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Abstract. Understanding the different genetic landscape 
between lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) is important for understanding the underlying 
molecular mechanism, which may facilitate the development 
of effective and precise treatments. Although previous studies 
have identified a number of differentially expressed genes 
(DEGs) responsible for lung cancer, it is unknown which of 
these genes are causal. The present study integrated DNA meth-
ylation, RNA sequencing, clinical characteristics and survival 
outcomes of patients with LUAD and LUSC from The Cancer 
Genome Atlas. DEGs were first identified using edgeR by 
comparing tumor and normal tissue, and differentially methyl-
ated probes (DMPs) were assessed using ChAMP. Candidate 
genes for further time‑to‑event instrumental variable analysis 
were selected as the intersecting genes between DEGs and the 
genes including DMP CpG sites within the transcription start 
site (TSS1500), with DMPs in TSS1500 region being the instru-
mental variables. Extensive sensitivity analyses were conducted 
to assess the robustness of the results. The present study identi-
fied 906 DEGs for LUAD, among which 538 also had DMPs in 
the TSS1500 region. In addition, 1,543 DEGs were identified 
for LUSC, among which 1,053 also had DMPs in the TSS1500 
region. Time‑to‑event instrumental variable analysis detected 

eight potential causal genes for LUAD survival, including aryl 
hydrocarbon receptor nuclear translocator like 2, semaphorin 
3G, serum deprivation‑response protein, chloride intracellular 
channel protein 5, LIM zinc finger domain containing 2, epithe-
lial membrane protein 2, carbonic anhydrase 7 and LOC116437. 
The results also identified that phosphatidylinositol‑3,4,5‑tri-
sphosphate‑dependent Rac exchange factor 2 may be a potential 
causal gene for LUSC. Therefore, the results of the present study 
suggested that there was molecular heterogeneity between these 
two lung cancer subtypes. Such analysis framework can be 
extended to other cancer genomics research.

Introduction

Lung cancer (LC) remains the most commonly diagnosed 
cancer type worldwide, with 11.6% of total cancer cases, and 
is the leading cause of cancer mortality, accounting for 18.4% 
of the total cancer‑associated mortalities (1). Non‑small cell 
lung carcinoma (NSCLC) accounts for ~80% of all LC types, 
with adenocarcinoma (LUAD) and squamous cell carcinoma 
(LUSC) being the two major histological types (2). LUAD 
and LUSC have different cells of origin, location within 
the lung and growth patterns, and can develop and progress 
via different molecular mechanisms  (3‑6). Understanding 
the molecular mechanisms underlying the progression and 
survival of LUAD and LUSC is essential, and identifying the 
genetic difference between them may facilitate development 
of suitable and precise treatment strategies (6‑8). Previous 
studies have demonstrated that differentially expressed genes 
(DEGs) serve an important role in the progression of both 
LUAD and LUSC (9‑11). Gantenbein et al (12) have identified 
that upregulation of eukaryotic translation initiation factor 6 
in NSCLC is associated with poor overall survival in LUAD, 
but not in LUSC. Qu et al (13) have demonstrated that inter-
leukin‑6 prevents the initiation, but enhances the progression 
of LC in a mouse model. Immunohistochemical analysis by 
Huang et al (14) has revealed that p16 protein expression is 
associated with poor prognosis in LUSC.

However, previous studies have mainly focused on the 
single level‑omic analysis, such as differential gene expres-
sion analysis, and primarily examined association rather 

Leveraging methylation to identify the potential 
causal genes associated with survival in lung 

adenocarcinoma and lung squamous cell carcinoma
LU LIU1,2*,  PING ZENG3*,  SHENG YANG4  and  ZHONGSHANG YUAN1,2

1Department of Biostatistics, School of Public Health, 2Institute for Medical Dataology, Shandong University, Jinan, 
Shandong 250012; 3Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004;  

4Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China

Received November 24, 2019;  Accepted March 21, 2020

DOI: 10.3892/ol.2020.11564

Correspondence to: Dr Zhongshang Yuan, Department of 
Biostatistics, School of Public Health, Shandong University, 
44 Wenhua West Road, Jinan, Shandong 250012, P.R. China
E‑mail: yuanzhongshang@sdu.edu.cn

