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Abstract: Scientific assessment of the coupled coordination degree between urbanization and food
security (CDUFS) revealed regional differences and sources. Dynamic evolution and trends are
important references for achieving a coordinated interaction between high-quality urbanization
and ensuring food security. Specifically, the CDUFS was measured using prefectural panel data in
China from 2000 to 2019 and the coupling coordination degree model, which revealed its spatial
correlation and differentiation. On this basis, in order to examine the spatiotemporal differences and
evolution of the CDUFS, the Dagum–Gini coefficient and Kernel density estimation were innovatively
used to analyze its regional differences and evolution distribution. The spatial Markov chain was
further employed to examine the evolution trend of the CDUFS. The study found that the CDUFS
showed a downward trend in fluctuation within the low coordination interval. There was a positive
spatial correlation, with a more stable distribution pattern of high–high and low–low clusters. The
regional differences in the CDUFS were obvious and the overall difference has expanded. The main
source of regional differences among different food functional areas was inter-regional differences,
followed by intra-regional differences. The regional difference between food main producing areas
and food main marketing areas was the highest. The CDUFS shows a single-peak distribution; the
imbalance between regions was still prominent with a left trailing phenomenon and no convergence.
The CDUFS has the stability of maintaining the original state, and the probability of leapfrogging
evolution is low in the short term. Finally, the geospatial effect plays an important role in the dynamic
evolution of the CDUFS.

Keywords: urbanization; food security; regional differences; dynamic distribution; evolution trend;
Dagum–Gini coefficient; kernel density estimation; spatial Markov chain

1. Introduction

One of the global Sustainable Development Goals (SDGs) set by the United Nations is
to achieve food security and promote sustainable agriculture [1]. Ensuring food security
is also an important foundation to promote urbanization. Since the reform and opening
up, China has experienced an unprecedented rapid urbanization process [2]. The rate of
population urbanization increased from 17.92% in 1978 to 60.60% in 2019, with an average
annual increase of 3.02%. Food security, characterized by grain yield per capita, only
increased from 316.61 kg/person to 470.78 kg/person, with an average annual increase of
only 0.97%, significantly lagging behind urbanization. China has the ability to guarantee the
supply of grain and important agricultural products, but grain production is facing many
challenges such as rising costs [3,4], resource and environmental constraints [5,6], growth
in rigid demand under domestic and international market changes, climate change, etc. [7].
At present, grain production of China has stopped in 2015 at the “twelfth consecutive
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increase”, and there is still supply pressure [8] with a tight balance of grain supply and
demand [9].

Urbanization is mainly manifested by the large-scale movement of the rural population
and the demand of land expansion [10], which leads to the structural adjustment of inputs,
resulting in a decrease of cropland and structural shortage of rural labor. Cropland use
is also gradually non-agricultural [11]. Urbanization also leads to the growth of farm
households’ non-farm income and the consumption diversification of agro-foods, resulting
in the non-farming of food production [12]. Food security means maximizing the stability
of food supply and ensuring that anyone has access to the food they need for survival
and health, while non-agricultural and non-farming threaten food supply per capita and
further affect food security. To ensure food security, adequate factor inputs and a reasonable
factor allocation structure must be met, which will place a higher demand on urbanization
development. If too much emphasis is placed on ensuring food security, it may cause
a mobility barrier and a spatial mismatch of the urban-rural factor structure [13,14]; the
development of urbanization would be unsustainable. In short, the one-sided pursuit of
urbanization expansion would be a strain to food security [15]. Conversely, if food security
is emphasized too much, the factor support for urbanization may be insufficient. There
may be a mutually equilibrium relationship between urbanization and food security [16,17].
With the transition to high-quality socioeconomic development, a stable and coordinated
state must exist between the two systems. So, it is necessary to objectively measure the
coordinated relationship between urbanization and food security in China, and deeply
explore its spatial-temporal differentiation, regional differences, dynamic evolution and
trends. It is expected that this study can provide reference for the sustainable development
of urbanization and food security in China and other developing countries.

Existing studies have launched rich exploration of the relationship between urbaniza-
tion and food security, but mainly focused on the unidirectional impact of urbanization [17].
The unbalanced development of urbanization has created real problems and practical
contradictions in food security [11], but urbanization from different perspectives have
different impacts on food security. Xu found that economic urbanization and population
urbanization in Jiangsu province can promote food security, while land urbanization and
consumption urbanization have different degrees of negative effects on food security [18].
While a study at the national level found that urbanization has a significant positive impact
on food security, the impact varies across food functional areas, with urbanization in the
main food marketing areas having a significant negative impact on food security [19].
In terms of the two-way interaction between urbanization and food security, Yao et al.
quantitatively analyzed the relationship between the urbanization system and food security
system, the relationship between the two systems is increasing [20]. Zhu et al. measured
the coupling coordination between new urbanization and food security in Henan province
and found that the coordination degree of the two systems in Henan province basically
achieved a leap of “near disorder→ moderate coordination” [21]. Hou et al. believed that
the coupling coordination between urbanization and grain production in China has just
entered a highly coordinated range, and there is still much room for improvement [22].
Meanwhile, the study of the relationship between the two systems involves the interac-
tion between urbanization and cultivate land pressure, total factor productivity [23–25],
coordinated development between agricultural modernization and urbanization [26,27].

In general, the existing studies provide a solid theoretical foundation for an exploration
of the relationship between these two systems. However, it is still insufficient to excavate
the change laws, so there is still room for exploration. First, regarding research scale, most
of the literature focuses on analysis at the provincial level [20] or in a particular province,
which may not accurately reflect the imbalance degree of urbanization and food security
within province. Second, regarding research content, most of the literature analyzed the
one-way impact of urbanization on food security but there is still a lack of systematic
study on the coordination between the two. Third, regarding research depth, the studies
on spatial-temporal differences mostly use GIS technology to compare and analyze the
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different spatial distribution of time-series variability [21,22]. The examination of regional
differences and evolution trend is still insufficient.

