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Abstract 

Background:  Poorly cohesive (PC) is a unique histologic subtype of gastric cancer (GC), with an increasing incidence 
in recent years. However, the molecular characteristics and therapeutic targets of PC GC are not yet well studied and 
there are no effective therapies for these patients.

Methods:  Formalin fixed paraffin embedded (FFPE) samples of 556 GC patients, including 64 PC GC, were collected 
for next-generation sequencing (NGS). Clinical characteristics and genomic profiling were analyzed. FGFR2 expression 
was detected by quantitative real time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). FGFR2 
inhibitors response was studied in vitro.

Results:  Among 556 GC patients, PC GC patients were younger (P = 0.004), had lower tumor mutation burden (TMB-
L) (P = 0.001) than non-PC GC. The top 10 most frequently mutated genes in PC GC were TP53 (48%), CDH1 (31%), 
ARID1A (14%), FGFR2 (14%), ERBB2 (9%), CDKN2A (9%), FGF3 (8%), LRP1B (9%), FGF19 (8%) and FGF4 (8%). Noticeably, 
FGFR2 is more frequently mutated than non-PC GC (14% vs. 6%, P = 0.037), including copy number variants (CNVs, 
12.5%) and gene rearrangements (3.1%, FGFR2/VTI1A and FGFR2/TACC2). Former studies have confirmed that gain 
of copy number could increase FGFR2 expression and sensitivity to FGFR2 inhibitors in GC. However, no research has 
verified the function of FGFR2 rearrangements in GC. Our results showed that cell lines of GC transfected with TACC2-
FGFR2 fusion had increased mRNA and protein expression of FGFR2, and were more sensitive to FGFR2 inhibitors. 
FGFR2 inhibitors might be a new therapeutic target for PC GC. In addition, we found patients of PC GC harboring 
gene rearrangements (n = 9) had poorer overall survival (OS) in comparison with patients without any gene rear-
rangement (n = 19) (16.0 months vs 21.0 months, P = 0.043). Gene rearrangement might be an adverse prognostic 
factor for PC GC patients.

Conclusions:  FGFR2 alterations were recurrent in PC GC and FGFR2 inhibitors might be a new therapeutic target for 
PC GC.
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factor receptors 2
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Background
Gastric cancer (GC) is the fifth most common cancer and 
the third leading cause of cancer mortality in the word 
[1]. Numerous studies have shown that GC is histologi-
cally and genetically heterogeneous. The WHO classified 
GC into papillary adenocarcinoma, tubular adenocarci-
noma, mucinous adenocarcinoma, poorly cohesive (PC) 
carcinoma, mixed adenocarcinoma and other rare sub-
types [2]. In recent years, a decrease occurred in the 
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overall incidence of GC, however, the proportion of 
GC with WHO PC histology is increasing [3]. PC GC is 
defined as tumor composed of isolated or small groups 
of tumor cells by the WHO classification [3]. Compared 
to other GC subtypes, PC GC is poorly differentiated and 
easy to metastasized. None of current treatments, includ-
ing chemotherapy, radiotherapy, targeted therapy and 
immunotherapy, has shown good results [4, 5].

Although the histopathological classifications currently 
remain the most commonly used for therapy decision 
making in the clinical setting, molecular classifications 
have been developed to guide future treatment develop-
ment [5]. Several different molecular GC classification 
systems have been proposed these years, attempting to 
relate molecular features to histological phenotypes and 
clinical features [6, 7]. In 2014, The Cancer Genome Atlas 
(TCGA) research network proposed four molecularly 
distinct GC subtypes: Epstein–Barr virus infected (EBV), 
microsatellite instability (MSI), genomically stable (GS), 
and chromosomal instability (CIN) [8]. Also, in 2015, the 
Asian Cancer Research Group classified GC into four 
molecular subtypes: mesenchymal-like, microsatellite-
unstable, the tumor protein 53 (TP53)-active and TP53-
inactive types [9]. However, there are few detailed studies 
on the mutational spectrum of PC GC. Further investiga-
tion of the genetic alterations may provide useful infor-
mation to explore new therapies for PC GC patients.