Dr Sheng Yang, Department of Biostatistics, School of Public 
Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 
Jiangsu 211166, P.R. China
E‑mail: yangsheng@njmu.edu.cn

*Contributed equally

Key words: lung cancer survival, omics integration, causal gene, 
methylation, instrumental variable analysis



LIU et al:  LEVERAGING METHYLATION TO IDENTIFY CAUSAL GENES FOR SURVIVAL IN LUAD AND LUSC194

than the causal relationship between gene expression and 
LC survival (15). While the establishment of the potential 
causal relationship is key for precise treatment of LC, it is 
difficult to conduct causal inference in observational studies 
due to bias, which results from reverse causation and unob-
served confounding factors (16). A powerful statistical tool 
to examine the causal relationship between the modifiable 
exposure, such as gene expression, and the outcome variable of 
interest (such as LC survival) is instrumental variable analysis 
(IVA) (17‑20). IVA uses specific instrumental variables to 
estimate and test the causal effect of the exposure variable 
of interest on the outcome variable, under the assumptions 
that the instrumental variables are strongly associated with 
the exposure (21). Furthermore, the instrumental variable is 
independent of the confounders between the exposure and the 
outcome, and the instrumental variable influences the outcome 
only through the exposure (22). Therefore, determining suit-
able instrumental variables is highly important in IVA (23).

Generally, gene expression measured at the transcript 
level affects clinical outcome or disease progression more 
directly compared with gene methylation measured at 
the DNA/epigenetics level  (24‑27). Biologically, for one 
specific gene, methylation sites within the unique function 
of transcript start site [e.g., within 1,500 bps ahead of a tran-
scription start site (TSS), but not including the 200 bps ahead 
of the TSS (TSS1500)] can downregulate its expression, 
and deregulated expression can further influence survival 
outcome (28,29). In addition, deregulated methylation and 
gene expression level and event are time sequential  (29). 
Previous studies have illustrated a correlation between DNA 
methylation in the gene promoter region and gene expres-
sion (30,31). However, in instrumental variable analysis, more 
instruments can provide higher power than compared with 
fewer instruments; TSS1500 regions include more CpG sites 
than TSS200, and thus CpG sites in the TSS1500 region of 
one gene can be selected as instrumental variables to explore 
the potential causal relationship between gene expression 
and cancer survival outcome. DNA methylation is a key 
epigenetic factor that regulates gene expression, which has 
been described in several multi‑omics integrative analyses in 
cancer research (32‑34).

In the present study, the aim to was to integrate DNA 
methylation (level 3), RNA sequencing (RNA‑seq; level 3), 
clinical characteristics and survival outcome of patients with 
LUAD and LUSC from The Cancer Genome Atlas (TCGA). 
Differentially expressed genes (DEGs) and differentially 
expressed methylation positions (DMPs) were identified using 
tumor and normal tissue from patients with LUAD and LUAC. 
Furthermore, DMP CpG sites in the TSS1500 and DEG were 
paired by gene, and the regulatory association between them 
was assessed to identify candidate gene sets for subsequent 
time‑to‑event IVA, which was used to establish the potential 
causal effect of gene expression on LUAD and LUSC survival, 
and to investigate the different genetic difference between 
LUAD and LUSC. Various sensitivity analyses, including 
the weak instrumental association test, the heterogeneity 
among instrumental variables (IVs) and leave‑one‑out cross 
validation (LOOCV) analysis, were conducted to ensure the 
robustness for modeling misspecifications, and to improve the 
vailidity of the results.

Materials and methods

Software. R (version 3.6.1; https://www.R‑project.org/) was 
used to conduct data processing and statistical analysis (35). 
edgeR (version 3.26.8) (36,37) and ChAMP (version 2.14.0) (38) 
were used with default settings for DEG and DMP analysis 
respectively. An R package TwoSLSanalysis, which is available 
on GitHub (https://github.com/LULIU1816/TwoSLSanalysis), 
was used to implement the time‑to‑event IVA.

