation for tuning 
the parameter selection model. As a result, five genes were identified: 
RNF2, YBX1, EZH2, CAD, and PSMD1 (Fig. 2a,b; Table 1). RNF2, YBX1, 
and EZH2 are EPGs, while PSMD1 and CAD are IRGs. In the regression 
equation, the coefficients of signature variable (genes) were calculated 
using LASSO algorithms, and each significant gene has its own coeffi-
cient value. The coefficient values represent the degree of influence of 
the independent variable (genes) on the dependent variable (risk score). 
Thus, the risk score was calculated using the gene signature as follows: 
(5.204e-05 × RNF2) + (0.0018 × YBX1) + (0.0168 × PSMD1) 
+ (0.023 × EZH2) + (0.002 × CAD). In this case, EZH2 has the most 
impact on the risk score, having the highest coefficient (0.023) among 
the five genes. We analyzed the relationships between different risk 
scores and survival times, survival events, and expression changes in the 
five genes based on TCGA data (n = 357). Low- and high-risk groups 
were formed based on the median risk score. We found that when the 
risk score increased (x-axis from left to right, Fig. 2c, top), patient 
mortality increased and the survival time of patients decreased signifi-
cantly (Fig. 2c, middle). The expression levels of the five genes were 
positively correlated with the risk score (Fig. 2c). 

3.3. Independent prognostic ability of the risk score 

Univariate Cox regression analysis revealed that the risk score was 
significantly associated with poor survival in both the TCGA and ICGC 
datasets (hazards ratio [HR]: 6.060, 95% CI: 3.970 − 9.250, and HR: 
2.770, 95% CI: 1.600 − 4.780, respectively; Fig. 3a, c). Clinical feature of 
age and gender except tumor stage was significantly correlated with OS 
(Fig. 3a). 

Multivariate analysis also revealed that the risk score was an inde-
pendent indicator of OS in the TCGA and ICGC datasets (HR: 5.410, 95% 
CI: 3.40 − 8.61, and HR: 2.960, 95% CI: 1.710 − 5.130, respectively; 
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Fig. 1. Dynamic network biomarker (DNB) identification in the GSE114564 dataset. (a) Brief description of the DNB analysis. (b) Four diagrams for criteria results of 
DNBs over six disease stages in GSE114564. The confidence interval was calculated based on the three criteria to identify the critical transition phase. (c) Series of 
immune-related genes–epigenetics-related genes–DNBs (IEDs) mapped to gene regulation networks. The color shade of the node represents the magnitude of the 
change in coefficient of variation of the molecule. DNBs strongly fluctuate and closely correlate with each other during early HCC (eHCC). Healthy (n = 15), Chronic 
hepatitis (n = 20), Cirrhosis (n = 10), Dysplastic nodules (n = 10), eHCC (n = 18), and Advanced HCC (n = 45). 

Fig. 2. Construction of prognostic models based on genes selected from independent cross-link analysis of IEDs and their first-neighbor genes. (a) The vertical line 
indicates the minimum partial likelihood deviation of the least absolute shrinkage and selection operator (LASSO) coefficient distribution. The two vertical dashed 
lines are λ.min and λ.1se. (b) LASSO coefficient profiles of these candidate genes with non-zero coefficients determined by the optimal λ. (c) Risk score and survival 
status of patients in the Cancer Genome Atlas (TCGA) cohort determined using the five genes. 
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Fig. 3b, d). These results suggest that the risk score generated from the 
five-gene signature panel could be used as an independent prognostic 
indicator of OS in HCC patients. 

In both TCGA and ICGC datasets, Kaplan–Meier curves showed that 
patients in the low-risk group had markedly longer OS than those in the 
high-risk group (P < 0.001; Fig. 4a,c). Area under the curve (AUC) of 
time-dependent ROC curves was used to further assess the prognostic 
ability of the risk score. The AUC for the TCGA dataset was 0.79 at 1 
year, 0.72 at 3 years, and 0.74 at 5 years (Fig. 4a). For the ICGC dataset, 
the AUC was 0.70 at 100 days, 0.71 at 300 days, and 0.60 at 600 days 
(Fig. 4b,d). These results suggest that the predictive ability of the five- 
gene signature-based risk score was favorable. 