In this study, we compared the clinical characteristics 
and genomic profiling of PC GC patients and non-PC GC 
patients. Furthermore, we investigated whether genetic 
alterations are associated with patient prognosis in PC 
GC. Finally, we tried to seek new therapies according to 
specific genetic alterations of PC GC.

Methods
Patients and samples
We collected 556 patient samples of gastric adenocarci-
noma. All histopathologic diagnoses were reviewed by 
at least two senior pathologists independently. Clinical 
information was retrospectively collected and the over-
all survival (OS) was measured from the date of surgery 
to the date of death or the last follow-up visit. The last 
follow-up date was August 8th, 2016. This study was 
conducted in accordance with the code of ethics of the 
World Medical Association (Declaration of Helsinki) 
and approved by the Ethics Committee of Nanjing Drum 
Tower Hospital (No. 2016-196-01).

Nucleic acid preparations and next‑generation sequencing
Formalin fixed paraffin-embedded (FFPE) tissues 
obtained from patients with GC were collected for 
NGS in a 450-gene panel assay, whose accuracy has 
been verified before (Additional file  1: Figure S1). DNA 

was extracted from the unstained FFPE sections with 
tumor content of no less than 20% and was fragmented 
to ~ 250  bp by sonication. A library was constructed 
using the KAPA Hyper Prep Kit (KAPA Biosystems) 
and hybridization capture was performed with a custom 
panel containing individually synthesized 5ʹ-biotinylated 
DNA probes. The capture probes target exons of 450 
cancer-related genes and frequently rearranged introns of 
38 genes. Paired-end sequencing was performed accord-
ing to the manufacturer’s protocols. Genomic alterations, 
including single base substitutions, short and long inser-
tions/deletions (INDELs), copy number variations, and 
gene rearrangements, were assessed using the OrigiMed-
pipeline. Genomic alterations relevant for cancer immu-
notherapy, which included TMB levels and MSI, were 
also evaluated [10, 11]. Mutation signature was predicted 
using a public software deconstuctSigs. All substitution 
mutations were classified into 96 kinds of trinucleotides 
and the frequency of each was precisely calculated as the 
characteristic signature of these samples. The signature 
was then compared with the typical 30 signatures from 
COSMIC to identify the most similar combination and 
the percentage of each contributed [12].

Cell lines
To verify the function of TACC2-FGFR2 fusion, we gen-
erated gastric cancer cell lines with stable expression of 
TACC2-FGFR2. The Lenti-EF1a-EGFP-pGK-Puro retro-
viral vectors containing the particular fusion genes were 
transfected into 293 T cells to produce virus. MKN45 
and NUGC4 cells were then infected with the viral super-
natant containing expression constructs. Stable trans-
fectants were obtained and maintained under selection 
pressure by puromycin dihydrochloride (2  µg/ml, Beyo-
time, ST551-10  mg). Under selection conditions, clones 
were picked and maintained.

Quantitative real time polymerase chain reaction 
(qRT‑PCR) analysis
Total RNAs were extracted by TRIzol™ Reagent (Thermo 
Fisher Scientific, 15596018), then dissolved in RNase-
free water. cDNA synthesis is performed in the first step 
using total RNA, Random Primers (Thermo Fisher Scien-
tific, 48190011) and dNTP Mix (10  mM ea, 18427013), 
5 min at 65 °C. In the second step, PCR is performed in a 
separate tube using probes specific for the gene of inter-
est, M-MLV Reverse Transcription (200 U/ul, 28025013) 
and RNase OUT™ Recombinant Ribonuclease Inhibi-
tor (Thermo Fisher Scientific, 10777019), following the 
procedures of 10 min at 25  °C, 45 min at 37  °C, 10 min 
at 70  °C, and then 4  °C. TaqMan™ Fast Advanced Mas-
ter Mix (Thermo Fisher Scientific, 444556) was used 
with the following PCR parameters, 1 cycle of 20  s at 



Page 3 of 11Wang et al. J Transl Med          (2021) 19:401 	

95  °C, 40 cycles of 1  s at 95  °C and 20  s at 60  °C using 
QuantStudio™ 7 Flex (Applied Biosystems). Probes 
used in this study are FGFR2 (Thermo Fisher Scientific, 
Hs01552918_m1) and β-actin (Thermo Fisher Scientific, 
Hs99999903_m1).

