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ABSTRACT: Here, we report a combined study of the effects of two chemical modifications to an
N,N′-disubstituted bis(pyrazol-3-yl)pyridine (3-bpp) and of different solvents on the spin-crossover
(SCO) behavior in otherwise high-spin iron(II) complexes by solution NMR spectroscopy. The
observed stabilization of the low-spin state by electron-withdrawing substituents in the two positions
of the ligand that induce opposite electronic effects in SCO−active iron(II) complexes of isomeric
bis(pyrazol-1-yl)pyridines (1-bpp) was previously hidden by NH functionalities in 3-bpp precluding
the molecular design of SCO compounds with this family of ligands. With the recent SCO-assisting
substituent design, the uncovered trends converged toward the first iron(II) complex of N,N′-
disubstituted 3-bpp to undergo an almost complete SCO centered at room temperature in a less
polar solvent of a high hydrogen-bond acceptor ability.

■ INTRODUCTION

Spin-crossover (SCO) complexes1 have been actively sought in
the last few decades to create new materials with switchable
magnetic, optical, mechanical, and polyfunctional properties.2,3

They use the ability of a transition-metal ion to reversibly switch
between two spin stateslow spin (LS) and high spin (HS)
under an applied physical or chemical stimulus.1 Changes in
temperature or pressure,1 light irradiation,4 chemical trans-
formations, or noncovalent interactions5 may cause an abrupt
hysteretic6,7 SCO in solids, mostly of iron(II) complexes with a
(pseudo)octahedral coordination by N-heterocyclic donor
ligands,8,9 or a gradual incomplete SCO in solutions. Both
behaviors are exploited in displays,10 switches,11 memory
devices,12 sensors13−16 for detection of various stimuli and
analytes, thermometers17,18 and contrast agents19 in magnetic
resonance imaging, etc.2,3

For these applications, an SCO centered around room
temperature5 is often preferred that can be induced at the single-
molecule level by molecular design. The latter relies on a good
control of SCO temperatures by chemical modifications to the
ligands achieved in solutions of SCO compounds20 with no
contribution from crystal packing or other crystal-related effects,
such as polymorphism. Of various techniques suited for the
purpose,21,22 the method of choice23 is often NMR spectros-
copy20 that probes an SCO by the Evans method.24 As a
solution-state alternative to magnetometry, the Evans method24

measures magnetic susceptibility of a compound by comparing
chemical shifts of an inert substance in NMR spectra collected
simultaneously from the solution that contains the compound in
an appropriate solvent and the one that contains only the

solvent. It, however, requires pure solutions of known
concentration with no side-products or chemical transforma-
tions occurring during the measurement to provide results
within a claimed error of 5−10%.25 Instead of or in combination
with the Evans method, various approaches26−29 to the analysis
of NMR chemical shifts30 are sometimes used to quantify the
spin state evolution in the presence of diamagnetic23 or even
paramagnetic31,32 compounds. Such studies allowed identifying
a thermally induced SCO centered at14,29,33−38 or slightly
above39,40 room temperature in solutions of few coordination
compounds. There are, however, fewer examples of an SCO that
is almost complete31,34,37,38 in the accessible temperature range
(such as accessed in a large series of different solvents38 or
followed by UV−vis spectroscopy41,42 and SQUID-magneto-
metry43).
In our search for SCO complexes of N,N′-disubstituted

bis(pyrazol-3-yl)pyridines (3-bpp)32,44−46 devoid of NH groups
close to the coordinating nitrogen atoms that preclude47−51

their “truly molecular” design,20 a family of SCO-active
complexes was obtained45,46 by a counterintuitive20 SCO-
assisting ligand design with ortho-functionalized N-phenyl
groups (Scheme 1).44 Of them, ligand L with dichlorophenyl
N-substituents and hydroxyl groups in the fifth position of the
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pyrazol-3-yl moiety produced the thermally induced SCO with
the highest midpoint temperature of 270 K in a solution.44

To bring this SCO closer to room temperature, an electron-
withdrawing substituent such as a p-cyanophenyl group
introduced into the para-position of the pyridyl moiety of the
same ligand may help. Based on “structure−property” relations
for iron(II) complexes of isomeric bis(pyrazol-1-yl)pyridines
(1-bpp)52 and other pyridine-based ligands,43 it should
strengthen the ligand field and thereby stabilize the LS state of
the iron(II) ion, shifting the SCO to higher temperatures. The
proposed modification to N,N′-disubstituted 3-bpp (Chart 1)
allowed designing an almost complete SCO centered at room
temperature that can be followed by NMR spectroscopy using
two different solvents;38 an additional motivation was to probe
the solvent effect on the SCO behavior of otherwise HS20,53−57

complexes.
Another option for SCO tuning through molecular design,20

which was mastered for iron(II) complexes of 1-bpp,52 is
functionalization at the fifth position of the pyrazol-3-yl moiety.
It is also explored here by substituting the above electron-
withdrawing hydroxyl groups in LOH (as gauged by Hammet58

constant σm)
52 for substituents with an opposite electronic effect

and no hydrogen-bonding ability, the t-butyl groups (Chart 1).
We expected the resulting trends in the SCO behavior to
reconcile contradictory results20 of such a modification to the 3-
bpp ligands in iron(II)20,45,59 (and cobalt(II)32) complexes.