3.4. Nomogram analysis 

We constructed a nomogram that could estimate the 1-year, 2-year, 
and 3-year survival rates to build a clinically applicable method of 
predicting the survival probability of HCC patients. The nomogram 
included three features from TCGA—age, gender, and stage—and three 
features from ICGC—gender, tumor grade, and the existence of prior 
malignancy (Fig. 5a). TNM stage is recognized as a traditional prog-
nostic indicator. The TNM staging system for cancers is an internation-
ally accepted system used to determine the disease stage based on the 
pathological stage. T refers to the size and depth of tumor infiltration, N 
refers to the presence and number of lymph node metastases, and M 
refers to the presence of distant organ metastases. Based on this system, 
clinicians divide patients into stages I, II, III, and IV. In TCGA, TNM stage 
exhibited good predictive potential (C-index = 0.630, 95% CI: 

0.551–0.710; P = 0.001; Fig. 5a). The five-gene signature-derived risk 
score and stage showed better prognostic ability (C-index = 0.751, 95% 
CI: 0.700–0.802; P = 2.354e-22) than TNM alone. The “RMS” package 
from R was used to integrate the data on survival time, survival status, 
and characteristics to establish nomograms using the Cox method that 
could evaluate the prognostic significance of these characteristics, 
thereby making the clinical management of HCC patients more prac-
tical. The nomogram predictions for the 1-year, 3-year, and 5-year OS 
rate closely matched the best prediction performance (Fig. 5b). TNM 
stage is one of the most widely used and effective prognostic indicators 
for HCC (C-index = 0.630) [20]. It showed a better prognostic 
improvement ability than previously developed genetic markers, with 
an AUC of 0.79 at 1 year, 0.72 at 3 years, and 0.74 at 5 years. An 
eight-gene signature for classifying patients has been previously re-
ported (AUC = 0.667 at 1 year, 0.630 at 3 years, 0.618 at 5 years), which 
includes CA9, CCL20, CORO1C, CTSC, LDHA, NDRG1, PTP4A3, and 
TUBA1B. This signature can assist clinical decision-making by 
combining information on hypoxia, thereby useful for stratifying pa-
tients by risk [21]. Another seven-gene signature [22] (AUC = 0.686 at 1 
year, 0.644 at 3 years, and 0.615 at 5 years), including KIF18B, CEP55, 
CITs, MCM7, CDC45, EZH2, and MCM5, was reported to effectively 
predict OS in Asian HCC patients. 

3.5. Difference in immune infiltration between high and low-risk groups 

CIBERSORT characterizes the cell composition of complex tissues 
from their gene expression profiles. Applying this method to TCGA and 
ICGC datasets, we assessed the cell composition of the immune micro-
environment in the two risk groups by analyzing the abundance of 
tumor-infiltrating immune cells. We also assessed the stromal, immune, 
and ESTIMATE scores for the two risk groups using the ESTIMATE 
algorithm. 

In the TCGA dataset, the high-risk group was significantly more 
infiltrated by activated memory CD4 T cells (P < 0.05), T follicular 
helper cells (P < 0.05), M0 macrophages (P < 0.001), resting dendritic 
cells (P < 0.05), and neutrophils (P < 0.001) than the low-risk group, 
but notably lesser infiltrated by resting memory CD4 T cells (P < 0.001), 
monocytes (P < 0.05), and resting mast cells (P < 0.01) (Fig. 6a). In the 
ICGC dataset, the immune infiltration composition was like that in the 
TCGA dataset. T follicular helper cells (P < 0.05), regulatory T cells 
(P < 0.001), and M0 macrophages (P < 0.001) infiltrated the high-risk 

Table 1 
Univariate, multivariate, and LASSO-Cox analysis of the five candidate genes.  

Gene Cox regression analysis LASSO-Cox regression 

Coefficients p-value HR (95% CI) LASSO Coefficient 

YBX1  0.0120  0.0910 1.01 (0.998–1.03)  0.0024 
PSMD1  0.5200  0.0000 1.68 (1.37–2.06)  0.0204 
CAD  1.8000  0.0000 6.06 (3.97–9.25)  0.0048 
EZH2  0.4400  0.0000 1.56 (1.34–1.81)  0.0286 
RNF2  0.0780  0.0000 1.08 (1.05–1.11)  0.0005 

LASSO, least absolute shrinkage and selection operator; HR, hazards ratio; CI, 
confidence interval 

Fig. 3. Risk score panel derived from the five genes. Risk scores were calculated for the TCGA and the International Cancer Genome Consortium (ICGC) datasets. Risk 
scores were combined with clinical information, survival time, and survival status for regression analysis in the TCGA and ICGC datasets. (a,b) Univariate and 
multivariate Cox regression in TCGA; (c,d) Univariate and multivariate Cox regression in ICGC. 
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group significantly more than the low-risk group, whereas M2 macro-
phages (P < 0.05), activated mast cells (P < 0.01), and eosinophils 
(P < 0.05) infiltrated the high-risk group significantly lesser (Fig. 6d). 