Immunohistochemical staining of tumor tissues
The expression of PD-1, PD-L1, CD3, FGFR2 in tumors 
was evaluated via immunohistochemical analysis (anti-
PD-1, 1:100, NAT105, Cell Marque; anti-PD-L1, 1:100, 
SP142, Spring Bio; anti-CD3, 1:500, CD3-565-L-CE, 
Leica/Novocastra; anti-FGFR2, 1:200, ab58201, Abcam). 
The PD-1, PD-L1 is observable in the cytoplasm or on 
the membrane of the tumor cell or the TILs. The immu-
noreactivity of PD-1, PD-L1 was evaluated semiquan-
titatively according to the percentage and intensity of 
positive cells. Specimens in which PD-1 or PD-L1 were 
observed in more than 1% of tumor cells or immune 
cells were considered PD-1 or PD-L1 positive. CD3 was 
detected in the nuclei of the TILs. The distribution of 
CD3+ TILs was observed in the areas with the highest 
density of TILs first at low magnification. The amount of 
positive TILs was then recorded at high magnification 
(HPF 400× magnification). The number of CD3+ TILs 
was determined in 30 random high power fields in each 
section.

Fluorescence in situ hybridization (FISH)
Two-color FISH was performed on 2  µm thick sections 
from formalin-fixed, paraffin-embedded tumor tissues 
with FGFR2 rearrangements and paired normal tissues. 
Before hybridization, sections were deparaffinized, dehy-
drated in 100% ethanol, and air-dried. Commercially 
available, locus-specific FGFR2 probe (anbiping, F.01197-
01) were used according to the manufacturer’s recom-
mendations. 377-kb Spectrum Green directly labeled 
fluorescent DNA in the 3ʹ of FGFR2 and 446-kb Spec-
trum Red directly labeled fluorescent DNA in the 5ʹ of 
FGFR2.

Drug sensitivity test
Cell counting kit-8 (CCK-8) (Vazyme, A311-01/02) assay 
was used to estimate drug response. Briefly, 2500 cells 
were seeded each well of 96-well plates with 100  μl of 
10% FBS 1640 medium, and treated with BGJ398 (Sell-
eck, S2183), AZD4547 (Selleck, S2801) or Erdafitinib 
(Selleck, S8401) on the 2nd day. After additional days of 
incubation, 10  μl CCK-8 was added into each well and 
incubated for 2 h. Afterwards, absorbance was measured 
at 450 nm with microplate reader. The IC50 values were 
calculated with nonlinear regression analysis by using 
GraphPad.

Statistical analysis
Statistical analysis was performed by SPSS statistics soft-
ware, version 25.0 (SPSS, Chicago, IL, USA). The contin-
uous variables were tested for normal distribution before 
analyzing by t test. The categorical variables were taken 
with the Pearson’s Chi-square test (or Fisher’s exact test). 
Impact of clinical characteristics and genetic alterations 
on survival outcomes were estimated by using Kaplan–
Meier method, Cox proportional hazard modeling. A 
two-tailed P value of less than 0.05 was regarded as sta-
tistically significant.

Results
Clinical characteristics and genomic profiling of PC GC 
and non‑PC GC patients
In this study, a total of 556 GC samples were included. 
Among all GC patients, 64 (11.5%) are diagnosed as PC 
GC and 492 (88.5%) are non-PC GC. We compared the 
clinical characteristics between PC GC and non-PC 
GC patients (Table  1). It showed that PC GC patients 
were younger than non-PC GC (proportion of patients 
younger than 60 years old was 65.6% vs. 46.3%, P = 0.004) 
(Table  1). Also, PC GC patients are more likely to be 
female, although there was no significant difference (pro-
portion of female patients was 40.6% vs. 32.7%, P = 0.208) 
(Table 1).