■ RESULTS AND DISCUSSION
The targetN,N′-disubstituted 3-bpp (LR) were synthesized by a
previously reported44 one-step cyclization of 2,6-dichlorophe-
nylhydrazine44 with diethyl 3,3′-(4-(4-cyanophenyl)pyridine-
2,6-diyl)bis(3-oxopropanoate) or 4-(2,6-bis(4,4-dimethyl-3-
oxopentanoyl)pyridin-4-yl)benzonitrile, both resulted from
Claisen condensation of diethyl 4-(4-cyanophenyl)pyridine-
2,6-dicarboxylate60 with ethyl acetate or pinacolone (Scheme 1).
Mixing any of them with iron(II) tetrafluoroborate in methanol
produced inseparable mixtures of paramagnetic compounds as

Scheme 1. Synthesis of Ligands LR

Chart 1. Ligands in This Study: LOH, 4-(2,6-Bis(1-(2,6-
dichlorophenyl)-5-hydroxy-1H-pyrazol-3-yl)pyridin-4-
yl)benzonitrile, and Lt‑Bu, 4-(2,6-Bis(5-tert-butyl-1-(2,6-
dichlorophenyl)-1H-pyrazol-3-yl)pyridin-4-yl)benzonitrile;
L, 3,3′-(Pyridine-2,6-diyl)bis(1-(2,6-dichlorophenyl)-1H-
pyrazol-5-ol), Was Reported Earlier44
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identified by NMR spectroscopy of the appropriate solutions.
This implies the coordination of both the tridentate heterocyclic
core and of the p-cyanophenyl group, as the coordination by
only the p-cyanophenyl group would stabilize the diamagnetic
LS state of the iron(II) ion.
To obtain the target complexes [Fe(LR)2](BF4)2, an

alternative synthetic pathway was used that included the
formation of an intermediate product [Fe(LR)2]Cl2 by the
reaction of LRwith anhydrous iron(II) chloride in methanol and

a subsequent addition of solid NaBF4 to this solution (Scheme
2).
The resulting violet crystals were confirmed by X-ray

diffraction to belong to the complexes [Fe(LR)2](BF4)2 (Figure
1). The Fe−N bond lengths61 and the shape of the coordination
polyhedra62 at 120 K (Table 1) were typical of the iron(II) ion in
a N6-coordination environment of 3-bpp ligands57 that adopts
the LS state. The latter was also hinted by the distinct red color
of the crystals1 retained upon warming to room temperature, as
they should turn yellow in an event of an SCO to the HS state of

Scheme 2. Synthesis of the Complexes [Fe(LR)2](BF4)2

Figure 1. General view of the cations in (a) [Fe(LOH)2](BF4)2 and (b) [Fe(Lt‑Bu)2](BF4)2 as obtained from X-ray diffraction at 120 K. Minor
component of the disordered p-cyanophenyl groups, second symmetry-independent cation in [Fe(Lt‑Bu)2](BF4)2, and hydrogen atoms except those of
OH groups in [Fe(LOH)2](BF4)2 are omitted for clarity. Atoms are shown as anisotropic displacement ellipsoids (p = 30%), and only the labels of
heteroatoms are given.
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an iron(II) complex of 3-bpp.32,44−46 However, the quality of
the crystals was too low to perform an X-ray diffraction study for
[Fe(LR)2](BF4)2 at this temperature. Given a general tendency
ofN,N′-disubstituted 3-bpp to produce HS complexes,20,53−57 it
may be a sign of a thermally induced SCO that is “blocked” by
crystal packing effects.45,46

To confirm that there is indeed an SCO tunable by the
proposed modifications to the 3-bpp ligand, the spin state of the
complexes [Fe(LR)2](BF4)2 was probed in a solution by the
Evans technique.24 This approach in variable-temperature NMR
spectroscopy is a method of choice20 in molecular design of
SCO compounds. The 1H NMR spectra were collected from
DMF-d7 solutions, as both complexes are readily soluble in this
solvent and do not decompose upon heating/cooling (Figure
S1). The latter is a prerequisite for accurately measuring the
magnetic susceptibility with the Evans method.24

At room temperature (Figure S1), the 1H NMR spectra show
sets of seven paramagnetically shifted signals expected for
[Fe(LOH)2](BF4)2 and [Fe(L

t‑Bu)2](BF4)2. Upon heating to 365
K, the highest temperature accessible due to the solvent
evaporation from the NMR tube and a limitation of the
spectrometer, the observed signals of [Fe(LOH)2](BF4)2 broad-
en and shift further toward the paramagnetic region. This
behavior is in contrast to a linear (Curie) dependence of the
paramagnetic chemical shifts on the inverse temperature
expected for the compounds in a pure spin state,30,63 such as
one observed for [Fe(Lt‑Bu)2](BF4)2 above room temperature.
However, cooling the DMF-d7 solutions of both complexes to
230 K causes the chemical shifts to converge rapidly ([Fe-
(LOH)2](BF4)2) or sluggishly ([Fe(Lt‑Bu)2](BF4)2) toward the
diamagnetic region (Figure S1), implying26 the thermal
population of the diamagnetic LS state.
The magnetic susceptibility measured by the Evans method24

provides another piece of evidence for a sluggish and a more
abrupt SCO in these solutions (Figure 2). In the temperature
range 230−365 K, the χT value gradually decreases by 1 cm3/
mol K in the case of [Fe(Lt‑Bu)2](BF4)2 and drops from 2.9 to
0.4 cm3/mol K in the case of [Fe(LOH)2](BF4)2. An
unexpectedly highmagnetic susceptibility of the former complex
above room temperature, which exceeds the typical value for the
HS iron(II) ion (3.5 cm3/mol K)33,38,64 beyond the 5−10%
error of the Evans method,25 may arise from the presence of a
paramagnetic side product that has a fast relaxation in the NMR
timescale or is an inorganic species and thus does not appear in
the NMR spectrum.
As a result, thermodynamic parameters of the SCO in