In the TCGA dataset, the proportion of M2 macrophages was 
significantly higher than that of any other immune cell subtype in both 
the groups (Fig. 6b,c). In the low-risk group, two types of T cells (resting 
memory CD4 T cells [11.21%] and CD8 T cells [12.22%]), macrophages 
(M2 macrophages [25.96%], M1 macrophages [5.18%], and M0 mac-
rophages [8.38%]), and activated natural killer cells (5.52%) accounted 
for more than half (62.95%) of the total immune cell infiltrates (Fig. 6b). 
Meanwhile, the proportions of resting memory CD4 T cells (12.27%), 
CD8 T cells (12.44%), resting mast cells (7.12%), and M0 macrophages 
(6.32%) differed from those in the high-risk group (Fig. 6b,c). 

In the ICGC dataset, the proportions of M2 macrophages and resting 
memory CD4 T cells in the tumor microenvironment were significantly 
higher than those of any other immune cell subtype in both the risk 
groups (Fig. 6e,f). M2 macrophages (24.62%), resting memory CD4 T 
cells (17.75%), M0 macrophages (9.47%), M1 macrophages (7.93%), 
and CD8 T cells (6.55%) constituted more than half of the tumor im-
mune infiltrates in the low-risk group. M2 macrophages infiltrated the 
high-risk group more than the low-risk group. In the high-risk group, the 
proportions of M1 macrophages (6.79%), CD8 T cells (5.87%), and M0 

macrophages (4.63%) differed from those in the low-risk group (Fig. 6e, 
f). 

3.6. Differences in the immune state of high- and low-risk groups 

We compared the stromal, immune, and ESTIMATE scores of the two 
groups to assess the presence of different infiltrating stromal/immune 
cells. High ESTIMATE scores and/or immune scores were associated 
with a higher survival rate. The stromal score significantly differed be-
tween the high- and low-risk groups in both the TCGA (P = 0.024) and 
ICGC (P = 0.001) datasets (Fig. 7a,d). The results slightly differed be-
tween the TCGA and ICGC datasets, possibly because of the different 
sample sources. The immune and ESTIMATE scores did not differ 
significantly between the two groups in the TCGA dataset, but they 
could visibly separate the two risk groups in the ICGC dataset. Immu-
notherapy has emerged as a new promising strategy to treat advanced 
HCC. Therefore, to explore the relationship between the five-gene 
signature panel and the response to immunotherapy, we compared the 
expression levels of common immune checkpoint genes and genes 
associated with T cell exhaustion between the two risk groups. Check-
point genes, such as PD1, PD-L1, and CTLA-4, were notably upregulated 
in the high-risk group compared with the low-risk group (Fig. 8a–c). A 

Fig. 4. Verification of the five-gene signature in survival analysis and its predictive capacity. (a,b) Survival analysis using the five-gene-based risk score panel and its 
capacity to predict the 1-, 3-, and 5-year survival rates of patients in the TCGA cohort (n = 357). (c,d) Survival analysis using the five-gene-based risk score panel and 
its capacity to predict the 1-, 3-, and 5-year survival rates of patients in the ICGC cohort (n = 231). 
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similar trend was observed in the expression of genes associated with T 
cell exhaustion (TIM3 and ICOS; Fig. 8d–f). Logged fold change (logFC) 
of expression of check point genes between high risk score group vs. low 
risk score group are as follows: PD-1 (logFC = 1.56), CD274 (logFC =
0.95),CTLA4 (logFC = 1.15), HAVCR2 (logFC = 1.10), TIGIT (logFC =
1.13), and ICOS (logFC = 1.2). The check point genes all elevated in high 
risk score groups compared to low risk score group. 