Formalin fixed paraffin-embedded (FFPE) tissues 
obtained from these 556 GC patients were collected for 
NGS in a 450-gene panel assay (Fig.  1a). Microsatellite 
instability (MSI) status was identified based on mismatch 
repair (MMR) gene expression, while tumor mutation 
burden (TMB) was defined as mutations per megabase 
(Muts/Mb). NGS analysis revealed all 64 gastric PC GC 
patients were MSS, while 29 (5.9%) non-PC GC patients 
were MSI-H (P = 0.085) (Table  1). Similarly, only 9.4% 
(6/64) PC GC patients had high TMB (≥ 10  Muts/Mb) 
while the proportion among non-PC GC patients was 
28.3% (139/492) (P = 0.001) (Table 1).

The top 10 most frequently mutated genes among 
64 gastric PC GC patients were TP53 (48%), CDH1 
(31%), ARID1A (14%), FGFR2 (14%), CDKN2A (9%), 
ERBB2 (9%), LRP1B (9%), FGF19 (8%), FGF3 (8%), and 
FGF4 (8%), compared to TP53 (66%), ARID1A (20%), 
LRP1B (16%), CDH1 (14%), PIK3CA (12%), FAT4 (10%), 
TGFBR2 (10%), KRAS (10%), APC (9%) and KMT2D 
(8%) in non-PC GC patients (Fig.  1a). Genomic altera-
tions including single nucleotide variants (SNVs), 
INDELs, copy number variations (CNVs), gene fusions 
and rearrangements were assessed. We respectively com-
pared the most frequent SNVs and INDELs, CNVs and 
rearrangements between PC GC and non-PC GC. SNVs 
and INDELs of TP53 (64.8% vs 46.9%, P = 0.005), CNVs 
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of CCNE1 (12.4% vs 3.1%, P = 0.028) occurred more fre-
quently in non-PC GC while SNVs and INDELs of CDH1 
(12.6% vs 28.1%, P = 0.001), CNVs of FGFR2 (5.1% vs 
12.5%, P = 0.037) occurred more frequently in PC GC 
(Table 1).

The value of gene rearrangements in predicting prognosis 
for PC GC
We detected gene rearrangements in 20.3% (13/64) PC 
GC patients (Fig.  1b). Specially, FGFR2 rearrangements 
(FGFR2/VTI1A and FGFR2/TACC2) were recurrently 
detected in 3.1% (2/64) PC GC tumor samples. We col-
lected clinical characteristics and prognostic information 
of 28 PC GC patients from Drum Tower Hospital. It dem-
onstrated that PC GC patients with gene rearrangements 
had a higher N stage (P = 0.001) and a higher tumor stage 
(P = 0.010) defined by 8th American Joint Committee on 
Cancer (AICC) criterion (Table  2). Moreover, patients 
harboring gene rearrangements (n = 9) had a shorter over-
all survival (OS) in comparison with patients without any 
gene rearrangement (n = 19) (16.0 months vs 21.0 months, 
P = 0.043) (Fig.  2a). To further explore the risk factors 
related to survival outcome of PC GC, we employed uni-
variate and multivariate Cox regression analyses to iden-
tify protective or adverse prognostic factors. As shown in 
Additional file 1: Table S1, independent prognosis factors 
of PC GC identified in the univariate Cox regression are 
age over 60  years old (HR = 2.630, 95% CI 1.104–6.268, 
P = 0.029), higher tumor stage (HR = 2.506, 95% CI 
1.026–6.122, P = 0.044), higher N stage (HR = 3.789, 95% 
CI 1.507–9.527, P = 0.005) and overlapped tumor loca-
tion (HR = 4.543, 95% CI 1.089–18.948, P = 0.038). Also, 
patients with gene rearrangements was adverse prognosis 
factor for PC GC patients, although without significant 
difference (HR = 2.384, 95% CI 0.993–5.723, P = 0.052). 
Results of multivariate Cox regression suggested that 
among PC GC patients, age over 60 years old (HR = 3.083, 
95% CI 1.114–8.531, P = 0.030) were considered as adverse 
prognosis factor. In addition, Cox’s regression model was 
separately used to estimate HR and 95% CI in each sub-
group (Fig.  2b). Among IIIA-B stage (HR = 2.64, 95% CI 
1.03–6.78, P = 0.043), PD-L1 positive (HR = 4.74, 95% CI 
1.04–21.63, P = 0.045) PC GC patients, gene rearrange-
ment was a negative factor for overall survival (Fig. 2b).