In total, this study examines in more detail on a smaller dimension at the prefecture
level [28] to overcome the homogenization error due to provincial macro data. Specifically,
using the panel data of 330 prefecture-level and above cities in China from 2000–2019 as
the research sample. Based on measurement of the comprehensive level of urbanization
by the entropy method, the coordination degree between urbanization and food security
(CDUFS) is measured by the coupled coordination model and reveals its spatial-temporal
differentiation through the exploratory spatial data analysis (ESDA). From the perspective
of different food functional areas, the regional differences and distribution dynamics of the
CDUFS are analyzed by the Dagum–Gini coefficient and Kernel density estimation, and
then the spatial Markov chain method is used to analyze its evolution trend. The study
purpose was to grasp the evolution law of the interaction between urbanization and food
security in China at the macro level. This is an important theoretical reference for other
developing countries facing food security problems in the process of urbanization and for
achieving a balance relationship between economic development and food security.

2. Materials and Methods
2.1. Variable Definition

In order to scientifically assess the coordinating relationship between urbanization
and food security, a clear definition and measurement of both is needed. Specifically:

(1) Urbanization. Urbanization is a comprehensive system with multi-dimensional fea-
tures such as population mobility, urban land growth and non-agricultural economy
development [20]. A single-dimensional population urbanization is different to reflect
the complex characteristics of urbanization [29,30]. With reference to existing studies
and data acquisition at the prefecture-level, indicators are selected from population,
land, and economy to assess the comprehensive level of urbanization [31,32]. Popu-
lation urbanization is characterized by the urbanization rate of resident population.
Land urbanization is equal to the proportion of the urban built-up area to land area.
Economy urbanization is equal to the proportion of non-agricultural industries to
GDP. The entropy method is used to assign weights to indicators and conduct com-
prehensive evaluation to avoid the subjectivity of artificial assignment [33]. Limited
to space, the detailed calculation can be found in the cited literature. The relevant
indicators are standardized by the polarization method before calculation [34].

(2) Food security. Food security is also a comprehensive system containing multi-
dimensional indicators such as self-sufficiency rate, reserve level, and per capita
food possession [35,36]. However, some indicator data are difficult to obtain at the
prefecture level, so from the perspective of per capita output scale, we use food output
per capita (food production/total population) to portray food security. The reason is
that the fundamental strategy to ensure food security remains to increase the output
capacity per capita of food to stabilize supply. In addition, the international food
security standard line is also measured by per capita food possession [37].

2.2. Data Sources

The study sample in this paper is panel data of 330 prefecture-level and above cities
from 2000–2019. Tibet, Hong Kong, Macao and Taiwan are not involved due to the limi-
tation of data availability. The data involved are mainly obtained from the China Urban
Statistical Yearbook, China Regional Economic Statistical Yearbook and provincial statisti-
cal yearbooks (https://data.cnki.net/Yearbook, accessed on 20 May 2022). The missing
data are supplemented by prefecture—level municipal statistical yearbooks and statistical
bulletins. The land use data is obtained from the European Space Agency Climate Change
Initiative (CCI) global land cover product data (www.esa-landcover-cci.org, accessed on
20 May 2022) with spatial-temporal resolutions of annual scale and 300 m × 300 m [38].
Table 1 shows the brief descriptive statistics.

https://data.cnki.net/Yearbook
www.esa-landcover-cci.org
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Table 1. Brief descriptive statistics.

Variables Variable Desceition Mean Std.

CDUFS Urbanization
Population urbanization urbanization rate of resident population

0.2824 0.0631
Land urbanization urban built-up area/land area

Economy urbanization non-agricultural industries/GDP
Food security Food output per capita food production/total population

In addition, to examine the regional differences of the CDUFS, the provinces where the
prefecture-level cities are located nationwide are divided into three different food functional
areas (Figure 1), food main producing areas (FPAs), food main marketing areas (FMAs) and
food balanced areas (FBAs), according to different agricultural production endowments
and subjects [22].
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Figure 1. The distribution of different food functional areas. Note: This figure is drawn by the authors
themselves based on ArcGIS.

2.3. Research Methods
2.3.1. CDUFS Measurement: Coupling Coordination Degree Model

The coordination degree between urbanization and food security (CDUFS) is measured
by the coupling coordination degree model. The equation is as follows.

C = 2 ∗
{

U1 ×U2

(Ui + Uj)
2

}1/2

(1)
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{
D =

√
C× T

T = aU1 + bU2
(2)

In Equations (1) and (2), C is the coupling degree, and C ∈ [0,1]; U1, U2 are urbanization
and food security, respectively. D is the CDUFS, T is the comprehensive coordination index
between urbanization and food security, reflecting the synergistic effect of the two, and
T ∈ (0, 1) to ensure D ∈ (0, 1). A, b are the pending coefficients, and a + b = 1.

Treating urbanization and food security as equally important, set a = 0.5, b = 0.5. D is
classified into four coordination types of Low (0 ≤ D < 0.3), Moderate (0.3 ≤ D < 0.5), High
(0.5 ≤ D < 0.8), and Extreme (0.8 ≤ D < 1) [39].

