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Abstract.
Background: Distinguishing between Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) results in
poor diagnostic accuracy.
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Objective: To investigate the utility of electroencephalography (EEG)-based biomarkers in comparison and in addition to
established cerebrospinal fluid (CSF) biomarkers in the AD versus FTLD differential diagnosis.
Methods: The study cohort comprised 37 AD and 30 FTLD patients, of which 17 AD and 9 FTLD patients had definite
diagnoses. All participants had CSF neurochemical (NCM) biomarker analyses (A�1-42, T-tau, P-tau181, and Nf-L) and
underwent 19-channel resting-state EEG. From the EEG spectra, dominant frequency peaks were extracted in four regions
resulting in four dominant frequencies. This produced eight features (4 NCM + 4 EEG).
Results: When NCM and EEG markers were combined, the diagnostic accuracy increased significantly. In the whole group,
the accuracy went up from 79% (NCM) to almost 82%, while in the definite group only, it went up from around 85% to almost
95%. Two differences in the occurrence of the dominant EEG frequency were discovered: people lacking a clear dominant
peak almost all had definite AD, while people with two peaks more often had FTLD.
Conclusion: Combining EEG with NCM biomarkers resulted in differential diagnostic accuracies of 82% in clinically
diagnosed AD and FTD patients and of 95% in patients having a definite diagnosis, which was significantly better than with
EEG or NCM biomarkers alone. This suggests that NCM and EEG markers are complementary, revealing different aspects
of the disease and therefore confirms again their relevance in developing additional diagnosis tools.

Keywords: Alzheimer’s disease, amyloid-�, cerebrospinal fluid, dementia, EEG, frontotemporal dementia, neurofilament
light, random forest, tau protein

INTRODUCTION

The differential diagnosis between two of the most
common causes of dementia—namely Alzheimer’s
disease (AD) and frontotemporal lobar degeneration
(FTLD)—is difficult, mainly due to overlap in clinical
presentation, especially in the early disease stages
[1, 2].

A promising tool to increase the diagnostic
accuracy of AD is the use of cerebrospinal fluid
(CSF) biomarkers [3]. During the past decades,
biomarker-based research diagnostic criteria, also for
its prodromal stage of mild cognitive impairment
(MCI) due to AD, have been published [4–6]. Anal-
ysis of the core AD CSF biomarkers (amyloid-�
peptide composed of 42 amino acids (A�1-42), the
A�1-42/A�1-40 ratio, total tau protein (T-tau), and
phosphorylated tau at threonine 181 (P-tau181)) can
help to differentiate between AD and non-AD demen-
tias like FTLD, but they cannot be used to confirm a
non-AD dementia [3]. CSF P-tau181 is a more specific
marker for AD and is of help for AD versus non-
AD dementia differential diagnosis [7]. However, in
order to improve the discriminatory power for the dif-
ferential diagnosis of dementia, additional markers,
more specific to the non-AD dementia are valuable.
As CSF levels of neurofilament light chain (Nf-L)
were significantly higher in FTLD compared to AD
and controls, there is an added value for Nf-L in the
differential diagnosis of FTLD [8].

Electroencephalography (EEG) is an easily acces-
sible, non-invasive, inexpensive technique capable of
picking up functional changes in the brain, and is
already being investigated as an adjunctive investiga-

tion in dementia [9]. EEG can be used to investigate
the disruption of brain connectivity that results of
neurodegeneration. Trained neurologists use visual
analysis of EEG to support clinical dementia diag-
nosis, but this is a subjective measure and therefore
difficult to reproduce. To objectively assess EEG
recordings and pick up more subtle differences, quan-
tification of EEG characteristics is needed. We have
previously shown that EEG maxpeak frequency is an
easy and useful measure with an added value in the
differentiation between AD and FTLD, reaching a
diagnostic accuracy of 78.4% [10].

In this pilot study, we investigated the utility of
EEG-based biomarkers in comparison and in addition
to established neurochemical biomarkers in the AD
versus FTLD differential diagnosis.