Function of TACC2‑FGFR2 fusion in PC GC
Fluorescence in  situ hybridization (FISH) and RNA 
sequencing (RNA-seq) was performed in two sam-
ples with FGFR2 rearrangements (FGFR2/VTI1A and 
FGFR2/TACC2). FGFR2/VTI1A and FGFR2/TACC2 
rearrangements could both be detected by FISH in cor-
responding patient’s samples (Additional file  1: Figure 

Table 1  Clinical characteristics and genomic profiling of PC GC 
and non-PC GC patients (N = 556)

CNV copy number variations, INDEL short and long insertion/deletion, MSI 
microsatellite instability, MSI-H microsatellite instability-high, MSS microsatellite 
stable, PC poorly cohesive, SNV single nucleotide variant, TMB tumor mutation 
burden, TMB-H tumor mutational burden-high, TMB-L tumor mutational burden-
low
a Tumors with TMB < 10 Muts/Mb are defined as TMB-L, while ≥ 10 Muts/Mb 
defined as TMB-H
b Pearson’s Chi-square test (or Fisher’s exact test) was used in statistical analyses. 
Values in italic are statistically significant

No. of patients PC
n = 64 (%)

Non-PC
n = 492 (%)

Pb

Age (years) 556 0.004

 < 60 270 42 (65.6%) 228 (46.3%)

 ≥ 60 286 22 (34.4%) 264 (53.7%)

Gender 556 0.208

 Male 369 38 (59.4%) 331 (67.3%)

 Female 187 26 (40.6%) 161 (32.7%)

MSI status 545 0.085

 MSS 516 64 (100%) 452 (91.8%)

 MSI-H 29 0 (0%) 29 (5.9%)

TMBa 556 0.001

 TMB-L 411 58 (90.6%) 353 (71.7%)

 TMB-H 145 6 (9.4%) 139 (28.3%)

Gene SNVs and INDELs

 TP53 349 30 (46.9%) 319 (64.8%) 0.005

 CDH1 80 18 (28.1%) 62 (12.6%) 0.001

 ARID1A 98 9 (14%) 89 (18.1%) 0.426

 ERBB2 29 6 (9.4%) 23 (4.7%) 0.196

 CDKN2A 17 4 (6.3%) 13 (2.6%) 0.234

 RHOA 32 4 (6.3%) 28 (5.7%) 1.000

 SMAD4 33 2 (3.1%) 31 (6.3%) 0.465

Gene CNVs

 FGFR2 33 8 (12.5%) 25 (5.1%) 0.037

 CCNE1 63 2 (3.1%) 61 (12.4%) 0.028

 ERBB2 42 1 (1.6%) 41 (8.3%) 0.094

 VEGFA 28 1 (1.6%) 27 (5.5%) 0.295

Gene rearrangements

 FGFR2 8 2 (3.1%) 6 (1.2%) 0.518

Fig. 1  a Overview of recurrent somatic genomic alterations in GC patients. The patient samples are shown on the x-axis. Information of mutation 
rate, MSI status, gender, and patient age are shown on the top of y-axis, followed by the key genetic alterations including significant mutated genes. 
Frequency of each alteration were illustrated on the left or right of the mutation heat plot. b Overview of gene rearrangements in 64 gastric PC GC 
patients. Each line connecting two genes represented one gene rearrangement, and each color represented one patient. In all, 13 gastric PC GC 
patients had gene rearrangements. Orange arrow indicated the patient who had two gene rearrangements and they overlapped each other