2.3.2. Spatiotemporal Characteristics: Exploratory Spatial Data Analysis (ESDA)

Exploratory Spatial Data Analysis (ESDA) is a traditional method used to test spa-
tiotemporal characteristics through spatial autocorrelation. Spatial autocorrelation is to
explore spatial clustering or spatial anomalies by describing and visualizing the spatial
pattern of a thing or phenomenon, which usually includes global spatial autocorrelation
and local spatial autocorrelation. Global spatial autocorrelation is mainly used to analyze
the spatial correlation of an element as a whole, which usually measured by Global Moran’s
I [40]. Its calculation equation is:

I = n
n

∑
i=1

n

∑
j=1

wij(xi − x)(xj − x)/
n

∑
i=1

(xi − x)
n

∑
i=1

n

∑
j=1

wij (3)

In Equation (3), n is the number of the study area; x is the CDUFS; x is its mean value;
wij is the spatial weight matrix constructed from the reciprocal of geographical distance
and normalized by rows, ∑j wij = 1. I ∈ [–1,1], I > 0, there is a spatial positive correlation in
CDUFS; I < 0, there is a spatial negative correlation in CDUFS; I = 0, CDUFS is randomly
distributed in space.

Local spatial autocorrelation reflects the cluster or outlier of attribute values between a
region and its neighbors [41], and is used to observe the spatial imbalance, which is usually
measured by Local Moran’s I. The specific measure is LISA (Local Indicators of Spatial
Association). Its calculation equation is:

Ii = zi∑jwijzj (4)

In Equation (4), zi, zj are the variance normalized values of CDUFS of city i, j, respec-
tively.

LISA can classify CDUFS into four different types: High-High Cluster (H-H), where
the CDUFS between a region itself and its neighboring regions are both high; Low-Low
Cluster (L-L), where the CDUFS between a region itself and its neighboring regions are
both low; High-Low Outlier, where the CDUFS in a region itself is high but its neighboring
regions is low (H-L); Low-High Outlier (L-H), where the CDFUS in a region itself is low
but its neighboring regions are high.

2.3.3. Regional Differences: Dagum–Gini Coefficient

The Dagum–Gini coefficient can analyze regional differences and decomposition of
the CDUFS [42]. It can fully consider the distribution of sub-samples and decompose the
overall Gini coefficient into intra-regional variation contribution, inter-regional variation
contribution and transvariation density contribution [43], which can overcome the lim-
itations of the traditional Gini coefficient and Theil index, effectively solving the issue
of cross-overlap of sample data and the source of regional differences [44]. Before the
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calculation, the study object needs to be divided into different regions. The Dagum–Gini
coefficient (G) for all regions is calculated as:

G =
k

∑
j=1

k

∑
h=1

nj

∑
i=1

nh

∑
r=1

∣∣yji − yhr
∣∣/2n2y (5)

In Equation (5), yji (yhr) is the CDUFS of any region within j (h), y is the average of the
CDUFS, n is the number of cities, k is the number of regions, j and h are region subscripts, i
and r are the city subscripts.

In decomposing G by subgroups, first, the regions are ordered according to the mean
value of the CDUFS, that is, yh ≤ yj ≤ . . . ≤ yk, then, the G is decomposed into three com-
ponents: intra-regional variation contribution (Gw), inter-regional variation contribution
(Gnb) and transvariation density contribution (Gi), which meet G = Gw+ Gnb+ Gi [45]. The G
portrays the size and source of the relative difference in the CDUFS.

Gw =
k
∑

j=1
Gjj pjsj, Gnb =

k
∑

j=2

j−1
∑

h=1
Gjh(pjsh + phsj)Djh, Gt =

k
∑

j=2

j−1
∑

h=1
Gjh(pjsh + phsj)(1− Djh),

Gjj =

1
2yj

nj
∑

i=1

nj
∑

r=1
|yji−yhr|

n2
j

, Gjh =
nj

∑
i=1

nh
∑

r=1

|yji−yhr|
njnh(yj+yh)

, Djh =
djh−pjh
djh+pjh

,

djh =
∫ ∞

0 dFj(y)
∫ y

0 (y− x)dFh(x), pjh =
∫ ∞

0 dFh(y)
∫ y

0 (y− x)dFj(x)

(6)

In Equation (6), pj = nj/n, sj = njyj/ny, Djh is the relative impact of the CDUFS in regions
j and h. djh is the difference in the variation of the CDUFS among regions, which represents
the mathematical expectation of all sample values sum of yji − yhr > 0 in regions j and h. pjh
is the hypervariable first-order moment, which represents the mathematical expectation of
all sample values sum of yhr − yji > 0 in regions j and h. Fj (Fh) is the cumulative density
distribution function of region j (h).

2.3.4. Dynamic Distribution: Kernel Density Estimation (KDE)

Kernel density estimation (KDE) is a nonparametric method that uses continuous
density curves to describe the distribution of random variables. It can be used to analyze
the distribution dynamics, polarization trends and distribution extension of CDUFS [46].
Suppose the density function of random variable x is f(x), for x with n independent and
identically distributed observations, x1, x2, . . . , xn, and x as its mean, the estimate of the
Kernel density function is

f (x) =
1

nh

n

∑
i=1

K(
xi − x

h
) (7)

In Equation (7), n is the study samples, h is the bandwidth, and K (·) is the stochastic
kernel function, which is a weighting function or a smoothing transformation function,
and the Gaussian (Normal) kernel function is used in this paper. The choice of bandwidth
determines the smoothing degree of estimated density function. The optimal bandwidth
must be chosen in a trade-off between the variance and bias of kernel estimation so that the
mean square error is minimized.

2.3.5. Evolution Trend: Spatial Markov Chain

The Markov chain is a special kind of stochastic process, which can measure the
state of an event occurrence and its development trend by constructing a state transfer
probability matrix. The Markov chain follows the principle of “no aftereffect”, and the
conditional distribution of state Xt depends only on state Xt−1 [47]. The evolution process
of many economic phenomena such as the CDUFS possess “no aftereffect”. We suppose
that Pij is the transition probability of the CDUFS from state i in year t to state j in year
t + 1, and it can be estimated by transition frequency approximation, i.e., Pij = nij/ni.
Where nij refers to the number of cities that transferred from state i to state j, and satisfy
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∑j Pij = ∑j P{Xn+1 = j|X n= i} = 1. If the CDUFS is divided into N types, the state tran-
sition probability matrix can be constructed as N × N. Moreover, the transition direction
(downward, unchanged, upward) is defined according to the change of the CDUFS types.