METHODS

Study participants

The study cohort comprised 37 subjects with prob-
able (n = 20) or definite (n = 17) dementia due to AD,
and 30 patients with probable (n = 21) or definite
(n = 9) FTLD (Table 1). Patients were selected from
the Memory Clinic of Hospital Network Antwerp
[11, 12]. To ensure a high certainty level of demen-
tia subtypes for patients without definite diagnosis,
only patients with extensive clinical follow-up were
included. All patients underwent (among others) neu-
ropsychological testing including Mini-Mental State
Examination (MMSE), and core AD CSF biomarker
analyses (A�1-42, T-tau, P-tau181) [13]. Clinical diag-
nosis of probable AD was based on NIA-AA [6] and
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Table 1
Demographic data and APOE genotype data of the different patient groups (NS, not

statistically significant)

Group AD FTLD p

Complete Number of patients 37 30
Age -± SD (y) 74.1 ± 10.0 67.9 ± 8.8 0.0098
Male 17 20 NS
APOE �4 carriers 49% 28% NS

Definite Number of patients 17 9
Age±SD (y) 77.1 ± 10.3 63.5 ± 8.1 0.0022
Male 11 7 NS
APOE �4 carriers 53% 36% NS

IWG-2 criteria [5] and included these biomarkers.
Diagnosis of probable FTLD was based on criteria
described by Neary [14]. The FTLD cohort consisted
of subjects with semantic dementia (n = 1), progres-
sive nonfluent aphasia (n = 1), and frontotemporal
dementia (n = 28). Subgroups of definite dementia
patients were defined by causal gene mutation car-
rier status and/or follow-up till death and postmortem
confirmation of brain pathology [15–17]. This study
was approved by the ethics committee of University
of Antwerp (Antwerp, Belgium).

Neurochemical (NCM) biomarkers

Lumbar puncture and CSF sampling and handling
was performed according to a standardized protocol
[13, 18]. All CSF samples were stored at the IBB
Biobank in polypropylene vials at –80◦C until anal-
ysis.

CSF biomarker levels were quantified using
commercially available single-analyte ELISA kits
(one kit lot each), strictly following the manufac-
turer’s instructions (INNOTEST �-Amyloid(1–42),
INNOTEST hTau-Ag and INNOTEST Phospho-
Tau(181P) from Fujirebio Europe; and Nf-L from
UmanDiagnostics). All samples were run in dupli-
cate, blinded for diagnosis. Intra-assay coefficient of
variation was below 10% for all analytes.

Electroencephalographic (EEG) markers

EEG recordings
EEG data were recorded using OSG digital equip-

ment (BrainLab/BrainRT) with the international
10–20 system used for electrode placement. ECG
was recorded in a separate channel. Recordings were
exported in EEGLab format [19] for offline analysis
and each file contained continuous data in 19 chan-
nels. During recording, subjects were seated upright
and were asked to alternate between eyes closed and

eyes open to stay awake. EEG data was processed
manually using BrainRT. Artefact-free EEG during
the eyes-closed condition was flagged. This flag con-
sisted of start latency of the useable part and its
duration, both in milliseconds. No epileptiform activ-
ity was observed in any of the EEG recordings. The
EEGs were re-referenced to average.

Epoch extraction

The EEGs were then imported into our
group’s Channel Analysis Toolbox (CAT,
https://gitlab.com/AIMS/aims-public) for fur-
ther processing and analysis. In our previous study
on this dataset [10], we extracted two-second epochs.
This proved to be too coarse to detect smaller fre-
quency differences. Therefore, we doubled the epoch
length to 4-s epochs from each EEG and selected
six epochs (the minimum over all patients) equally
spread over all available epochs of that patient.
This epoch length ensured retaining most of the
artefact-free signal, while also allowing a spectral
resolution of 0.25 Hz. We did not increase the epoch
length further, as this started to increase loss of
artefact-free EEG. With longer epochs, chances
increase that certain continuous parts of clean EEG
are not long enough to contain a number of epochs
that accounts for the same total time.

Transformation to frequency spectrum

We used Welch’s power spectral density estimate
[20]. In Matlab [21], this method is implemented
with integrated support for windowing and based on
the built-in fft (Fast Fourier Transform). Instead of
computing the spectrum on each epoch separately,
we concatenated the epochs back into a ‘continuous’
signal. We aligned the windowing exactly with the
epoch boundaries, by using a Hamming window with
a length equal to the epoch length and the overlap

https://gitlab.com/AIMS/aims-public
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between windows equal to zero. This resulted in a
smooth, average spectrum with much smaller roll-off
than a rectangular window.