3.7. Expression of the five candidate genes and their individual prognostic 
ability 

To obtain new insights into expression patterns, prognostic values, 
and mutations in the five-gene signature panel, we further used various 
online databases to explore the expression of RNF2, YBX1, EZH2, CAD, 
and PSMD1 based on RNA sequencing data from HCC patients. Firstly, 
we compared the transcriptional levels of the five genes in liver cancers 
using information from the Gene Expression Profiling Interactive Anal-
ysis datasets. The mRNA levels of the five genes were significantly 
higher in HCC than in normal samples (Fig. 9a). We also checked the 
expression of five signature genes in ICGC datasets. The result is con-
sisting with the expression in TCGA (Fig. S3). Then, we assessed the 
prognostic values of the five genes in the context of HCC using 
Kaplan–Meier plots. OS was calculated as an outcome measure for 
cancer prognosis. We discovered that the increased mRNA levels of the 
five genes were correlated with lower survival rates (Fig. 9b–f). Both in 
TCGA and ICGC databases, the expression of five genes elevated in HCC 
samples. We added the results in Fig. S4. 

Furthermore, to confirm whether these five genes played an impor-
tant role in liver carcinogenesis, we used data from two independent 
databases: immunohistochemical results from clinical samples in the 
HPA database and gene mutation analysis from the cBioPortal database. 

From the HPA data, we found that immunohistochemical sections 
showed that the proteins encoded by these genes were highly expressed 
in HCC patients (Fig. S1a, c–e). However, the expression of RNF2 only 
slightly elevated in HCC. (Fig. S1b). Data from cBioPortal also indicated 
that RNF2 and CAD exhibited the most common genetic variations (5% 
and 2.4%, respectively), and the most pronounced change was ampli-
fication of the mutations (Fig. S1f). Moreover, we compared the genetic 
variations in signature genes between the high- and low-risk groups. The 
mutation rates of these five genes did not differ between the two groups 
(Fig. S1g). 

3.8. RT–PCR validation of hub genes 

To verify the expression of the candidate genes, we collected and 
validated their expression profiles in 40 samples from an independent 
clinical cohort comprising tumor tissue samples and corresponding non- 
tumor tissue samples (Fig. 10, Table S3). All five genes were upregulated 
in tumor tissues compared with non-tumor tissues, and the difference 
was significant for EZH2 (P = 0.046), YBX1 (P = 0.038), and PSMD1 
(P = 0.017). 

3.9. Potential drug candidates for the five hub genes 

Co-expression analysis showed that RNF2, YBX1, EZH2, CAD, and 
PSMD1 strongly correlated with each other in both the TCGA and ICGC 
datasets (Fig. 11a,b). Furthermore, we used several gene–gene regula-
tion databases, including STRING, IntAct, MINT, and PINA 3.0, to build 
the regulation network of the five genes and analyze their interactions 
with other closely related proteins. These genes were strictly screened by 
edge selection criteria with physical association or experimentally 
validated to only include those with high confidence scores. The 

Fig. 5. Construction and verification of a nomogram for survival prediction in TCGA. (a) A nomogram constructed by combining gender, tumor grade, existence of 
prior malignancy, and the risk score. (b) The actual and predictive probability of 1-year, 3-year, and 5-year survival calculated by the nomogram. 
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constructed regulation network contained 315 nodes and 359 edges 
(Fig. 11c). Using CytoHubba and CytoNCA, we obtained a core sub-
network composed of the five candidate genes and their first-neighbor 
genes. Since the two different algorithms yielded different predictions, 
we considered the intersection between the two subnetworks. Finally, 
the five candidate genes along with 15 closely related hub genes were 
obtained. 

3.10. Interactions between drug candidates and the gene signature 

The CMap database suggested drug candidate molecules for the 
submitted hub proteins. From CMap, we identified 647 repurposed 
drugs with the highest negative scores and a cutoff raw score of 0.6 
(Table S4). The candidate drugs were further screened by assessing the 
correlation between the expression of the five genes and the drug 
response predicted using CellMiner. Resultantly, 40 FDA-approved 
drugs were obtained (Table S5). The results from CMap and CellMiner 
were subjected to Venn analysis to identify four potential FDA-approved 
drugs for the gene signature. Finally, the four gene–drug pairs were 
identified: EZH2–AT-13387 (Fig. 12a), EZH2–fenretinide, 
YBX1–carmustine, and YBX1–KU-55933 (Fig. 12d). 