[Fe(LOH)2](BF4)2 (Table 2) are typical of iron(II) complexes of

N,N′-disubstituted 3-bpp,44,46 while those in [Fe(Lt‑Bu)2](BF4)2
seem underestimated. They, however, still fall into the ranges
expected for SCO-active iron(II) compounds in solutions (ΔH
= 4−41 kJ/mol, ΔS = 22−146 J/mol K).33 The corresponding
midpoint temperatures for the two complexes are 299 and 201 K
(Table 2). A decrease by almost 100 K following the substitution
of the hydroxyl groups in [Fe(LOH)2](BF4)2 by the t-butyl
groups in [Fe(Lt‑Bu)2](BF4)2 agrees with the stabilization of the
HS state by an electron-donating substituent in this position of
the 3-bpp ligand, as suggested in previous studies of iron(II)
complexes with N,N′-disubstituted 3-bpp.32,45 With no
interference from NH groups,20 this effect may have the same
origin as does the stabilization of the HS state by an electron-
donating substituent in the para-position of the pyridyl moiety.
The latter lowers the midpoint temperature by stabilizing the eg
level of the metal d-orbitals and leading to a narrower t2g−eg
energy gap.20,43,52 For [Fe(LOH)2](BF4)2, an opposite electronic
effect of the p-cyanophenyl group shifts the SCO observed in a
solution of the complex [Fe(L)2](ClO4)2

44 (Table 2) to higher
temperatures and thereby produces the SCO perfectly centered
at room temperature (22 °C).
The latter allowed us to follow this, almost complete SCO by

NMR spectroscopy in dimethylformamide (DMF) (Figure 2).
To widen the accessible temperature range of the NMR
experiment, another solvent (methanol-d4) was used, which is a
typical strategy in SCO research.38 Of many different solvents
other than DMF, only methanol provides good solubility of
[Fe(LOH)2](BF4)2 needed to obtain accurate Evans data.25 For
the same reason, acetonitrile was chosen for [Fe(Lt‑Bu)2](BF4)2
to resolve the above issue with DMF (Figure 2). The stability of
the complexes in these solvents was confirmed by electrospray
ionization-mass spectrometry (ESI-MS) spectra that contained
intense signals of [Fe(L)2]

2+ ions and minor signals of
[Fe(Lt‑Bu)2BF4]

+ or [Fe(LOH)2-H]
+ ions (Figure S2 of the

Supporting Information) and were the same for freshly prepared
samples and those kept for a long time. An additional motivation
for using different solvents was to probe the solvent effect on the
SCO behavior of [Fe(LR)2](BF4)2. This was not attempted
before for complexes of N,N′-disubstituted 3-bpp, as none of
them were SCO-active20,53−57 until very recently.44

The 1H NMR spectra collected from [Fe(LOH)2](BF4)2 in
methanol-d4 and [Fe(L

t‑Bu)2](BF4)2 in acetonitrile-d3 show sets
of 5 and 7 paramagnetically shifted signals (Figure S3 of the
Supporting Information). Two signals of [Fe(LOH)2](BF4)2
disappear in the solution owing to the fast exchange of the
proton of the OH group of the ligand LOH with the hydroxyl

Table 1. Selected Geometric Parametersa as Obtained from
X-ray Diffraction at 120 K for [Fe(LR)2](BF4)2

parameter [Fe(LOH)2](BF4)2 [Fe(Lt‑Bu)2](BF4)2
b

Fe−NPy (Å) 1.915(8)−1.917(8) 1.891(11)−1.935(10)
Fe−NPz (Å) 1.975(7)−2.012(8) 2.011(11)−2.049(11)
θ (deg) 89.99(7) 89.65(11) [89.93(10)]
ϕ (deg) 179.1(3) 179.1(4) [179.6(4)]
S(Oh) 2.425 2.351 [2.461]
S(ebcT) 12.897 13.142 [13.464]

aθ is the “twist” angle between the two least-squares planes of 3-bpp
ligands; ϕ is the “rotation” angle NPy−Fe−NPy; S(Oh) and S(ebcT)
are octahedral and edge-bicapped tetrahedral62 continuous shape
measures, respectively. bIn brackets, the values for the second
symmetry-independent cation in [Fe(Lt‑Bu)2](BF4)2 are given.

Figure 2. Variable-temperature magnetic susceptibility data for the
solutions of [Fe(LOH)2](BF4)2 (black squares) and [Fe(L

t‑Bu)2](BF4)2
(black circles) in DMF-d7 according to the Evans method. The lines
correspond to the best fit by a regular solution model.30
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deuterium atom of methanol-d4 and a tautomeric transfer of the
latter to the pyrazolyl moiety of LOH.65

The changes in these spectra with temperature are very similar
to those occurring in DMF-d7. Cooling the methanol-d4 solution
of [Fe(LOH)2](BF4)2 causes the chemical shifts to rapidly
converge toward the diamagnetic region (Figure S3) in the
violation of the Curie law. On the other hand, the same (anti-
Curie) behavior for [Fe(Lt‑Bu)2](BF4)2 in acetonitrile-d3 is
observed below 265 K. This is also true for the variable-
temperature magnetic susceptibility measured by the Evans
method (Figure 3). At the highest temperatures of 330 and 345
K accessible in methanol-d4 and acetonitrile-d3, the complexes
[Fe(LOH)2](BF4)2 and [Fe(L

t‑Bu)2](BF4)2 feature the χT values
of 2.2 and 3.9 cm3/mol K, respectively. High magnetic
susceptibility of [Fe(Lt‑Bu)2](BF4)2 in acetonitrile-d3, however,
arises from the presence of the free ligand identified by
appropriate signals in ESI-MS spectra (Figure S2 of the
Supporting Information) and signals in the NMR spectra
(Figures S4 and S5 of the Supporting Information); those were
absent in DMF-d7. Upon cooling these solutions to 200 and 235
K, the χT values decrease to 0.2 and 3.1 cm3/mol K, thus
confirming an almost complete SCO occurring for [Fe(LOH)2]-
(BF4)2 in the temperature range 200−360 K and an onset of the
SCO at 265 K for [Fe(Lt‑Bu)2](BF4)2.
The thermodynamic parameters of the SCO in these solvents