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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S2). TACC2-FGFR2 fusion was verified in the form of 
TACC2 (exon1–2) -FGFR2 (exon5–18) by RNA-seq 
(Fig. 3a, Additional file 1: Figure S3). However, no RNA 
product of FGFR2-VTI1A rearrangement was detected 
by RNA-seq. We presumed that it might be due to no 
RNA product was transcribed by FGFR2-VTI1A rear-
rangement indeed. Next, we evaluated the expression 
level of FGFR2 protein in patient’s surgical samples with 
TACC2-FGFR2 using immunohistochemistry (IHC), 
finding increased FGFR2 expression in tumor area com-
pared to adjacent normal surface epithelial area (Fig. 3b).

To further investigate TACC2-FGFR2 fusion in PC GC, 
we stably expressed TACC2-FGFR2 in gastric cancer cell 
lines MKN45 and NUGC4. Using qRT-PCR, we found 
FGFR2 mRNA levels were increased in TACC2-FGFR2-
expressing MKN45 and NUGC4 cells (Fig. 4a). Moreover, 
IHC showed TACC2-FGFR2 upregulated FGFR2 protein 
expression in TACC2-FGFR2-expressing MKN45 and 
NUGC4 cells. (Fig. 4b).

To figure out the role of TACC2-FGFR2 fusion in tar-
geted therapy for GC, we treated MKN45, NUGC4 cells 
and TACC2-FGFR2-expressing MKN45, NUGC4 cells 
with FGFR2 inhibitors, including BGJ398, AZD4547 
and Erdafitinib. TACC2-FGFR2-expressing MKN45 and 
NUGC4 cells are more sensitive to all these three FGFR2 
inhibitors (Fig. 4c).

Discussion
GC is a phenotypically and molecularly highly hetero-
geneous disease. Intratumoral, intrapatient and interpa-
tient heterogeneity in GC remains a crucial barrier for 
targeted therapies [2]. PC GC is a unique subtype of GC, 
tending to metastasis and with poor prognosis [13, 14]. 
None of current therapies showed satisfying results [4]. 
Therefore, there is a critical need to develop new effica-
cious therapeutic agents for PC GC. Molecular char-
acteristics are becoming more and more important for 
GC treatment. Several molecular GC classification sys-
tems have been proposed these years for better clinical 
treatments [8, 9]. A few papers have focused on genomic 
alterations of PC GC and presented significantly mutated 
genes identified are TP53, APC, KIT, EGFR, PIK3CA, 
CTNNB1, ARID1A, and CDH1 [13, 15–18]. Our results 
showed the top 10 most frequent altered genes among 
PC GC were TP53 (48%), CDH1 (31%), ARID1A (14%), 
FGFR2 (14%), ERBB2 (9%), CDKN2A (9%), FGF3 (8%), 
LRP1B (9%), FGF19 (8%) and FGF4 (8%), consistent with 
previous research.

However, these molecular characteristics of PC GC 
patients are still unclear for treatment and prognosis. 
To better understand the molecular characteristics of 
PC GC, we respectively analyzed SNVs and INDELs, 
CNVs and gene fusions and rearrangements. We found 
that 20% (13/64) PC GC patients harboring somatic gene 
rearrangements. And, patients with rearrangements 
(n = 9) had a shorter overall survival (OS) in comparison 
with patients without any gene rearrangement (n = 19) 
(16.0 months vs 21.0 months, P = 0.043) (Fig. 3b). It may 
owe to gene rearrangements could form severe cancer 
driving structural variants (SV), including insertions, 
deletions, tandem duplications, inversions, transloca-
tions, and more complex rearrangements [19]. This is 
an indication that gene rearrangements play an impor-
tant role in PC GC development and prognosis. Gene 