Data collection and processing. Gene expression, RNA‑Seq 
and the corresponding clinical data of patients with NSCLC were 
obtained from TCGA (https://www.cancer.gov/about‑nci/orga-
nization/ccg/research/structural‑genomics/tcga). Data were 
downloaded with published software TCGA‑Assembler 
(version 2.0; http://www.compgenome.org/TCGA‑Assembler) (39) 
and TCGAbiolinks (version 3.9; https://bioconductor.
org/packages/release/bioc/html/TCGAbiolinks.html) (40,41). 
DNA methylat ion was measured with In f in ium 
HumanMethylation450 BeadChip (Illumina, Inc.) with 
485,577 CpG sites, among which 84,242 methylation sites 
were located on the TSS1500. Gene expression was detected 
using the Illumina HiSeq2000 RNA Sequencing platform 
(Illumina, Inc.) with 20,502 transcripts.

To identify DEGs and DMPs, the methylation and gene 
expression data were used from paired tumor and normal 
tissue. In total, data from 50 pairs for LUSC and 57 pairs 
for LUAD were matched for DEG analysis, and data from 
40 pairs for LUSC and 29 pairs for LUAD were obtained 
for DMP or different methylation region (DMR) analysis. 
For IVA, methylation, gene expression and clinical informa-
tion (demographic characteristics, survival and treatment 
information) were downloaded from 504 patients with LUSC 
and 522 patients with LUAD. Information included age, sex 
and pack‑years smoked (PYS) as covariates, as these have 
previously been reported to be associated with the survival of 
patients with LC (42,43). PYS was calculated by multiplying 
the average number of packs of cigarettes smoked per day 
by the number of years a person has smoked, which reflected 
smoking extent and history. Overall survival  (OS) was 
regarded as the survival outcome and was defined as the time 
from diagnosis to death, and mortality was the censoring vari-
able. Patients with missing PYS, survival time or methylation 
and gene expression information were excluded. In addition, 
287 patients with LUSC and 280 patients with LUAD were 
included in the time‑to‑event IVA. The flow chart of all data 
processing and analysis is presented in Fig. 1.

Identification of DEGs. The edgeR package was used to 
select the DEGs (36,37). Read count and reads per kilobase 
per million mapped reads matrix tables were extracted 
from classified TCGA RNA‑Seq data to assess the DEGs. 
The trimmed mean of M‑values method was used for 
normalization  (44). In addition, the exact test, based on 
the quantile‑adjusted conditional maximum likelihood 
methods (45), was used to define DEGs. Using previously 
described methods (46), the present study identified DEGs 
under the criteria that the absolute value of log2 fold‑change 
(log‑FC) of expression was >2 and the false discovery rate 
(FDR) was <0.05.
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Identification of DMPs. ChAMP package (https://www. 
bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/ 
doc/ChAMP.html) was used to identify the DMPs (41). ChAMP 
is an integrated analysis pipeline that includes functions for 
filtering low‑quality probes based on detection P‑values, chro-
mosomal location, presence of single nucleotide polymorphisms 
in the probe sequence and cross‑hybridization, adjustment for 
Infinium I and II probe design, batch effect correction used 
singular value decomposition, detecting DMPs, identifying 
DMRs and detection of copy number aberrations  (41,47). 
LUAD‑ and LUSC‑DMPs (P<0.05) were obtained from 485,577 
CpGs after quality control and normalization.

Time‑to‑event IVA. Traditional two‑stage regression was used 
to perform the time‑to‑event IVA. For one candidate gene, the 
instruments were the corresponding CpGs in the region of 
TSS1500 obtained by DMPs, and thus the number of IVs was 
gene‑specific. Predicted gene expression value in the first stage 
was obtained by treating the differential methylation CpGs in 
the TSS1500 region as instrumental variables. In the second 

stage, the Cox regression model was run with the predicted 
gene expression used as the independent variable. The model 
used was as follows:

� (I)