are more consistent between the two complexes (Table 2) and
with other complexes of N,N′-disubstituted 3-bpp.44,46 The
resulting midpoint temperatures of 307 and 214 K for
[Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2 mirror the same
electronic effect of the substituents in the pyridyl and pyrazol-3-
yl moieties on the SCO behavior as identified in DMF but also
show its solvent dependence (Figure 3). For [Fe(LOH)2](BF4)2,
more polar methanol (if judged by Reichardt’s parameters66 of
solvent polarity) shifts the SCO toward higher temperatures,

although an inverse trend was previously observed38 for an
iron(II) complex of unsubstituted 3-bpp, [Fe(3-bpp)2](BF4)2.
Such a difference between the compounds with the same
tetrafluoroborate anion and in the same solvents may arise from
the OH functionalities in the ligand LOH and/or NH
functionalities in 3-bpp that tend to form hydrogen bonds
known to affect the spin state of the iron(II) complexes.47−51

The ligand Lt‑Bu, however, has no hydrogen-bonding ability.
The difference in the midpoint temperatures between DMF and
acetonitrile solutions of [Fe(Lt‑Bu)2](BF4)2 (13 K) is the same as
in the above iron(II) complex of unsubstituted 3-bpp (13 K)38

but of the opposite sign, with more polar acetonitrile stabilizing
the LS state and thus shifting the SCO toward higher
temperatures. The gap of 13 K was the largest one among five
different solvents excluding water38 that were probed for [Fe(3-
bpp)2](BF4)2. Such a study resulted in a positive correlation of
themidpoint temperature with their basicity and hydrogen bond
acceptor ability gauged by the parameter of Kamlet and Taft.67

For [Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2, however, the
SCO is consistently observed at higher temperatures in more
polar solvents with a lower hydrogen-bond acceptor ability, such
as methanol.
As the interpretation of these trends may be affected by the

ambiguous Evans data for the complex [Fe(Lt‑Bu)2](BF4)2
(Figure 3), an alternative approach in NMR spectroscopy was
used that is known to produce accurate estimates of
thermodynamic28−30,37,40,63,68,69 parameters of an SCO even
in the presence of various admixtures in a solution.23,31,32 It is
based on the analysis26−29 of the temperature behavior of
chemical shifts30 that only requires an assignment of at least
some of the signals in the variable-temperature NMR spectra;
those are routinely collected as a side-product of the Evans
experiment.

Table 2. SCO Parameters for [Fe(LR)2](BF4)2
a and [Fe(L)2](ClO4)2

b from Variable-Temperature NMR Spectroscopy

complex [Fe(LOH)2](BF4)2 [Fe(Lt‑Bu)2](BF4)2 [Fe(L)2](ClO4)2
44

solvent methanol-d4 DMF-d7 ccetonitrile-d3 DMF-d7 ccetonitrile-d3

T1/2 (K) 307 [318] 299 [292] 214 [213] 201 [209] 269
ΔH (kJ/mol) 20.2 [29.5] 19.4 [24.8] 23.6 [15.6] 10.9 [21.5] 24.2
ΔS (J/mol K) 65.9 [92.5] 64.8 [85.1] 110.4 [73.0] 54.6 [102.5] 89.9

aThermodynamic parameters are obtained by fitting the Evans data by the regular solution model (Table S1 of the Supporting Information);30

those obtained by fitting the chemical shifts with the first-order temperature-dependent Curie constants37 (Tables S2−S5 of the Supporting
Information) are given in brackets. bThe values were obtained by fitting the chemical shifts by the regular solution model.44

Figure 3. Variable-temperature magnetic susceptibility data for the solution of [Fe(LOH)2](BF4)2 in methanol-d4 (red squares) and DMF-d7 (black
squares) and for the solution of [Fe(Lt‑Bu)2](BF4)2 in acetonitrile-d3 (blue circles) and DMF-d7 (black circles) according to the Evans method. The
lines correspond to the best fit by a regular solution model.30 For HS state populations, see Figure S6 of the Supporting Information.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05463
ACS Omega 2021, 6, 33111−33121

33115

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05463?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05463?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05463?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05463?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the 1H NMR spectra, the chemical shifts of [Fe(LOH)2]-
(BF4)2 and [Fe(Lt‑Bu)2](BF4)2 do not follow a linear depend-
ence with the inverse temperature dictated by the Curie law
(Figure 4), as expected for the spin-state switching26

experienced by the two complexes in the chosen solvents. The
difference in the chemical shifts for [Fe(LOH)2](BF4)2 in DMF-
d7 and methanol-d4 at a temperature of 305 K is up to 10 ppm;
those are larger in DMF-d7 in an agreement with the Evans data
(Figure 3) that show a higher HS population in this solvent (55
vs 49% at 305 K). For [Fe(Lt‑Bu)2](BF4)2, however, the chemical
shifts are virtually the same in DMF-d7 and acetonitrile-d3
despite the presence of the free ligand and a different side-
product (Figure 3). This observation illustrates the benefits of
the analysis of chemical shifts for quantifying the SCO over the
Evans method.
Fitting the chemical shifts with the temperature−invariant