Table 2  Clinical characteristics of PC GC with and without gene 
rearrangements

AJCC American Joint Committee on Cancer, PC poorly cohesive
a Fisher’s exact test was used in statistical analyses. Values in italic are statistically 
significant

No. of 
patients

With 
rearrangements
n = 9 (%)

Without 
rearrangements
n = 19 (%)

Pa

Age (years) 0.371

 < 60 20 5 (55.6%) 15 (78.9%)

 ≥ 60 8 4 (44.4%) 4 (21.1%)

Gender 0.249

Male 17 7 (77.8%) 10 (52.6%)

Female 11 2 (22.2%) 9 (47.4%)

AJCC 0.010

 IIIA–B 17 2 (22.2%) 15 (78.9%)

 IIIC 11 7 (77.8%) 4 (21.1%)

T stage 1.000

 3 17 5 (55.6%) 12 (63.2%)

 4a–4b 11 4 (44.4%) 7 (36.8%)

N stage 0.001

 1–3a 19 2 (22.2%) 17 (89.5%)

 3b 9 7 (77.8%) 2 (10.5%)

Tumor size (cm)

 ≤ 4 10 4 (44.4%) 6 (31.6%) 0.677

 > 4 18 5 (55.6%) 13 (68.4%)

Tumor location 0.370

 Upper 7 4 (44.4%) 3 (15.8%)

 Middle 7 1 (11.1%) 6 (31.6%)

 Lower 10 3 (33.3%) 7 (36.8%)

 Overlap 4 1 (11.1%) 3 (15.8%)

PD-L1 0.689

 Negative 15 4 (44.4%) 11 (57.9%)

 Positive 13 5 (55.6%) 8 (42.1%)

PD-1 1.000

 Negative 22 7 (77.8%) 15 (78.9%)

 Positive 6 2 (22.2%) 4 (21.1%)

CD3 0.420

 Low 14 3 (33.3%) 11 (57.9%)

 High 14 6 (66.7%) 8 (42.1%)
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rearrangement might be an adverse prognostic factor for 
PC GC patients and more effective therapies targeting 
gene rearrangements should be studied for PC GC.

FGFR2, known as fibroblast growth factor receptor-2, 
is a transmembrane tyrosine kinase receptor, regulating 

cell proliferation, survival, migration and angiogenesis 
[20]. Genetic alterations in FGFR2, including gene ampli-
fication, mutations or rearrangements may dysregulate 
the FGF signaling pathway, influence the development 
and progression of various cancers by activating the 

Fig. 2  a Kaplan–Meier estimates of survival probability. The survival curve of patients with and without rearrangements. b Subgroup analysis of PC 
GC patients with and without rearrangements
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downstream PI3K–AKT and MAPK–ERK pathways [21]. 
Previous study demonstrated that FGFR2 overexpression, 
mainly due to FGFR2 gene amplification, is associated 
with poor pathological features, including deeper tumor 
invasion, more LN metastasis, advanced tumor stage, 
and worse survival in GC [22]. And, many researches 
indicated that the incidence of FGFR2 overexpression 
might differ between histological subtypes according to 
Lauren’s classification [21]. Hattori found FGFR2 over-
expression in 52.6% (20/38) diffuse-type GCs, but in 
none of 11 intestinal-type GCs [23]. PC GC tend to be 
diffuse-type according to Lauren’s classification, however, 
no study verified the situation of FGFR2 genomic altera-
tions in PC GC. Our results firstly showed that FGFR2 
is more frequently mutated in PC GC than non-PC GC 
(14% vs. 6%, P = 0.037), including 12.5% CNVs. Several 

small-molecule inhibitors and antibodies for FGFR2 are 
under clinical trials [24, 25]. Recently, Catenacci [25] 
verified bemarituzumab, an IgG1 antibody specific for 
the FGFR2b receptor, seemed to be well tolerated and 
demonstrated single-agent activity as lateline therapy 
in patients with advanced-stage gastric and gastroe-
sophageal junction adenocarcinoma (GEA). Moreover, 
bemarituzumab is currently being evaluated in combina-
tion with chemotherapy in a phase III trial as front-line 
therapy for patients with high FGFR2b-overexpressing 
advanced-stage GEA. Preliminary results showed that 
bemarituzumab, added to mFOLFOX6 chemotherapy, 
led to clinically meaningful and statistically significant 
improvements in PFS (9.5  m vs. 7.4  m, P = 0.0727), OS 
(not reach vs. 12.9 m, P = 0.0268) and ORR (47% vs. 33%). 
And, the higher the FGFR2 expression, the better the 