� (II)

where Z is the methylation value of the TSS1500 region of a 
specific gene, and X is the predicted expression value of the 
specific gene. The present study defined the linear regression 
of gene expression on CpGs in the TSS1500 region, age, sex 
and PYS in model I. α1 is a px1 vector denoting the effect of 
CpGs on gene expression, p is the number of the instrumental 
variables of one specific gene. In model II,  is a 
hazard function determined by the the predicted gene expres-
sion value X and covariates age, gender and PYS. h0(t) is the 
baseline hazard function. The prediction gene expression 

Figure 1. Flow chart of data processing and analysis. LUAD and LUSC followed the same process. First, the candidate gene sets were selected from overlap-
ping DEGs and DMPs in TSS1500. Second, in stage I of IVA, the predicted expression value for each gene X was obtained by regressing the gene expression 
on the corresponding CpGs in TSS1500 with adjusted age, sex and PYS. In stage II of IVA, the potential causal effect was calculated by directly inputting 
the predicted gene expression value X into the hazard model with adjustments for age, sex and PYS. LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; DEGs, differentially expressed genes; DMPs, differentially methylated probes; IVA, instrumental variable analysis; PYS, pack‑years smoked; 
TSS1500, 200‑1,500 bp upstream of a transcription start site.



LIU et al:  LEVERAGING METHYLATION TO IDENTIFY CAUSAL GENES FOR SURVIVAL IN LUAD AND LUSC196

value X was directly plugged into the Cox model, and the 
parameter β1 represented the potential causal effect of gene 
expression on LC survival. A false discovery method was used 
to adjust multiple testing, and the threshold of FDR‑q value 
was set to 0.15 (48). In addition, proportional hazards assump-
tion was diagnosed by testing the correlation between the 
Schoenfeld residuals and survival time, with zero correlation 
indicating that the Cox model was valid (49).

Sensitivity analyses. Various sensitivity analyses were conducted 
to ensure the robustness for modeling misspecifications and to 
ensure the results were valid. Specifically, F statistic was used 
to test the weak instrumental bias. In addition, the I2‑statisic 
was calculated to test the heterogeneity among instrumental 
variables, and leave‑one‑out cross validation (LOOCV) analysis 
was used to test whether one single instrumental variable may 
have a strong causal effect on gene expression. Weak association 
between instrumental variables and gene expression is observed 
if the F‑statistics is <10, and heterogeneity among instrumental 
variables may exist when I2‑statisic is >50% (50‑52).

Results

Descriptive statistics. The demographic characteristics of 
the 567 patients with NSCLC are presented in Table I. For the 

280 patients with LUAD, the median age was 67 years, and 
the proportion of female patients was 52.14%. The median PYS 
was 36.5 packs/year, and the median survival time was 216 months, 
with a 24.29% censoring rate. For the 287 patients with LUSC, the 
median age was 69 years, and the proportion of female patients 
was 26.13%. The median PYS was 50 packs/year, and the median 
survival time was 224 months, with a 29.90% censoring rate. No 
significant differences were observed in survival time (P=0.37), 
vital status (P=0.13) or history of other malignancy distributions 
(P=0.08) between LUAD and LUSC. However, age (P=0.007), 
sex (P=3.77x10‑10), race (P=0.01), PYS (P=3.02x10‑8), Kras gene 
analysis indicator (P=9.27x10‑7) and epidermal growth factor 
receptor mutation status (P=1.38x10‑7) were signifcantly different 
between LUAD and LUSC.

Time‑to‑event IVA for LUSC and LUAD. The present study 
identified 1,543 DEGs in LUSC and 906 DEGs in LUAD 
(Tables SI and SII). A total of 9,799 differentially methylated 
genes were located in genes in the TSS1500 regions for LUAD 
(Table SIII), among which 538 also differed in gene expres-
sion. In addition, 12,283 differentially methylated CpGs were 
located in genes in the TSS1500 regions for LUSC (Table SIV), 
among which 1,053 also differed in gene expression. In total, 
538 genes in LUAD and 1,053 genes for LUSC were regarded 
as candidate genes after overlapping the DGEs and DMPs in the 

Table I. Demographic and clinical characteristics for study populations.