To increase the resolution, we padded the epochs
with zeroes, by setting the nfft parameter of Matlab’s
built-in pwelch function to a multiple of the epoch
length, thus increasing the resolution by the same
factor. Padding makes the resolution higher but does
not add any more information. The extra points in the
spectrum are estimated by sinc interpolation between
the original points. For our purpose—detecting peaks
in the spectra—this was perfectly adequate.

Dominant frequency peak extraction

Dominant frequency peaks (DFPs) were detected
within the interval [5–15] Hz in every channel. A peak
was defined as a frequency of which both neighboring
frequencies have lower amplitudes. In case multiple
peaks were detected, only the peak with the highest
amplitude was retained, and this in each channel.

The spectra of neighboring electrodes are known to
be correlated, due to volume conduction. To reduce
this redundancy, balance the number of NCM and
EEG features and deal with the fact that some chan-
nels did not always exhibit peaks, we summarized the
peaks found over all channels into four regions. To do
this, we fine-tuned the algorithm from our previous
study [10] to detect the DFP with the highest ampli-
tude over the channels within a specific region. These
regions were defined as follows: F, frontal (Fp1, Fp2,
F3, Fz and F4); P, parietal and occipital (P3, Pz, P4,
O1 and O2); L, left-temporal and central (F7, T3, C3
and T5); R, right-temporal and central (F8, T4, C4
and T6).

This procedure was also helpful in avoiding miss-
ing data, as only one channel per region needed to
show a clearly distinguishable peak. The resulting
dataset contained the frequency of every region’s
DFP, for each subject.

Classification

Feature sets
We used three feature sets: one subset containing

the four NCM markers, one subset containing the four
EEG markers, and one set of eight features containing
both the NCM and EEG markers. All these features
were corrected for age. Each of these sets was used
for training and testing the classifier algorithm, such
that we could compare the performance of the subsets
and verify if combining them improves the accuracy.

Cross-validation

Training and testing were done using cross-
validation. Features (NCM and/or EEG markers)
were collected into one dataset, which was then
randomly divided into ten subsets or folds with
the same proportion of the two groups (AD and
FTLD) as in the complete dataset. We applied tenfold
cross-validation: nine folds were used for training
the classifier, while the remaining fold was used
to test the trained classifier. This step was repeated
until each fold had been used exactly once for
testing. The test results for each fold were then
combined into a total estimate of the classifier’s
performance.

We repeated tenfold cross-validation 100 times,
which allowed for the calculation of the mean and
standard deviation of the classifier’s performance
indices: sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and
percentage correctly classified (PCC, also called
accuracy). The sensitivity and specificity respectively
show the ratio of correct positives over actual posi-
tives and correct negatives over actual negatives. The
positive and negative predictive values respectively
show the ratio of correct positives over all instances
classified as positive and negatives over all instances
classified as negative.

sens = TP

TP + FN
PPV = TP

TP + FP

spec = TN

TN + FP
NPV = TN

TN + FN

PCC = TP + TN

TP + TN + FP + FN

With TP = True Positives, correctly classified
positives; TN = True Negatives, correctly classified
negatives; FP = False Positives, negatives incorrectly
classified as positives; and FN = False Negatives, pos-
itives incorrectly classified as negatives.

Classifier algorithm: Random Forest

A Random Forest is a collection of randomly gen-
erated decision trees. For each of these individual
trees, a subset of features is selected at random from
the complete feature set and then the tree is built.
This resolves a major problem of decision trees: train-
ing a decision tree is difficult when there is a large
number of features. After a fixed number of trees has
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Table 2
Number of spectral peaks

Group Weak peak and
only in a few
channels

1 clear peak in
most channels

1 clear peak and 1
extra peak in
several channels

AD 7 24 6
AD – definite 6 10 1
FTLD 2 18 10
FTLD – definite 0 4 5

been built, the prediction is based on majority vot-
ing of all trees. Most of these trees will be useless
and giving random responses, but on average these
will cancel each other out, which results in only the
relevant trees adding to the prediction. We used the
function randomForest of the R package “randomFor-
est” [22] with number of trees set to 500 and default
parameters for this classifier.