Curie constant29,39,70 produced unsatisfactory results (Tables
S6−S9 of the Supporting Information). Indeed, the best fit for
[Fe(Lt‑Bu)2](BF4)2 in DMF-d7 still had a mean square error of
0.85. This may be because the Curie law is applicable for ideal
spin systems with no contributions from zero-field splitting
effects, low-lying excited states, or molecular dynamics that may
sometimes occur in iron(II) complexes.27,30,37,69,71,72 Therefore,
the SCO curves (Figure S8 of the Supporting Information and
Table 2) and appropriate thermodynamic parameters for
[Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2 were obtained from
the fit with the first-order temperature-dependent Curie
constants that account for the above effects.37 Upon doing so,
the mean square error in the best fit for [Fe(Lt‑Bu)2](BF4)2 in
DMF-d7 dropped to 0.04 (Table S3 of the Supporting
Information) and the thermodynamic parameters (Table 2)
became more typical of iron(II) complexes with N,N′-
disubstituted 3-bpp ligands.44,46

The resulting midpoint temperatures for the two complexes
differ from those obtained from the Evans data by 1−11 K. The
largest and smallest differences between the two NMR-based
methods are observed for [Fe(LOH)2](BF4)2 in methanol-d4
(318 vs 307 K) and [Fe(Lt‑Bu)2](BF4)2 in acetonitrile-d3 (213 vs
214 K), respectively. These values, however, agree on the SCO
that is centered around room temperature for one complex and
at a much lower temperature for the other (Table 2). They also
show the same effect of the polarity and hydrogen bond acceptor
ability of the solvent that is opposite to the one found for [Fe(3-
bpp)2](BF4)2.

38 The more polar and less associating methanol-
d4 and acetonitrile-d3 shift the SCO in solutions of [Fe(LOH)2]-

(BF4)2 and [Fe(Lt‑Bu)2](BF4)2 toward higher temperatures by
26 and 4 K, respectively.

■ CONCLUSIONS
A solution study of the SCO-active iron(II) complexes
[Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2 with rationally
functionalized 3-bpp ligands (Chart 1) revealed the first example
of an almost complete SCO centered around room temperature
in otherwise HS20,53−57 complexes of N,N′-disubstituted 3-bpp.
This SCO was unambiguously identified by two separate
approaches in variable-temperature NMR spectroscopy, the
Evans method24 and the analysis of the NMR chemical shifts.30

The two techniques produced qualitatively different but
consistent results (Table 2) on the effect of the solvents on
the observed SCO behaviors that is opposite to the one found in
a previous study38 of the iron(II) complex [Fe(3-bpp)2](BF4)2
in various solvents. A plausible reason for this may be the NH
functionalities in the unsubstituted 3-bpp ligands known to
affect the spin state of the metal ion owing to their hydrogen
bonding ability;47−51 however, none of the complexes of N,N′-
disubstituted 3-bpp20,53−57 were SCO-active until very
recently.44 As such complexes, [Fe(LOH)2](BF4)2 and [Fe-
(Lt‑Bu)2](BF4)2 feature the thermally induced SCO at higher
temperatures in more polar solvents with a lower hydrogen-
bond acceptor ability.
By comparison to the pioneering SCO−active complex

[Fe(L)2](ClO4)2
44 of the same SCO-assisting ligand design,

introducing the p-cyanophenyl group into the para-position of
the pyridyl moiety in the complex [Fe(LOH)2](BF4)2 effectively
shifts the SCO to room temperature. As a result, it can be largely
followed by solution NMR spectroscopy. The observed
stabilization of the LS state by an electron-withdrawing group
in this position of N,N′-disubstituted 3-bpp mirrors the one
occurring in iron(II) complexes with 1-bpp52 and other
pyridine-based ligands.43

In contrast, the midpoint temperatures of the SCO in the two
complexes [Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2 show the
electron-donating t-butyl groups in the fifth position of the
pyrazol-3-yl moiety to strongly (by up to 100 K) favor the HS
state of the iron(II) ion. This result provides another piece of
evidence20,32 for an opposite effect of such a modification to the
3-bpp ligand as compared to isomeric 1-bpp.52 To finally
reconcile them, a systematic study of iron(II) complexes with
N,N′-disubstituted 3-bpp of our SCO-assisting ligand design is
in progress in our group.

Figure 4. 1H NMR chemical shifts for (a) [Fe(LOH)2](BF4)2 and (b) [Fe(L
t‑Bu)2](BF4)2 in DMF-d7 solution plotted vs 1/T. The lines correspond to

the best fit of chemical shifts with the first-order temperature-dependent Curie constants;37 each color indicates a specific type of proton. The proton of
the OH group was excluded from the fit, as at high temperatures, it exchanges with the protons from traces of water in the hygroscopic DMF-d7. For
other solvents, see Figure S7 of the Supporting Information.
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■ EXPERIMENTAL SECTION

Synthesis.All synthetic manipulations were carried out in air
unless stated otherwise. Solvents were purchased from
commercial sources and purified by distilling from conventional
drying agents under an argon atmosphere prior to use. 2,6-
Dichlorophenylhydrazine (Scheme 1) was synthesized from
commercially available 2,6-dichlroaniline using a standard
diazotization protocol with a subsequent reduction with
SnCl2.