The spatial Markov chain introduces spatial lag into the transition probability matrix,
which makes up for the neglect of the spatial correlation effect in the traditional Markov
chain and can be used to reveal the intrinsic connection between spatial-temporal evolution
of the CDUFS and its spatial context. Taking the spatial lag type of a region in the initial
year as the conditional basis, the spatial Markov chain can decompose the traditional
N × N transfer probability matrix into N × N × N transition probability matrix, so as to
analyze the spatial dynamic evolution trend of the CDUFS and the impact of spatial effect
under different geographical background conditions [48].

3. Results
3.1. Spatiotemporal Correlation and Differentiation
3.1.1. Global Spatial Autocorrelation

After measuring the CDUFS at the prefecture-level city, the national average CDUFS
changed overall from 0.2965 to 0.2691, showing a significant downward trend and always
fluctuating within the low coordination interval. The CDUFS showed an obvious regional
differentiation in different food producing areas (Figure 2), mainly in the following ways:
FPAs > FMAs > FBAs. Specifically, FPAs belonged to moderate coordination, while the
FMAs and FBAs belonged to low coordination, and both showed a fluctuating downward
trend, with the FMAs showing a more prominent downward trend.
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the authors themselves based on the calculation results.

Related studies have confirmed that the spatial mobility of factors makes a significant
spatial correlation to both urbanization and food production [49,50]. Based on the distance
relationship between regions, Moran’s I for the CDUFS from 2000–2019 was calculated.
The Moran’s I ∈ [0.353, 0.674] of the CDUFS at the prefecture-level city all passed the
significance test at the 1% level (Table 2). Moran’s I basically showed a steady increasing
trend. The CDUFS had a significant positive spatial correlation and dependence, and this
positive correlation in space showed a stable and continuous strengthening.
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Table 2. Moran’s I of the CDUFS.

Year Moran’s I Z Year Moran’s I Z Year Moran’s I Z Year Moran’s I Z

2000 0.473 13.615 2005 0.623 17.904 2010 0.655 18.812 2015 0.652 18.734
2001 0.353 10.189 2006 0.617 17.74 2011 0.587 16.894 2016 0.654 18.782
2002 0.483 13.914 2007 0.603 17.337 2012 0.669 19.223 2017 0.667 19.156
2003 0.452 13.044 2008 0.637 18.292 2013 0.665 19.099 2018 0.674 19.358
2004 0.607 17.449 2009 0.621 17.847 2014 0.642 18.452 2019 0.649 18.670

3.1.2. Local Spatial Autocorrelation

To further portray the spatial differentiation of the CDUFS, the years 2000, 2005, 2010,
2015 and 2019 were selected for LISA analysis (Figure 3). The FPAs in the Northeast
Plain and the Huang-huaihai Plain showed H-H significantly. The FBAs or FMAs in the
Northwest, the Southwest and the South China coast showed significant L-L, while showing
H-L and L-H sporadic distribution around H-H and L-L, but fluctuations also occurred in
local areas.
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(1) High-High Cluster (H-H). Areas with H-H are mainly distributed in the FPAs such
as the Northeast Plain, the North China Plain, and the middle and lower reaches of
the Yangtze River. The coverage of H-H in general also showed a steady expansion of
changes. The H-H areas in 2000 were mainly located in the FPAs of Northeast Plain,
North China Plain and the lower Yangtze River. By 2019, the distribution expanded
significantly to the FPAs in the center region, especially Hubei and Henan. Overall,
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the distribution of H-H was more stable, and its distribution range was gradually
expanding to the FPAs in the middle reaches of the Yangtze River.

(2) Low-Low Cluster (L-L). Areas with L-L were steadily at the Northwest, Southwest
and Southeast coast, concentrated in the FBAs and FMAs. In terms of changes in
their coverage, it showed a stable expansion in the Northwest, expansion followed
by contraction in the Southwest, and obvious expansion in the Southeast coastal. In
general, the distribution pattern of H-H was relatively stable, but the southwest region
shrunk significantly, and the distribution range gradually expanded to the FMAs of
the Southeast coast.

(3) High-Low Outlier and Low-High Outlier (H-L, L-H). Areas with H-L and L-H of
CDUFS were less distributed and sporadic, concentrated in the peripheral neighboring
areas of H-H and L-L. The interaction between areas weakened the CDUFS to a certain
extent. Individual areas in Qinghai have changed from H-L to L-L, which means that
its urbanization and food security are faced with great challenges. Other areas with
H-L are mainly at Xinjiang, Yunnan, Guangxi, etc., concentrated in the periphery of
L-L. The areas with H-L in Yunnan and Guangxi are gradually disappearing while
areas with L-H include the Daxinganling in Heilongjiang, mainly at the periphery of
H-H.

3.2. Regional Differences and Decomposition

Although the analysis of spatiotemporal correlation and differentiation can visually
portray the heterogeneous distribution of the CDUFS among regions, it is difficult to
further reflect the extent of regional differences and their causes. Therefore, the Dagum–
Gini coefficient method was used to systematically analyze the overall differences in the
CDUFS, the differences in different food functional areas and their sources.