Variable	 LUAD N=280	 LUSC N=287	 P‑value

Age, median years (interquartile range)	   67.00 (13.25)	   69.00   (11.00)	 0.01a

Sex, n (%)			   3.77x10‑10

  Female	 146      (52.14)	   75        (26.13)
  Male	 134      (47.86)	 212        (73.87)
Ethnicity, n (%)			   0.01
  Asian	     2        (0.71)	     3          (1.05)
  Black or African American	   29      (10.36)	   19          (6.62)
  White	 226      (80.71)	 218        (75.96)
  Unknown	   23        (8.21)	   47        (16.38)
Pack‑years smoked, median (interquartile range)	   36.50 (30.00)	   50.00   (33.87)	 3.02x10‑8a

Survival time, median months (interquartile range)	 216.00 (69.00)	 244.00 (975.00)	 0.37a

Dead, n (%)	   68      (24.29)	   87        (30.31)	 0.13
History of other malignancy, n (%)			   0.08
  No	 227      (81.07)	 249        (86.76)
  Yes	   53      (18.93)	   38        (13.24)
Kras gene analysis indicator, n (%)			   9.27x10‑7

  No	 149      (53.21)	 205        (71.43)
  Yes	   38      (13.57)	   10          (3.48)
  Unknown	   93      (33.21)	   72        (25.09)
EGFR mutation status, n (%)			   1.38x10‑7

  No	 124      (44.29)	 186        (64.81)
  Yes	   49        (17.5)	   16          (5.57)
  Unknown	 107      (38.21)	   85        (29.62)

aP<0.05, Wilcoxon rank‑sum test. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; EGFR, epithelial growth factor 
receptor.
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TSS1500 region (Table SV) for the downstream time‑to‑event 
IVA in order to identify potential causal genes related to the 
survival of patients with LC (Tables  SVI and  SVII). The 
present study only included 476 genes for LUAD and 922 genes 
for LUSC after removing genes with missing methylation data. 
In addition, the proportional hazards assumption in the second 
stage was confirmed to be valid for the correlation between the 
Schoenfeld residuals and survival time.

The results of the present study identified eight significant 
potential causal genes for LUAD survival and one significant 
causal gene in LUSC using FDR‑q<0.15 (Table II). The causal 
genes for LUAD were aryl hydrocarbon receptor nuclear 
translocator like 2 (ARNTL2, HR=1.037; 95% CI: 1.017‑1.056; 
P=1.81x10‑4; FDR‑q=0.029), semaphorin 3G (SEMA3G, 
HR=0.632; 95% CI: 0.504‑0.792; P=6.79x10‑5; FDR‑q=0.029), 

serum deprivation‑response protein (SDPR, HR=0.980; 
95%  CI:  0.969‑0.990; P=1.38x10‑4; FDR‑q=0.029), chlo-
ride intracellular channel protein 5 (CLIC5, HR=0.987; 
95% CI: 0.980‑0.995; P=7.39x10‑4; FDR‑q=0.070), LIM zinc finger 
domain containing 2 (LIMS2, HR=0.924; 95% CI: 0.884‑0.967; 
P=6.22x10‑4; FDR‑q=0.070), epithelial membrane protein 
2 (EMP2, HR=0.997; 95%  CI:  0.995‑0.999; P=2.52x10‑3; 
FDR‑q=0.150), carbonic anhydrase  7 (CA7, HR=1.34x10‑9; 
95% CI: 2.3x10‑15‑7.0x10‑4; P=2.53x10‑3; FDR‑q=0.150) and 
LOC116437 (HR=0.141; 95% CI: 0.040‑0.496; P=2.25x10‑3; 
FDR‑q=0.150). The causal gene for LUSC was phosphati-
dylinositol‑3,4,5‑trisphosphate‑dependent Rac exchange factor 
2 (PREX2, HR=1.958; 95%  CI:  1.450‑2.644; P=1.16x10‑5; 
FDR‑q=0.011). All HR values were calculated with 10‑unit 
increment of gene expression.