44

Diethyl 4-(4-Cyanophenyl)pyridine-2,6-dicarboxylate.
Acetic acid (2.86 mL, 50 mmol) and pyrrolidine (1.64 mL, 20
mmol) were added to a solution of 4-cyano-benzaldehyde (6.55
g, 50 mmol) and ethyl pyruvate (11.6 mL, 150 mmol) in
acetonitrile (50 mL), and the resulting mixture was stirred at r.t.
for 12 h. Then, NH4OAc (11.6 g, 150 mmol) and acetic acid
(2.86mL, 50mmol) were added. After 24 h of additional stirring
at the same temperature, themixture was poured into a saturated
aqueous NaHCO3 solution (5.0 mL) and extracted with ethyl
acetate. The organic layers were combined, dried over Na2SO4,
filtered, concentrated, and purified by flash column chromatog-
raphy with a mixture hexane−EtOAc (5/1) as an eluent to
produce a white solid. Yield: 4.2 g (26%). 1HNMR (CDCl3, 400
MHz): δ(ppm) = 1.48 (t, 3JHH = 7.2 Hz, 6H, CH3), 4.53 (q,

3JHH
= 7.2 Hz, 4H, CH2), 7.87−7.83 (m, 4H, 2-PhCN + 3-PhCN),
8.49 (s, 2H, 3-Py). Anal. calcd. for (C18H16N2O4): C, 66.66; H,
4.97; and N, 8.64. Found: C, 66.49; H, 4.81; and N, 8.58.
Diethyl 3,3′-(4-(4-Cyanophenyl)pyridine-2,6-diyl)bis(3-ox-

opropanoate). To a mixture of diethyl 4-(4-cyanophenyl)-
pyridine-2,6-dicarboxylate (1 g, 3.12 mmol) and ethyl acetate
(0.760 mL, 7.8 mmol) in dry THF (25 mL), potassium t-
butylate (0.873 g, 7.8 mmol) was added under argon. The
reaction mixture was stirred for 6 h at r.t., and then the solvent
was evaporated on a rotary evaporator. The product was
dispersed in water (30 mL), and the resulting solution was
treated with 1M hydrochloric acid until it became acidic (pH 5)
to produce a precipitate that was filtered off, washed with water,
and dried in high vacuum. The resulting yellow solid was used
without further purification. Yield: 0.942 g (74%). 1H NMR
(CDCl3, 400 MHz; a mixture of diketo and keto−enol forms):
δ(ppm) = 1.20−1.37 (t + t + t, 6H, CH3), 4.13−4.32 (q + q + q +
s, 6H, CH2 + CH2 diketo form), 6.45 (s, 2H, CH keto−enol
form), 7.78−7.75 (m, 3-PhCN + 4-PhCN), 8.15 (s, 1H, 3-Py,
keto−enol form), 8.29 (s, 1H, 3-Py, diketo form), 12.44 (s, OH
keto−enol form). Anal. calcd. for (C22H20N2O6): C, 64.70; H,
4.94; N, 6.86. Found: C, 64.85; H, 4.84; N, 6.98.
4-(2,6-Bis(4,4-dimethyl-3-oxopentanoyl)pyridin-4-yl)-

benzonitrile. To a mixture of diethyl 4-(4-cyanophenyl)-
pyridine-2,6-dicarboxylate (1 g, 3.12 mmol) and pinacolone
(0.962 mL, 7.71 mmol) in dry THF (25 mL), potassium t-
butylate (1.04 g, 9.24 mmol) was added under argon. The
reaction mixture was stirred for 6 h at r.t., and then the solvent
was evaporated on a rotary evaporator. The product was
dispersed in water (30 mL), and the resulting solution was
treated with 1M hydrochloric acid until it became acidic (pH 5)
to produce a precipitate that was filtered off, washed with water,
and dried in high vacuum. The resulting yellow solid was used
without further purification. Yield: 0.863 g (64%). 1H NMR
(CDCl3, 400 MHz; a mixture of dienol and keto−enol forms):
δ(ppm) = 1.06−1.10 (s + s + s, 18H, tBu), 4.42 (s, 2H, CH2
keto−enol form), 6.80 (s, 2H, CH keto−enol form), 6.94 (s, 2H,
CH dienol form), 7.78−7.75 (m, 2H, 2-PhCN), 7.89−7.95 (m,
2H, 3-PhCN), 8.24 (s, 1H, 3-Py, dienol form), 8.31 (s, 1H, 3-Py,

keto−enol form), 16.04 (c, OH dienol + keto−enol forms).
Anal. calcd. for (C26H28N2O4): C, 72.20; H, 6.53; N, 6.48.
Found: C, 72.47; H, 6.61; N, 6.58.

LOH. A mixture of diethyl 3,3′-(4-(4-cyanophenyl)pyridine-
2,6-diyl)bis(3-oxopropanate) (0.4 g, 0.98 mmol) and 2,6-
dichlorophenylhydrazine (0.398 g, 2.25 mmol) was dissolved in
10 mL of acetic acid to give a yellow solution that was heated to
70 °C for 8 h to produce a light-yellow precipitate. The
precipitate was filtered off, washed with acetic acid and then with
water, and dried in vacuum. The resulting white solid was used
without further purification. Yield: 0.410 g (66%). 1H NMR
(DMSO-d6, 400 MHz, Figure S9): δ(ppm) = 6.21 (s, 2H, Pz-
CH), 7.58 (t, 3JH,H = 8.0 Hz, 2H, 4-Ph), 7.69 (d, 3JH,H = 8.0 Hz,
4H, 4-Ph), 7.90 (d, 3JH,H = 7.8 Hz, 2H, 2-PhCN), 8.02−8.04 (m,
4H, 2-PhCN + 3-Py), 11.79 (s, 2H, OH). Anal. calcd. for
(C30H16Cl4N6O2): C, 56.81; H, 2.54;N, 13.25. Found: C, 56.88;
H, 2.72; N, 13.27.