3.2.1. Overall Regional Differences

The Dagum–Gini coefficient of CDUFS ranged from 0.0953 to 0.1360, with a mean
value of 0.1223 during study period, implying that the coordination relationship between
urbanization and food security exhibited a certain spatial disequilibrium. After a brief
oscillation until 2004, the Gini coefficient of the the CDUFS showed an upward trend
and reached a maximum in 2011 (0.1360), after which it declined slightly in fluctuations
(Figure 4). The Gini coefficient of the CDUFS increased by 0.0305, or 32.00%, with a
more significant increase, so the overall regional differences of the CDUFS in China have
expanded.
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3.2.2. Regional Differences and Their Decomposition

For intra-regional differences (Table 3), the mean values of the Gini coefficient of the
CDUFS in the FPAs, FMAs and FBAs were 0.0933, 0.0958 and 0.1181, respectively, and
the internal differences of coupling coordination in FMAs were higher than those in the
FPAs and FBAs. The intra-regional differences of the CDUFS in the three food functional
areas had different trends, but compared with 2000, they all showed an overall increase,
indicating that the internal differences of different food functional areas of CDUFS have
expanded. The Gini coefficient of FPAs changed from 0.0742 in 2000 with an increasing
and then decreasing trend to 0.0774 in 2004, and then gradually increased steadily to 0.0882
in 2019, with an overall increase of 18.87%. The Gini coefficient of FMAs, except for the
anomaly in 2011 (0.1433), basically showed a steady increase, from 0.0750 to 0.1126 year-
on-year, an overall increase of 50.13%. The Gini coefficient of FBAs changed from 0.0959
in 2000 to 0.0912 in 2004 first increasing and then decreasing, then increased to 0.1003 in
2019, with a relatively small increase of 4.59% overall. In addition, the expansion trend of
internal differences of the CDUFS was the most pronounced in FMAs, followed by FPAs.

Table 3. Regional differences and their sources of CDUFS in different functional areas.

Food Functional Areas 2000 2003 2006 2009 2012 2015 2018 2019 Mean

Intra-regional
difference

FPAs 0.0742 0.0848 0.0950 0.0983 0.1008 0.0965 0.0948 0.0882 0.0933
FMAs 0.0750 0.0812 0.0838 0.0956 0.0968 0.0992 0.1116 0.1126 0.0958
FBAs 0.0959 0.1255 0.1217 0.1352 0.1261 0.1133 0.1185 0.1003 0.1181

Inter-regional
differences

FPAs-FMAs 0.0860 0.1000 0.1254 0.1602 0.1772 0.1814 0.2065 0.1938 0.1538
FPAs-FBAs 0.1210 0.1293 0.1449 0.1540 0.1475 0.1420 0.1481 0.1429 0.1414
FMAs-FBAs 0.0970 0.1087 0.1060 0.1200 0.1211 0.1177 0.1334 0.1186 0.1157

Contribution
rate/%

Intra-regional 35.42 37.15 36.35 35.18 35.26 34.44 32.92 32.07 35.07
Intra-regional 47.55 35.25 46.16 48.22 51.14 53.78 57.11 60.11 49.40
Transvariation

density 17.03 27.61 17.49 16.60 13.60 11.78 9.97 7.82 15.53

For inter-regional differences, the mean value of the Gini coefficient of the CDUFS
was ranked mainly FPAs-FMAs (0.1538), FPAs-FBAs (0.1414), FMAs-FBAs (0.1157), so
the difference of the coupling coordination between FPAs and FMAs were higher than
those between other functional areas. The Gini coefficient of FPAs-FMAs showed a stable
and continuous upward trend, from 0.0860 in 2000 to 0.1938 in 2019, with an obvious
increase of 1.25 times, which further highlights the spatial non-equilibrium between FPAs
and FMAs. The Gini coefficient of FPAs-FBAs had a relatively stable variation, increasing
from 0.1210 in 2000 to 0.1429 in 2019, an overall increase of 18.10%. The Gini coefficient of
FMAs-FBAs was the smallest in most years, with small differences between regions, but its
overall growth trend is slightly fluctuating, increasing from 0.0970 to 0.1186 year-on-year,
an increase of 22.27%. In contrast, the inter-regional difference of CDUFS between FPAs
and FMAs showed a more prominent trend of expansion.

For the sources and contributions of regional difference, the mean contributions of
intra-regional difference, inter-regional difference and transvariation density were 35.07%,
49.40% and 15.53%, respectively, showing that the inter-regional difference was the main
source of overall difference in functional areas with a contribution of nearly 50%, followed
by an intra-regional difference of functional areas and the smallest contribution of transvari-
ation density. The contribution of inter-regional difference is in the range of 35.25% to
60.11%, basically showed a stable growth trend with an overall increase of 26.41%, except
for a slight fluctuation before 2004. The contribution of intra-regional difference was in
the range of 32.07% to 38.88%, showing a decline trend of first rising and then falling, but
the volatility was relatively stable, with an overall decline of 9.46%. The contribution of
transvariation density was in the range of 7.82% to 27.61%. Its changes were basically op-
posite to the inter-regional difference in a steady downward trend, with an overall decrease
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of 9.21 percentage points, indicating that the contribution of the cross-overlapping effect
on the CDUFS between intra-regional and inter-regional to overall difference is gradually
decreasing.

3.3. Dynamic Distribution

To further clarify the dynamic distribution of the CDUFS, the KDE method was
used to portray the distribution location, distribution pattern, distribution ductility and
polarization characteristics of the CDUFS at the national level and different food functional
areas (Figure 5).
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3.3.1. The National Level

(1) Distribution location. The Kernel density curve at the national level showed an
evolution process in which the curve center first shifted left and then right, and the
peak height first increased and then decreased, indicating that the CDUFS generally
showed a decreasing trend over time.

(2) Distribution pattern. The Kernel density curve showed a significant single-peak
distribution with a relatively stable distribution trend. On the whole, the width
of the main peak has increased, and the height of the main peak has decreased,
indicating that the imbalance phenomenon in the CDUFS is still prominent, and
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the coordination gap between regions tends to expand, which is consistent with the
typical characteristics in the previous section.