The possible interactions between the candidate drugs and the pro-
teins encoded by these genes were studied using molecular docking. 
EZH2–AT-13387 (onalespib) and YBX1–KU-55933 were most likely to 
interact through protein–molecule interactions (Fig. 12). EZH2 (4w2r) 
combines well with AT-13387 (− 10.5 kcal/mol), forming binding 
pockets. The residues TRPE:89 and GLNE:86 of EZH2 (4w2r) form pi–pi 
stacking bonds and hydrogen bonds, respectively, with AT-13387, 
which stabilize the interaction. Pi–alkyl bonds, alkyl bonds, hydrocar-
bon bonds, and extensive van der Waals interactions are also involved. 
YBX1 (1h95) also interacts well with KU-55933 (− 8.2 kcal/mol), and 

the residue PHEA:16 of KU-55933 forms pi–pi stacking bonds with 
YBX1, which stabilizes the interaction. Pi–anion bonds, pi–alkyl bonds, 
alkyl bonds, and van der Waals forces also play a role in their binding. 
(Fig. 12 b,c and d–f). 

EZH2 and fenretinide display unfavorable bonding effects (Fig. S2a). 
Based on the docking score, the interaction between YBX1 and car-
mustine is weak (− 3.8 kcal/mol), with only van der Waals forces and 
alkyl bonds existing between the two moieties (Fig. S2b). 

4. Discussion 

The management of HCC is formidably challenged by the poor 
prognosis and high mortality of the disease, resulting from insensitive 
diagnosis and limited treatment strategies [18]. New prognostic bio-
markers for precise personalized treatment are urgently needed. The 
liver is the largest digestive gland of the human body. It secretes bile, 
performs phagocytosis, and contributes to the immune response. Recent 
studies have shown that an imbalance in the immune microenvironment 
and epigenetic disorders can both intimately influence the development 
of HCC. Therefore, we aimed to develop a prognostic signature based on 
IRGs and EPGs that could predict OS in HCC patients to provide 
personalized diagnosis and treatment in the future. 

Previous studies on this topic have lacked systematic and dynamic 
exploration. They mainly focused on single IRGs or EPGs, which were 
identified based on their differential expression in tumor tissues 
compared with healthy samples. In this study, we applied the DNB al-
gorithm to identify DNBs and the critical state of HCC progression based 
on the correlation between IRGs and EPGs and the changes in their 
expression. IRGs and EPGs are related to each other in terms of gene 
function, and both mostly perform upstream regulatory roles. In this 
study, we first collated a list of IRGs and EPGs from typical immune and 

Fig. 6. Immune infiltration levels in the high- and low-risk groups in the TCGA and ICGC datasets. (a,d) The differences in immune infiltrates between the two groups 
in the TCGA and ICGC datasets, respectively. (b,c）and (e,f) The infiltration proportion of 22 immune cells in the high- and low-risk groups in the TCGA and ICGC 
datasets, respectively. ns, P > 0.05; * P < 0.05; * * P < 0.01; * ** P < 0.001. 
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epigenetics databases. The selected dataset GSE114564 contains tran-
scriptome data of samples ranging from normal to advanced HCC with 
continuously dynamic characteristics. We subjected this dataset to DNB 

analysis—an advanced bioinformatic algorithm based on disease–gene 
specificity that can capture the underlying key regulatory bio-
molecules—to identify potential IEDs. LASSO-Cox analysis, 

Fig. 7. The assessment of stromal, immune, and ESTIMATE scores by the ESTIMATE method. (a–c) The stromal, immune, and ESTIMATE scores of the two risk 
groups in the TCGA dataset comprising hisk score samples (n = 178) and low risk samples (n = 179). (d–f) The stromal, immune, and ESTIMATE scores of the two 
risk groups in the ICGC dataset comprising high score samples (n = 111) and low risk samples (n = 112). Mann–Whitney U test was used to ascertain signifi-
cant expression. 

Fig. 8. Comparative expression of immune checkpoints genes between different clusters. (a–f) Box plots visualizing the differential expression of immune check-
points between the high- and low-risk groups. PDCD1 (PD-1): programmed cell death 1; CD274 (PD-L1): programmed death-ligand 1; CTLA4: cytotoxic T- 
lymphocyte-associated protein 4; TIM-3 (HAVCR2): T cell immunoglobulin mucin receptor 3; TIGIT: T cell immunoreceptor with Ig and ITIM domains; ICOS, 
inducible co-stimulatory molecule. 
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Kaplan–Meier survival plots, and ROC curves were used to successfully 
construct a prognostic signature comprising five genes (EZH2, RNF2, 
YBX1, CAD, and PSMD1). Risk scores based on the prognostic signature 
were combined with TNM staging to establish nomograms for predicting 
patient survival. The prognostic signature and the nomograms accu-
rately identified high-risk patients and predicted their prognosis. 
Therefore, we propose that this novel IED-related signature can serve as 
a potential prognostic biomarker for HCC. 