Lt‑Bu. A mixture of 4-(2,6-bis(4,4-dimethyl-3-oxopentanoyl)-
pyridin-4-yl)benzonitrile (0.4 g, 0.925 mmol) and 2,6-
dichlorophenylhydrazine (0.377 g, 2.127 mmol) was dissolved
in 10 mL of acetic acid to give a yellow solution that was heated
to 70 °C for 8 h to produce a light-yellow precipitate. The
precipitate was filtered off, washed with DMF and then with
water, and dried in vacuum. The resulting white solid, which was
poorly soluble even in DMSO or DMF, was used without further
purification. Yield: 0.535 g (81%). 1H NMR (DMSO-d6, 400
MHz, Figure S10): δ(ppm) = 1.23 (s, 18H, tBu) 7.14 (s, 2H, Pz-
CH), 7.64 (t, 3JH,H = 8.5 Hz, 2H, 4-Ph), 7.74 (d, 3JH,H = 8,5 Hz,
4H, 4-Ph), 7.90 (d, 3JH,H = 8.0 Hz 2H, 2-PhCN), 8.04 (d, 2H, 2-
PhCN), 8.07 (s, 2H, 3-Py). Anal. calcd. for (C38H32Cl4N6): C,
63.88; H, 4.51; N, 11.76. Found: C, 63.99; H, 4.67; N, 11.93.

General Procedure for Synthesis of the Complexes
[Fe(LR)2](BF4)2, L

R = LOH and Lt‑Bu. (Scheme 2) The ligand LR

(0.157 mmol) was suspended in methanol (15 mL) in a 50 mL
Schlenk flask under argon. A solution of FeCl2 (0.0099 g, 0.0785
mmol) in dry methanol (5 mL) was added dropwise to the
resulting suspension and refluxed for 1 h. Solid NaBF4 (0.017 g,
0.157 mmol) was added to the hot solution that was stirred for
15 min and then cooled to rt For [Fe(LOH)2](BF4)2, the
precipitate was filtered off, recrystallized from methanol at −10
°C, and dried in vacuum to produce a violet solid. For
[Fe(Lt‑Bu)2](BF4)2, the unreacted ligand was filtered off, and the
methanol solution was evaporated to produce a violet solid that
was dried under vacuum without further purification.

[Fe(LOH)2](BF4)2. Yield: 77mg (68%). 1HNMR (DMF-d7, 300
MHz, 305 K): δ (ppm) = 8.87 (br.s, 8H, 3-Ph), 9.96 (br.s, 4H, 3-
PhCN), 10.5 (br.s, 4H, 4-Ph), 15.48 (br.s, 4H, 2-PhCN), 17.19
(br.s, OH), 34.69 (br.s, 4H, Pz-CH), 43.25 (br.s, 4H, m-Py-H).
1HNMR (methanol-d4, 300MHz, 305 K): δ (ppm) = 8.33 (br.s,
4H, 3-Ph), 9.43 (br.s, 4H, 3-PhCN), 9.51 (br.s, 4H, 4-Ph), 13.46
(br.s, 4H, 2-PhCN), 33.84 (br.s, 4H, m-Py-H). Anal. calcd. for
(C56H32B2Cl8F8FeN12O4): C, 46.39; H, 2.22; N, 11.59. Found:
C, 46.56; H, 2.3; N, 11.54.

[Fe(Lt‑Bu)2](BF4)2. Yield: 120 mg (92%). 1H NMR (DMF-d7,
300 MHz, 305 K): δ (ppm) = −0.63 (br.s, 36H, t-Bu), 10.07
(br.s, 8H, 3-Ph), 11.14 (br.s, 4H, 3-PhCN), 12.80 (br.s, 4H, 4-
Ph), 18.54 (br.s, 4Hz, 2-PhCN), 50.15 (br.s, 4H, Pz-CH), 63.57
(br.s, 4H, 3-Py-H). 1HNMR (acetonitrile-d3, 300MHz, 305 K):
δ (ppm) = −0.79 (br.s, 36H, tBu), 9.77 (br.s, 8H, 3-Ph), 10.93
(br.s, 4H, 3-PhCN), 12.49 (br.s, 4H, 4-Ph), 18.25 (br.s, 4H, 2-
PhCN), 49.49 (br.s, 4H, Pz-CH), 63.51 (br.s, 4H, 3-Py-H).
Anal. calcd. for (C76H64B2Cl8F8FeN12): C, 55.04; H, 3.89; N,
10.13. Found: C, 55.16; H, 3.96; N, 9.91.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05463
ACS Omega 2021, 6, 33111−33121

33117

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c05463/suppl_file/ao1c05463_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


X-ray Crystallography. X-ray diffraction data for single
crystals of [Fe(LR)2](BF4)2 grown from methanol in air were
collected at 120 K with a Bruker APEX2 DUO CCD
diffractometer, using graphite monochromatedMoKα radiation
(λ = 0.71073 Å). Using Olex2,73 the structures were solved with
the ShelXT structure solution program74 using Intrinsic Phasing
and refined using least-squares minimization. Hydrogen atoms
of OH groups in [Fe(LOH)2](BF4)2 were located in difference
Fourier synthesis. Positions of other hydrogen atoms were
calculated, and they all were refined in the isotropic
approximation in the riding model. Severely disordered water
molecules in [Fe(LR)2](BF4)2, which probably resulted from
keeping the solutions of these complexes in air, have been
treated as a diffuse contribution to the overall scattering without
specific atom positions by SQUEEZE/PLATON.75 Crystal data
and structure refinement parameters are given in Table 3.
CCDC 2102395 and 2104368 contain the supplementary
crystallographic data for [Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2]-
(BF4)2, respectively.

NMR Spectroscopy. 1H NMR spectra for [Fe(LR)2](BF4)2
in DMF-d7, methanol-d4, and acetonitrile-d3 were recorded with
a Bruker Avance 300 FT-spectrometer (300.15 MHz 1H
frequency). The measurements were done using the residual
signals of these solvents as reference. The temperature inside an
NMR tube was adjusted using flow of cold nitrogen and hot air
for low- and high-temperature experiments, respectively. To
calibrate the temperature within the temperature range 200−
300 K, a Bruker standard temperature calibration sample (4% of
MeOH inmethanol-d4) was used. Above 300 K, the temperature
was calibrated using a known dependence of the chemical shifts
of pure ethylene glycol.