(3) Distribution ductility. The Kernel density curve had a weak left trailing phenomenon,
and the distribution ductility was broadened to a certain extent but did not show a
convergence trend. The gap of the CDUFS between the regions with high coupling
coordination and the average level was somewhat enlarged.

(4) Polarization characteristics. The distribution of the Kernel density curve with a single-
peak and a weak left trailing, indicating that the CDUFS did not show a polarization
state and gradient effect, the single-peak distribution would continue to exist, and the
gap of CDUFS between regions was more obvious.

The development of urbanization and food security have both made great progress to
different degrees, but urbanization, which relies on economic growth, is growing faster,
and food production still lags behind the urbanization process. In addition, there is
heterogeneity in the endowment conditions and development environment among different
regions. These are the realistic reasons for the single-peak distribution of CDUFS.

3.3.2. Different Food Functional Areas

(1) Distribution location. The centers of Kernel density curve in both FPAs and FBAs
evolved leftward and then rightward, with an overall shift to the left, similar to the
national level, while the center of Kernel density curve in FMAs showed an obvious
leftward evolution, indicating that the CDUFS in different food functional areas have
a decreasing trend over time.

(2) Distribution pattern. The Kernel density curves of the three food functional areas
were all significant single-peak patterns, with the width of the main peak increasing
and the height of the main peak decreasing. Among them, the main peak height
of FPAs showed a continuous decreasing process, while the main peak heights of
FMAs and FBAs experienced a rising and then decreasing process, which generally
indicates that the spatial imbalance of the CDUFS in different food functional areas is
still prominent. The trends for this coordination gap widened.

(3) Distribution ductility. The Kernel density curve of FPAs did not show an obvious trail-
ing phenomenon, while FMAs and FBAs showed left trailing phenomenon, and the
FMAs were more prominent with a certain widening of the distribution ductility. The
Kernel density curves of the three food functional areas did not show a convergence
trend, and the gap between the areas with high coordination and the average level
widened, prominently in the FMAs.

(4) Polarization characteristics. The Kernel density curves of different food functional
areas with a single-peak indicates that the CDUFS of each food functional area did not
have a polarized state and gradient effect, the single-peak distribution will continue
to exist, and the coordination gap between regions is still obvious.

3.4. Evolution Trend

Although the Dagum–Gini coefficient and KDE can portray the regional differences
and dynamic distribution of the CDUFS, it is difficult to deeply reflect the dynamic evolu-
tion trend of this spatiotemporal difference. So, the traditional and spatial Markov chain
analysis were used to deeply examine the evolution trend of the CDUFS.

The basis of the Markov chain analysis is the transition probability matrix. It was
necessary to divide the CDUFS of 330 prefecture-level and above cities during 2000–2019
into different types of state spaces. Based on the quantile division method [48], using the
1/4, 1/2 and 3/4 quantile as the boundaries, the CDUFS was divided into four adjacent
but non-crossing completeness intervals: [0.0150, 0.2406], (0.2406, 0.2777], (0.2777, 0.3236],
(0.3236, 0.5663], the completeness intervals of these four state types can be represented
by k = 1, 2, 3, and 4, respectively. The larger k is, the higher CDUFS is (lower, low, high,
higher).
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3.4.1. Traditional Markov Chain Analysis

The traditional Markov transition probability matrix was calculated based on the
division of state types (Table 4). The elements on the diagonal line represent the probability
that the state type of the CDUFS does not transfer in a region, which reflects the stability of
the evolution trend of the CDUFS in this region, while the elements on the non-diagonal
line represent the probability that the CDUFS in a region transfers between different state
types. Therefore, without considering the spatial effect, the evolution of the CDUFS is
characterized as follows:

(1) The CDUFS had the stability of keeping the original state. All the elements on the
diagonal were larger than those on the non-diagonal significantly, implying that the
CDUFS had a smaller probability of state transfer. The fluidity among states was low
with an obvious path-dependence. In addition, the probability of maintaining stability
was greatest for the types at either end of the diagonal (types 1 and 4), while types
2 and 3 in the diagonal had a relatively smaller probability of maintaining stability.
The CDUFS was more likely to be distributed at lower and higher levels, low and
high distributions more prone to transfer.

(2) Areas with a higher level of CDUFS were more likely to transfer to the lower level,
while areas with a lower level of CDUFS had a higher likelihood of shifting to a
higher level. For example, the probability of type 4 transition downward was 0.1091,
the probability of type 3 transition downward was 0.1073, the probability of type 2
transition downward was 0.1013, 0.1091 > 0.1073 > 0.1013. It can be seen that areas
in type 4 were more likely to transfer downward. Although the evolution trend was
stable in areas with a high level of CDUFS, there is a certain risk and possibility of
falling back, which requires vigilance and attention. In addition, the probability of
type 2 transferring upward was greater than that of type 3 (0.1742 > 0.1171), indicating
that areas with a relatively low CDUFS have higher room for growth.

(3) The CDUFS was difficult to achieve a leapfrog evolution in the short term. The
probability transition of the CDUFS occurred almost on both sides of the diagonal. For
elements on both sides of the non-diagonal, the probability values were significantly
smaller than those on both sides of the diagonal. For example, the probability of
type 2 transferring upward to type 4 was 0.0083, which is obviously smaller than
the probability of transferring to type 3 (0.1389). Among two consecutive years, the
probability of achieving a leapfrog transfer was low (e.g., 1→3, 1→4), which means
that the evolution of CDUFS in each region was a relatively stable and continuous
process.

Table 4. Traditional Markov chain transition probability matrix for CDUFS.