Recently, some other HCC biomarkers with good prognostic ability 
have emerged. Yang et al. [23] classified high-risk patients and pre-
dicted OS (AUC = 0.798 for 1 year, 0.748 for 3 years, and 0.721 for 5 
years). Tang et al. developed a nine-gene signature with AUC values of 
0.79, 0.71, and 0.71 for 1-, 3-, and 5-year OS, respectively. These results 
align with those reported in this study. However, they focus on different 
mechanisms involved in HCC pathogenesis, such as iron death [24], 
cellular senescence [25], and angiogenesis [26]. The liver is the largest 
immune organ in the human body. Immune regulation and epigenetic 
changes play a crucial role in the progression of HCC. DNB analysis is an 
effective method to identify the genes regulating the critical transition in 

the progression of a disease, helping us identify the signature genes in 
the development of that disease. In addition, unlike the previous studies, 
we have focused on potential FDA-approved drug candidates that target 
these signature genes, proposing their potential applications in HCC. 

To explore the complexity of the HCC microenvironment, we used 
the risk score to divide cases from the TCGA and ICGC datasets into 
high/low-risk groups, and evaluated the differences in immune cell in-
filtrates between them. We observed highly abundant and abnormal 
infiltration of the whole macrophage population, resting memory CD4 T 
cells, and activated natural killer cells. M2 macrophages, which are 
activated by interleukin-4 (IL-4) and IL-13, often accelerate cancer 
progression [27]. A large proportion of tumor-infiltrated M2 macro-
phages were found in both the groups, which further increased 
(25.96–26.15% in TCGA and 24.62–28.02% in ICGC) with an increase in 
the risk grade of patients. During cancer cell invasion, M0 macrophages 
are easily transformed in the tumor microenvironment into the M2 
subtype [28], which secretes the inhibitory cytokines IL-10 and trans-
forming growth factor-β and promotes inflammation [29]. In the tumor 
immune microenvironment, the increased proportion of macrophages 

Fig. 9. The expression of YBX1, PSMD1, CAD, EZH2, and RNF2 and survival analysis in the TCGA dataset. (a) Expression of the five genes in the TCGA dataset 
comprising high risk score samples (n = 178) and low risk score samples (n = 179). Mann–Whitney U test was used to detect significant expression. * ** *, 
P < 0.0001; * ** , P < 0.001; * *, P < 0.01; * , P < 0.05. (b–f) Kaplan–Meier curves based on the five genes to determine the overall survival (OS) of HCC patients in 
the TCGA dataset. 
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may be a significant driver of liver carcinogenesis. 
Higher expression of PD-L1 significantly and independently corre-

lated with poor survival in HCC patients [30]. In this study, the high-risk 
group had low stromal scores (Fig. 7a, d) in both TCGA and ICGC 
dataset, suggesting a higher tumor purity and a dismal prognosis, which 
is consistent with a previous study [31]. However, in ICGC, the immune 
score and Estimate score did not shown significantly difference, which 
may due to the different patients source of two datasets. Patients with 
higher expression of immune checkpoints (PD-1, PD-L1, and CTLA-4) 
may be suitable for treatment with anti-immune checkpoint antibodies, 
such as nivolumab (anti-PD1) and ipilimumab (anti-CTLA-4) [32]. TIM3 
is expressed in various types of T cells and is a candidate target for tumor 
immunotherapy. High expression of TIM3 and PD-1 in T cells and the 
enrichment of regulatory T cells suggest that TIM3 may be one of the 
signs of PD-1 blocking antibody resistance [33]. In preclinical studies, 
TIM3 and PD-1 inhibitors elicited similar effects. In this study, TIM3 was 
found to be highly expressed; therefore, the high-risk group may benefit 
from TIM3-targeted anti-tumor immunity (Fig. 8). 