Fig. 3  a Illustration of breakpoint of TACC2 and FGFR2. Exons (Ex) of TACC2 and FGFR2 are indicated with red and blue, respectively. b 
Representative images of FGFR2 staining for PC GC patients with TACC2-FGFR2 rearrangement with tumor area (left), adjacent normal surface 
epithelial area (right). Scale bar = 500 µm

(See figure on next page.)
Fig. 4  a qRT-PCR for the TACC2-FGFR2 fusion transcript in MKN45, NUGC4 cells and corresponding TACC2-FGFR2-expressing cells. Data are 
presented as mean ± SEM. * means P < 0.05, ** means P < 0.01. b IHC of MKN45, NUGC4 cells and corresponding TACC2-FGFR2-expressing cells for 
FGFR2 protein. Scale bar = 50 µm. MKN45T: TACC2-FGFR2-expression MKN45 cells. NUGC4T: TACC2-FGFR2-expression NUGC4 cells. c Sensitivity of 
MKN45, NUGC4 cells transfected with TACC2-FGFR2 or control plasmids to FGFR2 inhibitors, including BGJ398, AZD4547 and Erdafitinib. MKN45T: 
TACC2-FGFR2-expression MKN45 cells. NUGC4T: TACC2-FGFR2-expression NUGC4 cells
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prognosis [24]. FGFR2 inhibitors may be a good choice 
for PC GC with FGFR2 CNVs.

In addition, PC GC patients not only have more FGFR2 
CNVs, but also have recurrent FGFR2 rearrangement 
(FGFR2/VTI1A and FGFR2/TACC2) in our study. FGFR 
rearrangements present in 13% to 17% of intrahepatic 
cholangiocarcinoma and represent driver mutations 
[26]. Several pre-clinical studies and clinical trials have 
demonstrated that FGFR2 rearrangements in cholangio-
carcinoma can predict tumor sensitivity to FGFR2 inhibi-
tors and become an important therapy in these highly 
selected patients [27–29]. To verify whether FGFR2 
rearrangements can be a marker for targeted therapy 
in PC GC patients, we transfected TACC2-FGFR2 con-
struct into GC cell lines (MKN45 and NUGC4), which 
has not been studied in PC GC before. We chose FGFR2 
inhibitors, including AZD4547, Erdafitinib, and BGJ398 
to treat GC cell lines with or without TACC2-FGFR2 
fusion, and got similar results. Recently, many FGFR2 
inhibitors are in the pipeline, these three drugs belonged 
to the first FGFR2 inhibitors studied. AZD4547 has been 
used in clinical trials of gastric adenocarcinoma [30], and 
Erdafitinib (Balversa™, Janssen Pharmaceutical Compa-
nies) [31] and BGJ398 (Infigratinib) [27, 32] was or will 
be approved by FDA for treatment of tumor with FGFR2 
alterations. Our results firstly verified that the FGFR2 
mRNA and protein expression level (Fig.  4b, c) were 
increased in GC cells with FGFR2 rearrangement and 
cells became more sensitive to FGFR2 inhibitors.

Conclusion
In conclusion, we firstly identified FGFR2 alteration was 
more frequently among PC GC than non-PC GC, includ-
ing CNVs and rearrangements. Moreover, we verified 
TACC2-FGFR2 fusion could increase FGFR2 expres-
sion in mRNA and protein level, and GC cell lines with 
TACC2-FGFR2 fusion were more sensitive to FGFR2 
inhibitors. All these results suggested that FGFR2 may be 
a potential therapeutic target for PC GC.
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