Table II. Result of time‑to‑event instrument variable analysis for causal genes.

A, LUAD

Gene	 Chr	 Position	 IVs	 HR (95% CI)	 P‑value	 FDR

ARNTL2	 12	 27,485,787‑27,578,746	 cg26165146	 1.037 (1.017‑1.056)	 1.81x10‑4	 0.029
	 		  cg17367616		  	

	 		  cg01986577		  	

SEMA3G	   3	 52,467,268‑52,479,112	 cg25134747	 0.632 (0.504‑0.792)	 6.79x10‑5	 0.029
SDPR	   2	 191,834,310‑ 191,847,088	 cg10082589	 0.980 (0.969‑0.990)	 1.38x10‑4	 0.029
	 		  cg18843739		  	

CLIC5	 6	 45,866,188‑ 46,048,085	 cg23716866	 0.987 (0.980‑0.995)	 7.39x10‑4	 0.070
	 		  cg14339765		  	

	 		  cg09347495		  	

LIMS2	 2	 128,395,996‑128,439,360	 cg07262244	 0.924 (0.884‑0.967)	 6.22x10‑4	 0.070
	 		  cg14282137		  	

	 		  cg08385249		  	

	 		  cg23966569		  	

	 		  cg22542731		  	

EMP2	 16	 10,622,279‑ 10,674,539	 cg04339790	 0.997 (0.995‑0.999)	 2.52x10‑3	 0.150
CA7	 16	 66,878,282‑66,888,052	 cg10352418	 1.34x10‑9 (2.33x10‑15‑7.0x10‑4)	 2.53x10‑3	 0.150
	 		  cg06438797		  	

	 		  cg11258532		  	

	 		  cg00182273		  	

LOC116437	 12	 131,649,556‑131,697,476	 cg20183756	 0.141 (0.040‑0.496)	 2.25x10‑3	 0.150
	 		  cg03859668

B, LUSC

Gene	 Chr	 Position	 IVs	 HR (95% CI)	 P‑value	 FDR

PREX2	 8	 68,864,244‑69,143,897	 cg13652336	 1.958 (1.450‑2.644)	 1.16x10‑5	 0.011
	 		  cg16009633
	 		  cg11549615
	 		  cg05293738
	 		  cg17747005

IVs, instrumental variables; Chr, chromosome; HR, hazard ratio; 95% CI, 95% confidence interval; FDR, false discovery rate; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Sensitivity analyses. F‑statistics of all causal genes used to 
detect the weak instrumental bias were <10, which indicated 
a weak association between instruments and gene expression 
due to the small number of instrumental DMP sites within 
each gene (Table SVIII). Despite this, all the significant genes 
were still to be identified powerfully.

The present study performed a heterogeneity test to 
identify any instrumental outliers that may affect the results. 
The results demonstrated that the I2‑statistics were 75.9, 78.2 
and 63.1% for ARNTL2, CLIC5 and PREX2, respectively 
(Table SVIII). To address the heterogeneity among the IVs, 
instrumental outliers were removed; similar results were 
obtained when removing the instrumental outliers. In addition, 
LOOCV analysis identified no causal genes with outlier single 
instrument for both LUAD and LUSC (Table SVIII).

Discussion

The present study integrated DNA methylation, RNA‑seq, 
clinical charancteristics and survival outcomes from TCGA 
to investigate the potentical causal relationship between gene 
expression and LUAD and LUSC survival, respectively.

The identified causal relationship between gene expression 
and survival of disease was robust with respect to the choice of 
statistical methods, and was assessed with various sensitivity 
analyses. Non‑overlapping causal genes between LUAD and 
LUSC further highlighted the heterogeneity between these two 
subtypes of LC. From the two‑stage time‑to‑event IVA, the 
present results indicated the potential causal role of ARNTL2, 
SEMA3G, SDPR, CLIC5, LIMS2, EMP2, CA7 and LOC116437 
in LUAD survival, and PREX2 in LUSC survival. In addition, the 
present study identified pivotal regulatory genes, the expression 
levels of which were upregulated with poor survival, including 
PREX2 in LUSC and ARNTL2 in LUAD. Furthermore, several 
genes with downregulated expression levels associated with 
poor survival were identified, including SEMA3G, SDPR, 
CLIC5, LIMS2, EMP2, CA7 and LOC116437 in LUAD. The 
causal effect of gene expression and NSCLC suggested that 
these genes may be potential epigenetic therapeutic targets.