We noticed that the data analysis results slightly differed between 
the TCGA and ICGC datasets, possibly because of the different sample 
sources. The ICGC database is an international oncogene collaboration, 
housing data from dozens of cancer samples from different countries and 
regions. The TCGA database, on the other hand, is affiliated to the Na-
tional Cancer Institute in the United States, and contains data on samples 
only from the United States. In bioinformatic analysis, ICGC datasets are 
often used for validation. To address this issue, experimental validation 
is necessary. We validated the mRNA expression of the five signature 
genes in an independent cohort of HCC patients using RT–PCR. Four out 
of five genes (except RFN2) were found to be significantly upregulated, 
corroborating the previous result from TCGA, and indicating that these 
genes may be dominantly expressed in tumor cells (Figure S1). However, 
the expression of RNF2 did not show statistical difference, which re-
quires larger sample size for validation in the future. The expression of 

several signature genes fluctuated not only in tumor cells but also in 
immune cells. EZH2 was reported to be highly overexpressed in the 
subset of tumor-associated macrophages (macrophage.3) in glioblas-
toma [33]. Single-cell sequencing revealed that EZH2 also regulated 
antitumoral responses in natural killer cells [34]. Takeuchi et al. found 
that YBX-1 was poorly expressed in T lymphocytes compared with 
cancer tissues, indicating that the suppression of YBX1 induces the 
proteolysis of signal transducer and activator of transcription 3 and 
sensitizes renal cancer to interferon-α [35]. Notably, the prognostic 
signature genes were significantly related to the abnormal infiltration of 
macrophages. Among them, EZH2-mediated H3K27me3 was shown to 
induce the transformation of hepatic macrophages from an M1 to an M2 
phenotype [34]. High expression of YBX1 was related to M2 macro-
phage infiltration and T cell failure in the tumor microenvironment of 
breast cancer [35]. RNF2 induced persistent tumor rejection and 
established immune memory by enhancing the infiltration and activa-
tion of natural killer and CD4 T cells [36]. 

EZH2 (enhancer of zeste homolog 2) is a polycomb gene and an 
epigenetic regulator that inhibits transcription. EZH2 plays an important 
role in humoral and cell-mediated immunity [34,37]. In the immune 
microenvironment of liver fibrosis, EZH2 regulates the 
enhancer-mediated transcription factor KLF14 of H3K27me3 to aggra-
vate liver fibrosis [38]. Inhibition of EZH2 disrupts myofibroblasts and 
causes remission of liver fibrosis. It was also demonstrated to alleviate 
atrial fibrosis caused by EZH2-activating mutations in an experimental 
as well as clinical setting [39]. EZH2 promotes anticancer immune re-
sponses by regulating Th1 chemokine expression, myeloid-derived 
suppressor cells, or CD8+ T cell infiltration [40,41]. Multiple studies 
have proposed EZH2 to be a potential target in HCC [12,42], which 
aligns with the results from this study. 

YBX1 is a transcription factor that belongs to the cold-shock protein 
superfamily and is associated with various cancers, such as breast can-
cer, renal cell carcinoma, and HCC [43,44]. YBX1 may importantly 

Fig. 10. Reverse transcription–PCR (RT–PCR) validation of the five genes in samples from other independent participants in our cohort. The vertical axis represents 
relative expression values normalized to the expression of actin beta (ACTB). The significance of differential expression between Normal (n = 40) and HCC (n = 40) 
samples were measured using Mann–Whitney U tests. (a) EZH2, (b) RNF2, (c) YBX1, (d) CAD, (e) PSMD1. 
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activate mammalian target of rapamycin signaling by mediating an 
autoactivation pathway that impairs proteostasis in glioblastoma [45]. 
Studies have shown that long noncoding RNAs can regulate HCC pro-
gression by targeting YBX1 [46]. 

CAD (carbamoyl phosphate synthase 2, aspartate transcarbamylase, 
and dihydroorotase) is a multifunctional protein. Dysregulation of CAD- 
related pathways or CAD mutations can lead to cancer, neurological 
diseases, and inherited metabolic diseases [47]. Using online cancer 
datasets, Wang et al. [48] found that pyrimidine metabolic signaling was 
disrupted in various cancers, and CAD was enriched in cancer types with 
poor clinical outcomes, such as HCC, breast cancer, and colon cancer. Fu 
et al. [49] found that CAD-mediated pyrimidine biosynthesis was 
inhibited by arginine anabolic enzymes via VIP/VIPR1 signaling, sug-
gesting that CAD was involved in the metabolic regulation of HCC. Be-
sides, increased CAD phosphorylation, which stimulates tumorigenesis, 
has been observed in several types of cancers [50]. 