Type n 1 2 3 4

1 1614 0.8482 0.1363 0.0105 0.0050
2 1570 0.1013 0.7516 0.1389 0.0083
3 1537 0.0078 0.0995 0.7755 0.1171
4 1549 0.0039 0.0077 0.0975 0.8909

3.4.2. Spatial Markov Chain Analysis

The probability transfer matrix of the traditional Markov chain did not consider the
spillover effect of type of transfer in neighboring regions, but the CDUFS had a significant
positive correlation and dependence in space. Therefore, the type of transfer of the CDUFS
is not isolated in space but is complementary and effectively linked to the surrounding
areas. Introducing the spatial lag effect, the spatial Markov chain transition probability
matrix (Table 5) was constructed based on the spatial lag type of each area in the initial year.
In addition to the common features with the traditional Markov chain transition probability
matrix, it also had the following spatial evolution features.
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(1) Geospatial pattern plays an important role in the dynamic evolution of the CDUFS,
and spatial Markov chain analysis can provide a spatially meaningful interpretation of
the single-peak distribution pattern of the CDUFS. Under the spatial effect, the type of
transition probability of the CDUFS in each area was not the same, was also not equal
to the corresponding traditional Markov transition probability matrix, otherwise, the
effect of spatial lag would not exist (Figure 6). For example, when the spatial effect
was not considered, the transition probability from type 2 to type 3 in an area was
P23 = 0.1389. When the area was adjacent to an area in type 2, P23|2 = 0.1019, when
it was adjacent to an area in type 3, P23|3 = 0.1529, and when it was adjacent to an
area in type 4, P23|4 = 0.2237. It can be seen that it is necessary to consider the spatial
background when analyzing the spatial evolution of the CDUFS. An area is adjacent
to the areas of different types, the state transition probability of the CDUFS in this
area will be different. In general, for a certain area, the probability of upward transfer
of its type was greater when adjacent to areas with higher coordination, while the
probability of downward transfer of its type was greater when adjacent to an area
with lower coordination.

(2) The evolution of the CDUFS remained more stable in its original state; the possibility
of jump transfer is low. This is because the elements on the diagonal were still larger
than the elements on the non-diagonal after considering the spatial background. As
the spatial lag type rises, there are differences in the stability and transition probability
of the evolution of the CDUFS. For areas with a lower CDUFS (type 1), their stability
decreased as the spatial lag type increased, but the probability of upward transfer
was increasing. For areas with a low CDUFS (type 2), their stability showed an
increase and then decrease with the increase of spatial lag type, while the probability
of upward transfer showed a decrease and then increase, and the probability of
downward transfer in decreasing. For areas with a high CDUFS (type 3), their stability
also showed an increase and then a decrease with the increase of spatial lag type, but
the probability of upward transfer was increasing and the probability of downward
transfer was decreasing. For areas with a higher CDUFS (type 4), their stability
decreased and then increased with the increase of the spatial lag type, while the
probability of downward transfer showed an increase and then a decrease.

Table 5. Spatial Chain Transition Probability Matrix for CDUFS.

Spatial Lag Type n 1 2 3 4

1

1 250 0.9120 0.0840 0.0040 0
2 116 0.1121 0.7586 0.1293 0
3 41 0.0244 0.2683 0.6829 0.0244
4 11 0 0 0.0909 0.9091

2

1 736 0.8641 0.1209 0.0095 0.0054
2 589 0.1121 0.7827 0.1019 0.0034
3 233 0.0258 0.1760 0.7425 0.0558
4 95 0.0211 0.0211 0.1263 0.8316

3

1 595 0.8151 0.1681 0.0118 0.0050
2 713 0.1010 0.7377 0.1529 0.0084
3 833 0.0060 0.0960 0.8019 0.0960
4 595 0.0050 0.0118 0.1193 0.8639

4

1 33 0.6061 0.3030 0.0606 0.0303
2 152 0.0526 0.6908 0.2237 0.0329
3 430 0 0.0488 0.7512 0.2000
4 848 0.0012 0.0035 0.0790 0.9163
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4. Discussion

While previous studies have focused more on the one-way impact of urbanization on
food security and the challenges faced by food security in the urbanization process [51],
this paper innovatively explores the interaction between urbanization and food security.
The CDUFS always fluctuates in the low coordination interval, which is different from the
study of Yao [20]. Both urbanization and food security have achieved stable growth, but
the interaction effect between the two has not achieved synchronous growth. It mainly
stems from the fact that the growth of food security continues to lag behind urbanization
development, and the unbalanced development of the two constrains the improvement of
coupling coordination level. In addition, the distribution pattern of the agglomeration of
the CDUFS basically keeps a steady trend and shows a “center-periphery” with FPAs in
the north gradually decreasing to FBAs in the northwest and FMAs in the south.

The CDUFS of China show obvious regional differentiation, and the overall regional
differences of the CDUFS in China have expanded. The possible explanation is that, al-
though food security is increasingly guaranteed, the growth process of urbanization is
still faster than the supply capacity of food production. It has been found that urban-
ization inevitably brings about the reallocation between urban and rural areas [22], and
the regional differences in endowment conditions and industrial structure also make the
relationship between urbanization and agricultural production exist in regions located in
different geographical spaces. Continued urbanization and changing consumption patterns
pose challenges to food security. Avoiding deterioration in food security depends on the
responsiveness and resilience of the smallholder farming sector. Rural-urban food supply
linkages [52] and policy synergies are also critical.
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For regional differences in different food functional areas, inter-regional differences
are the main source of overall differences, mainly in the widening trend of differences in
coupling coordination between FPAs and FMAs, and the internal differences of FMAs are
also expanding. The FPAs face the dual pressure of ensuring food security and urbanization
development, and the supply task of food production in FPAs is equally important in the
urbanization process, while FMAs basically cover the more economically developed areas
of East China and the South China coast. The industrial structure upgrading implies the
proportion of agriculture is declining. There is the adjustment of structure in food pro-
duction to make room for urbanization development, and the coordination level between
urbanization and food security is poor.