The majority of the potential causal genes identified in the 
present study have also been detected by previous studies, which 
have demonstrated a possible association with the prognosis in 
NSCLC. ARNTL2 drives metastatic self‑sufficiency by orches-
trating the expression of a complex pro‑metastatic secretome, 
and high ARNTL2 expression predicts poor survival among 
patients with LUAD (53). In addition, SEMA3G is a poten-
tial transcription gene associated with cancer susceptibility 
candidate 9, and is significantly associated with the malignant 
progression of LUSC (54). A previous study using Oncomine 
and TCGA databases has demonstrated that low expression of 
CLIC5 is associated with poor overall survival after adjusting 
for age, sex and PYS (55). In addition, EPAS1, a transcription 
factor that serves a vital role in tumor progression, has been 
reported to directly regulate the LUAD‑associated genes EMP2 
and LIMS2 (56). It has been identified that upregulation of 
CA7 in tissues from resectable NSCLC is a biomarker of good 
prognosis (57). As LUAD is a major subtype of NSCLC, CA7 
may have the same effect on LUAD. A xenograft study demon-
strated that SDPR may elicit a metastasis suppressor function by 
directly interacting with ERK and have a limited pro‑survival 

role (58). A previous study has reported that somatic altera-
tions in PREX2 modulate the activity of immunomodulators, 
according to a significant overlap between the Master Regulator‑ 
and SYGNAL‑PanImmune, which is associated with survival 
across all cancer types (59). Thus, upregulated PREX2 may 
lead to a short survival time, but this has not been identified in 
previous studies. In addition, there is no previous evidence that 
LOC116437 is the potential causal gene in NSCLC.

The analysis pipeline used in the present study can be consid-
ered as a gene‑centered data integration method by combining 
multi‑omics data with clinical information. One single level of 
genomic measurements can be insufficient to fully exploit the 
knowledge underlying the etiology of cancer prognosis. Based 
on the follow‑up data from TCGA, gene expression was used 
as the exposure variable, and survival time was the censored 
outcome variable to avoid the reverse causation. For any one 
specific gene, DMP sites within the promoter region TSS1500 
were used as instrumental variables, due to the biologically 
plausible assumption that CpG sites in TSS1500 must first regu-
late gene expression before affecting the survival. However, it 
may be necessary to include additional instrumental variables to 
increase the power of IVA. The present study only used DMPs 
within the functional region of TSS1500, rather than including 
DMPs within the gene body. Since DNA methylation in the gene 
body can be associated with survival outcome through changes 
in gene expression and some alternative mechanisms, these 
may possess the possibility of violating the instrumental vari-
able assumptions (60). The present study performed extensive 
sensitivity analyses to ensure the robustness of the results and 
to prevent any possible model assumption violation in the IVA.

However, the present study has certain limitations. First, 
similar to other IVA studies, the present study assumed a 
linear relationship between DMPs in the promoter region and 
the corresponding gene expression. While a linear relationship 
can be considered a first‑order approximation to any non‑linear 
relationship, modeling a linear relationship can be subop-
timal in terms of power if the true relationship is non‑linear. 
Second, the censored rate of TCGA cohort was relatively high. 
Considering the heterogeneity and various manifestations 
of NSCLC, the present results should be verified in larger 
samples to evaluate the findings among specific subgroups. 
Furthermore, the present results should be interpreted with 
caution among other populations. The analysis framework 
could be extended to other ethnicities to detect the possible 
differences. In addition, several studies have demonstrated 
that when the same dataset is used for the selection of IVs 
and the estimation of instrument‑exposure effect, substantial 
selection bias occurs even if the selection threshold is very 
stringent (61,62). Therefore, further studies are required to 
investigate other independent samples to select IVs.
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