RESULTS

Data check: Special spectra

When we verified the validity of our spectral peak
detection algorithm, we found three spectrum cate-
gories and listed them in Table 2. We also noticed
that AD spectra were generally noisier and had lower
amplitude than FTLD spectra. In a small number of
patients, mainly AD, only in a few channels a dom-
inant peak was found. However, these peaks were
often not very pronounced in these patients: less than
double the spectral average.

In a considerable number of participants, mainly
FTLD, we detected two dominant EEG peaks in the
spectrum at around 2 Hz from each other. Of these
two, the peak with the highest frequency was usually
in the alpha range, around 9 Hz, and the other was
usually around 7 Hz. The two clearest examples of
spectra with two peaks in either group (AD patient
on the left, FTLD right) are shown in Fig. 1. As a
side note, they both had a non-definite diagnosis.

Looking at definite diagnosis only, no FTLD
patient with a weak peak spectrum remained, while
almost none of the AD patients with a double peak
remained. We manually checked the results of our
spectral peak algorithm and found that it was robust
against these special cases of only a few channels
showing a peak, or several channels showing two
peaks. In the latter case, the strongest of the two peaks
was extracted, which is by our definition the peak of
interest.

Classification

Table 3 shows classification results respectively
in the complete and the definite group. In the full
group, the NCM biomarkers reach a good diagnos-
tic accuracy (79%). The EEG features are behind (at
68%), but still reasonable. Cross-validating on NCM
and EEG features together yielded a better accuracy
than on NCM or EEG individually, reaching 82%
(>79%, p < 10–15 = the decimal precision of a “dou-
ble”, which is the 64-bit computational representation
of a real number).

Including only the participants with a definite diag-
nosis greatly increased each of these classification
accuracies. NCM and EEG scored between 85 and
86% and their combination obtained an accuracy
of almost 95% (>86%, p < 10–15). We observed the
same effect of increased accuracy in the definite group
in our previous study focusing on EEG [10].

DISCUSSION

We investigated the value of NCM biomarkers and
EEG-based markers to distinguish between the two
most common causes of dementia that can still not
be diagnosed in vivo with 100% accuracy. This was
a follow-up study on our previous work focused on
the slowed-down dominant EEG rhythm in AD as
compared to FTLD [10]. Here, we found that both
marker types are able to reveal unique disease proper-
ties, which was shown by an improved classification
accuracy after combination compared to the accuracy
of the separate marker types.

First, we confirmed the value of the established
NCM biomarkers. Using A�1-42, T-tau, P-tau181, and
Nf-L for classification, we achieved a differential
AD versus FTLD classification accuracy of 79% in
the entire group and 85% in the definite patients. In
addition, we found that using the frequency compo-
nents of the dominant rhythm detected through EEG
allowed a classification of 68% in the whole group
and 86% in the definite group. These accuracies show
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Fig. 1. Two examples of patients who have two peaks in their spectrum. In each region, the algorithm is able to extract the best dominant
peak candidate, which is marked with a red cross. Left column: AD patient; right column: FTLD patient. Top row: frontal (F); second row:
parietal-occipital (P); third row: left-temporal (L); bottom row: right-temporal (R).
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Table 3
Classification accuracies cross-validating on the complete cohort and on the definite group only

Group Features Acc Sens Spec PPV NPV

Complete NCM AV 0.787 0.831 0.733 0.794 0.780
SD 0.018 0.027 0.024 0.016 0.028

EEG AV 0.681 0.724 0.628 0.706 0.650
SD 0.030 0.041 0.042 0.026 0.037

NCM & EEG AV 0.818 0.902 0.714 0.796 0.856
SD 0.017 0.026 0.022 0.013 0.032

Definite NCM AV 0.851 0.935 0.691 0.852 0.851
SD 0.030 0.024 0.070 0.030 0.050

EEG AV 0.857 0.894 0.787 0.888 0.799
SD 0.024 0.028 0.044 0.021 0.045

NCM & EEG AV 0.946 0.989 0.866 0.933 0.978
SD 0.024 0.025 0.045 0.021 0.047

AV, average; SD, standard deviation.

that both NCM and EEG markers have a value in
distinguishing AD from FTLD and this is a further
improvement upon what we found in our previous
study on EEG markers only, of which the results were
already promising [10]. The overall higher classifica-
tion accuracy on the definite subgroups suggests that
clinical misdiagnosis of AD versus FTLD still occurs,
despite clinical follow-up that contributed to clinical
diagnostic certainty.