Evans Method. Magnetic susceptibility of [Fe(LR)2](BF4)2
in DMF-d7, methanol-d4, and acetonitrile-d3 was measured by
the Evans method24,76 in the temperature ranges 230−365,
200−330, and 235−345 K, respectively, using a Wilmad NMR
tube with a coaxial insert. The inner (reference) tube was filled
with the chosen solvent with approximately 1% ofMe4Si, and the
outer tube contained the solution of the complex (∼1 to 5 mg/
cm3) in this solvent with the same concentration of Me4Si.
Molar magnetic susceptibility was calculated from the difference
between the chemical shift of Me4Si in the pure solvent and its
shift in a solution of the complex (Δδ in Hz) in the same solvent
using the following equation

χ δ
ν

χ= Δ −M
S cM

0 f
M
dia

(Mmolar weight of the iron(II) complex, g/mol; ν0
frequency of the spectrometer, Hz; Sfshape factor of the
magnet (4π/3); cconcentration of the complex, g/cm3;
χM

diamolar diamagnetic contribution to the paramagnetic
susceptibility calculated using Pascal’s constant77). The
concentration c was recalculated for each temperature in
accordance with the density change of the solvent ρ: cT =
msρ/msol, where ms is the mass of the complex and msol is the
mass of the solution. Thermodynamic parameters of an SCO
were obtained by fitting the observed temperature dependence
of the magnetic susceptibility to the regular solution model44

using the following equation78 for an iron(II) complex with the
diamagnetic LS state

χ
χ

=
+ −Δ Δ( )

T
T( )

1 exp H
RT

S
R

M
M HS

In our analysis, the magnetic susceptibility for a pure HS state
(χMT)HS (cm

3/mol K) and the changes in enthalpy ΔH (kJ/
mol) and entropy ΔS (J/mol K) are the fitting parameters.

Temperature-Dependence of Chemical Shifts. Chemical
shifts in the 1H NMR spectra for [Fe(LR)2](BF4)2 in DMF-d7,
methanol-d4, and acetonitrile-d3 were analyzed in the above
temperature ranges. For a compound that may exist in two
paramagnetic spin states, the observed chemical shift of a given
nucleus in the 1H NMR spectrum is a weighted average of those
for LS and HS species (ηLS and ηHS are their populations):

δ η δ η δ= +obs LS LS HS HS

For the iron(II) complexes with the diamagnetic LS state, this
chemical shift (in ppm) can be approximated as

δ η δ η δ δ δ η δ= + + ≈ +( )obs LS dia
LS

HS dia
HS

par
HS

dia HS par
HS

As the diamagnetic contribution δdia to the observed chemical
shift is virtually the same for the LS and HS states, the
paramagnetic contribution δpar

HS was taken as a difference between
the chemical shifts in the iron(II) complex and those in the free
ligand.79 Thermodynamic parameters of an SCO were
calculated by fitting the observed temperature dependence of
the paramagnetic chemical shifts in the NMR spectra with the
first-order temperature-dependent Curie constants37

δ δ− =
+

+ −

*

Δ Δ( )
T

C
( )

1 exp

C
T

H
RT

S
R

obs dia

10

Table 3. Crystal Data and Structure Refinement Parameters
for [Fe(LOH)2](BF4)2 and [Fe(Lt‑Bu)2](BF4)2

[Fe(LOH)2](BF4)2 [Fe(Lt‑Bu)2](BF4)2

formula unit C60H32B2Cl8F8FeN12O4 C76H64B2Cl8F8FeN12

formula weight 1498.04 1658.46
crystal system monoclinic orthorhombic
space group P21/c P21212
Z 4 8
a (Å) 13.206(3) 24.465(6)
b (Å) 37.665(8) 48.605(11)
c (Å) 17.218(4) 13.499(3)
α (deg) 90 90
β (deg) 107.433(4) 90
γ (deg) 90 90
V (Å3) 8171(3) 16 052(6)
Dcalc (g/cm) 1.218 1.373
linear absorption μ
(cm−1)

5.10 5.23

F(000) 3008 6784
2Θmax (deg) 52 56
reflections measured 77 396 183 700
independent reflections 16 055 38 727
observed reflections
[I > 2σ(I)]

6036 13 633

parameters 890 2019
R1 0.0980 0.0954
wR2 0.3084 0.2580
GOOF 0.985 0.956
Δρmax/Δρmin (e/Å

3) −0.570/0.697 −0.530/1.121
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In this analysis, the Curie constants C0 and C1* that are specific
for each proton and the changes in enthalpy ΔH (kJ/mol) and
entropy ΔS (J/mol K) are the fitting parameters.
Liquid Chromatography−Mass Spectrometry (LC−

MS). LC−MS analysis of [Fe(LR)2](BF4)2 in methanol-d4 and
acetonitrile-d3 was performed with a Shimadzu LCMS-2020
high-performance liquid chromatograph mass spectrometer
with an electrospray ionization (ESI) and single quadrupole
detector (negative and positive ions) in the mass range between
500 and 2000. The desolvation line/heat block temperature was
250/400 °C. Nitrogen (99.5%) was used as a nebulizer and
drying gas, and acetonitrile (>99.9% HPLC gradient grade,
Chem-Lab), was used as the mobile phase with a flow rate 0.4
mL/min without any preliminary treatment. Injection volume of
the solution was 5 μL.
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