PSMD1 encodes a subunit of the 19 S regulatory complex of the 26 S 
proteasome, making it a component of the ubiquitin–proteasome sys-
tem. It plays an important role in neutralizing damaged and misfolded 
proteins. PSMD1 was found upregulated in anaplastic thyroid carcinoma 
and breast cancer tissues, and it may serve as a novel potential 

therapeutic target [51,52]. Rubio et al. [53] found significant differ-
ences in the mRNA and protein expression of PSMD1 across various 
cancers when they analyzed data from TCGA and Clinical Proteomic 
Tumor Analysis Consortium in UALCAN. They also established that 
PSMD1 and PSMD3 play oncogenic roles in chronic myeloid leukemia by 
stabilizing nuclear factor-kappa B [54]. 

RNF2 (ring finger protein 2) is a well-known E3 ligase that plays 
oncogenic roles in various cancers, including colon cancer [45], breast 
cancer [55], and gastric cancer [47]. It is one of the core components of 
polycomb repressive complex 1, and may play an important role in 
multiple stages of carcinogenesis, such as normal epithelial cell 
immortalization, early malignant transformation, and stem cell self--
renewal. Qu et al. [56] reported RNF2 mRNA amplification in 19.7% of 
the HCC samples in their study. 

Finally, we combined the results from CMap and CellMiner to select 
specific candidate drugs. We validated two FDA-approved market drugs 
(AT-13387 and KU-55933) for HCC treatment using target protein–drug 
molecular docking simulations. Drug target binding affinity scores (less 
than − 8.0 kcal/mol) indicated the potential of the two drugs in HCC 
treatment. These results may be a useful resource for the prevention and 
early detection of HCC. 

Fig. 11. Correlation within the five-gene signature panel. (a) Correlation among the five genes in the ICGC dataset. (b) Correlation among the five genes in the TCGA 
dataset. Size of the bubbles: correlation coefficients. The bigger size of the bubble, the higher value of the correlation coefficients. * ** *, P < 0.0001.(c) Regulation 
network analysis of the five genes. Red dots: RNF2, YBX1, EZH2, CAD, and PSMD1; blue dots: genes from the regulation network that were strictly screened by edge 
selection criteria from multiple databases. (d) Core subnetwork composed of the five candidate genes and 15 first-neighbor genes obtained using CytoHubba and 
CytoNCA, separately. (e) Venn analysis of genes intersecting between the two subnetworks. 
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The advantage of this study lies in the fact that we used the DNB 
algorithm to build a prognostic gene signature that divides patients into 
two risk groups with different immune microenvironment signatures. 
An accurate measure of the degree and composition of immune in-
filtrates can guide future clinical immunotherapy. Although the five- 
gene signature achieved independent prognosis, this study has certain 
limitations as well. First, it mainly focused on bioinformatic analysis. 
Although the expression level of signature genes in HCC was verified by 
immunohistochemistry in HPA and RT–PCR, a mechanistic verification 
is lacking. Comparing PCR results between patients with better or worse 
clinical outcomes will make more sense. This requires a multicenter 
study designed like a prospective clinical trial. Years of follow-up data 
and patient samples are also needed to verify the gene expression in HCC 
patients with better or worse clinical outcomes. In the future, we will 
investigate the specific mechanisms of these genes and design prospec-
tive clinical trials to accomplish the task of sample collection. 

5. Conclusion 

In the current study, we applied the DNB algorithm to evaluate IRGs, 
EPGs, and their closely related neighbor genes in HCC samples. Using 
multiple statistical methods, five candidate genes (RNF2, YBX1, EZH2, 
CAD, and PSMD1) were identified and built into a signature panel with 
great prognostic ability. The expression of these genes was also validated 
in an independent patient cohort. This panel was used to establish two 
risk groups, which confirmed its prognostic ability. Immune checkpoint 
genes were upregulated in the high-risk group compared with the low- 

risk group, which indicates possible association of the panel and the 
response to HCC immunotherapy. It provided a new strategy for clas-
sifying HCC patients. These findings may guide the development of 
precise targeted chemotherapeutic drugs and personalized therapeutic 
strategies. 
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