The NCM biomarkers reflect the neuropathology
of the neurodegenerative brain disorders under study
and are relatively disease specific. A limitation of
NCM biomarkers is that they do not include topo-
graphic information. EEG can be used to investigate
the disruption of brain connectivity that results of
neurodegeneration. The regional distribution of brain
connectivity disruption heavily relies on the etiology
of the dementia, as FTLD merely affects the frontal
lobe as from its earlies stages whereas AD affects the
temporal lobes in its earliest stages, followed by the
parietal and frontal lobes with disease progression.
Combining pathology-based (NCM) biomarkers with
(EEG) biomarkers that comprise topographical infor-
mation might improve the differential diagnostic AD
versus FTLD accuracy.

When we combined the NCM and the EEG mark-
ers, the diagnostic accuracy increased significantly.
In the whole group, the accuracy went up from at
best 79% (NCM) to almost 82% (p < 10–15), while
in the definite group only, it went up from almost
86% (EEG ≈ NCM) to almost 95% (p < 10–15). This
suggests the NCM and EEG markers are complemen-
tary, revealing different aspects of the disease and
therefore confirms again their relevance in developing
additional diagnosis tools.

In a number of participants, we detected two domi-
nant EEG peaks. We hypothesize that the mechanism

behind the slowing down of the dominant rhythm
is not a literal slowing down, but rather a fading
out of the normal ground rhythm and the appear-
ance of a new, slower rhythm that starts to dominate
the first rhythm. The fact that we only noticed this
phenomenon in some of the participants may mean
that only they were in a transient state between nor-
mal and slowed dominant rhythm. If such a transient
state exists, there are only two distinct dominant fre-
quencies in the course of the disease, with a clear
transition from the one to the other, i.e., when the
slower frequency overtakes the original frequency.

Based on these results, we cannot determine
whether everyone goes through this double-peak tran-
sition and at what moment in the course of the disease.
This would require a longitudinal study, recruiting
people who have been diagnosed with AD or FTLD,
but who still have a healthy dominant rhythm. If this
transition is the true mechanism behind the slowing
down of the EEG ground rhythm in AD or FTLD, it
probably happens at a specific disease stage and thus
might have a prognostic value.

In our population, we noticed a few people with no
distinguishable dominant peak in many of the chan-
nels, most of whom had definite AD. The majority of
people had one clear dominant peak in every region
and several people had two peaks. In that last group,
the patients with AD and two peaks almost all had
a probable diagnosis. In addition, there were more
FTLD patients with two peaks than AD, especially in
the definite group. Based on our data, this suggests
that this phenomenon occurs more often in FTLD,
which warrants further research.

A possible explanation for having no dominant
EEG rhythm could be that the disease has progressed
even further such that even the slow rhythm has
started to fade out. This is supported by the fact



1746 J. Laton et al. / Improved AD versus FTLD Diagnosis Using EEG

that almost all the AD patients who lacked a clear
peak had a definite diagnosis, indicating that disease
had progressed to the severe stage. This seemed only
valid in the AD group though, as there were no FTLD
patients with a definite, and only two with a probable
diagnosis who lacked a clear peak in their spectrum.
Together with the higher prevalence of a double peak
in FTLD, these are interesting new pointers towards
more detailed spectral EEG differences between AD
and FTLD.

To conclude, we have shown that both NCM and
EEG biomarkers have promising value towards dif-
ferential diagnosis of AD versus FTLD. Combining
both biomarker categories resulted in classification
improvement as compared to their own diagnostic
accuracies. Furthermore, we found evidence that the
slowing down of the dominant EEG rhythm might
be a gradual appearance of a slow rhythm and fad-
ing out of the healthy ground rhythm, rather than a
gradual slowing down of the healthy rhythm. Finally,
we have discovered two differences in the occurrence
of the dominant frequency: people lacking a clear
peak almost all had definite AD, while people with
two peaks more often had FTLD. These were unex-
pected findings that are very interesting to investigate
in future studies.
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