The regional differences between FPAs and FMAs make us alert to a mismatch between
the main body of food production and the spatial distribution of soil-water resources in
the South and North [53]. The production and marketing pattern of “northern food
transportation to the south” remains stable. The main producing areas undertake more
food supply tasks, but their soil-water conditions do not have resource advantages, and the
gap between grain supply and demand is gradually increasing in some northern provinces
of main producing areas. Therefore, it is possible to explore the pilot mechanism of interest
linkage between the main producing areas and the main marketing areas. Through the pilot
project, according to their own development base and the total amount of grain transferred,
the main marketing areas in the southern area can compensate for the benefits of the
main producing areas in the northern area, promote agricultural investment in the main
producing areas in order to guarantee grain production in the main producing areas, and
maintain a long-term stable inter-regional relationship between grain supply and demand,
so that the main marketing areas can also assume a certain responsibility for ensuring food
security in the form of trade.

Amongst the several challenges, food security will be a serious issue for the future of
high-quality urbanization [54]. This study is of great significance for understanding the
coordinated relationship between urbanization and food security, exploring a sustainable
path for high-quality urbanization and guaranteeing food security in China, and promoting
a synergistic balance between urbanization and agricultural production.

(1) Changes in spatial use of territory land led to the conflict between urbanization
and food security. It is necessary to plan the urban-rural land use scientifically and
reasonably, clarify the limit of urban land, and slow down the expansion speed of
urban land. In addition, we should strengthen the policy of farmland protection in
the urbanization process, strictly guard the red line of cropland use, and optimize the
balance management system of farmland occupation and supplement to maintain the
dynamic balance of total farmland, so as to guarantee the high-quality development
of urbanization and sustainable food production.

(2) Urbanization not only leads to the adjustment in production resources and grain-
growing behavior, but also provides an opportunity for large-scale, mechanization
and efficient operation of food production [55]. Therefore, the process of high-quality
urbanization involves guiding households to transfer management rights of land
orderly to bring into play the scale effect of land. Improving food production efficiency
and yield capacity through intensive land use and technological progress can also
provide useful support for urbanization, which promote the coordinated development
between urbanization and food security.

(3) Differences in industrial division of labor make regional differences in the CDUFS, and
there is no convergence in the long-term evolution process. Therefore, the strategies
of urbanization development and ensuring food security by different regions should
be adapted to local conditions, and in line with their own development positioning
based on industrial characteristics.

(4) The FPAs need to grasp the room and direction in the process of urbanization, avoid
the irregular expansion of urban space, ensure the free mobility of factors between
urban areas and rural areas, adapt the utilization structure of water-soil resources,
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enhance the efficiency of land use, and drive the intensive management of food pro-
ductive through urbanization. The FMAs have a high level of urbanization, and
with the industrial structure upgrading, the comparative advantage of agricultural
production has declined obviously. It should focus on weighing the intrinsic structure
of food production against the extrinsic changes triggered by urbanization and im-
prove the factor agglomeration and labor productivity through technological progress.
The urbanization of FBAs is relatively backward, but grain producing and market-
ing basically maintain a balance. Therefore, the potential for coordination between
urbanization and food security is greater. The trade-off between the government’s
guiding effect and the market’s allocation effect should be focused on to optimize the
regional layout of urbanization and food production by effective cooperation between
government and market.

Based on the panel data of prefecture-level, this study allowed for a more detailed
exploration on a smaller dimension. However, due to the difficulty of obtaining data on
relevant indicators, food security is represented only as a single indicator. More complete
data acquisition is what needs to be improved in subsequent research.

5. Conclusions

This paper measures the CDUFS in China using prefecture-level city panel data and the
coupled coordination degree model based on understanding of the spatial correlation and
differentiation of the CDUFS by ESDA. From the perspective of different food functional
areas, regional differences, and sources, distribution dynamics and evolutionary trends of
the CDUFS were analyzed in depth using the Dagum–Gini coefficient, the Kernel density
estimation and the spatial Markov chain. The main findings are as follows:

(1) The CDUFS in China showed a downward trend in fluctuating within the low coordi-
nation range, and food security continues to lag behind urbanization. The regional
differences of the CDUFS are obvious with a continuously enhanced positive correla-
tion in space. This exhibits a stable distribution pattern of H-H in the Northeast Plain
and Huang-Huaihai Plain, and L-L in the Northwest, Southwest and Southeast coast.

(2) There were obvious regional differences in the CDUFS in China, and the overall
differences have expanded. For different food functional areas, inter-regional differ-
ences were the main source of contribution to the overall differences, with the highest
regional differences between FPAs and FMAs, and their spatial imbalance gradually
prominent. The contribution of intra-regional differences was the second, with the
highest of internal differences in FBAs, and its expanding trend of internal differences
was more obvious. The contribution of transvariation density was the smallest.

(3) The main peak of the distribution curve of the CDUFS in China has increased in
width and decreased in height. The imbalance of the CDUFS between regions is still
prominent, but it does not show a convergence trend, and the single-peak distribution
will continue to exist. The CDUFS in the three food function areas show a significant
leftward shift of the single-peak distribution process, and the distribution curve of the
FPAs do not show a trailing phenomenon. While the FMAs and FBAs show the left
trailing, the FMAs are more obvious.

(4) The CDUFS in China have the stability of maintaining the original state, obviously
path dependent. The trend of the CDUFS transferring to a high level is not obvious,
but areas with higher CDUFS have a higher possibility of transferring to a low level. It
is difficult to achieve a leapfrog evolution of the in the short term. Geospatial pattern
plays an important role in the dynamic evolution of CDUFS, and there are differences
in the stability and transfer probability of the CDUFS evolution under the different
spatial lag type. The long-term evolution trend of CDUFS in China is influenced
by the geospatial effect, but the single-peak pattern is relatively stable and does not
exhibit significant convergence in the long term.
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