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A Novel Gene “Niban” Upregulated in Renal Carcinogenesis. Cloning by the

cDNA-amplified Fragment Length Polymorphism Approach
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A modified AFLP (amplified fragment length polymorphism) method was employed to isolate
genes differentially expressed in renal carcinogenesis of Tsc2 gene mutant (Eker) rats. One gene,
selected for further investigation, was named “ Niban” (“second” in Japanese), because it isthe sec-
ond new gene to be found after Erc (expressed in renal carcinoma) in our laboratory. |mportantly,
“Niban” is well expressed even in small primary rat Eker renal tumors, more than in progressed
cell lines, and is also expressed in human renal carcinoma cells, but not in normal human or rat
kidneys. Chromosome assignment was to RNO 13 in the rat, and HSA 1. This “Niban” geneis a
candidate as a marker for renal tumor, especially early-stage renal carcinogenesis.
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Various tumor suppressor genes or anti-oncogenes have
been identified by the study of hereditary human cancers.
Although these genes are recessive, they render heterozy-
gous carriers highly susceptible to particular cancers and
SO appear in pedigrees as dominantly inherited disorders.
Such a dominantly inherited predisposition was described
in rats by Eker.? The hereditary renal carcinomain the rat,
originally reported in 1954, is an example of a Mendelian
dominantly inherited predisposition to a specific cancer in
an experimental animal. At the histologica level, rend
carcinomas develop through multiple stages from early
preneoplastic lesions (e.g., phenotypically atered tubules,
which begin to appear around 2 months of age), to ade-
nomas in virtually al heterozygotes around the age of 1
year.>4 The homozygous mutant condition is letha to the
fetus.® The fact that ionizing radiation induced additional
tumors with a linear dose-response suggests that in het-
erozygotes two events (the first inherited and the second
somatic) are necessary to produce tumors.® The predispos-
ing gene in the Eker rat was mapped to the proximal part
of rat chromosome (RNO) 10.>9 We have established a
new conserved linkage group on rat (RNO) 10g and
human (HSA) 16p13.3, whereby the Eker mutation was
found to be tightly linked to the tuberous sclerosis (Tsc2)
gene,” and finaly identified a germline mutation in the
Tsc2 gene® 9

Carcinogenesis consists of multiple steps and carcinoma
development is associated with multi-gene alterations. To
identify the genes associated with multi-step renal carcino-
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genesis, we performed subtractive cDNA cloning for two
renal carcinoma cell lines using the cDNA-AFLP (ampli-
fied fragment length polymorphism) approach. These cell
lines, named LK9d(L) and LK9d(R) were established from
the same Eker rat,’®® but differ in many aspects. First,
LK9d(L), but not LK9d(R), can only be cultured on col-
lagen-coated culture plates. Second, LK9d(R) is flat and
round, whereas LK9d(L) is spindle-shaped. Third, growth
of LK9d(R) is much faster. Fourth, loss of the pl16/15
region (RNO5), reported for a number of carcinomas,*> 9
was only found in LK9d(R).

The modified AFLP method employed here was origi-
nally developed to isolate genomic markers in plant
geneticsl“v 15)

Cell and tissue materials: Total RNAs were extracted from
cell lines and tissues by the acid guanidine phenol chloro-
form method using ISOGEN (Nippon Gene, Tokyo). Poly-
A tailed RNA was isolated with Oligotex dT Super 30
(TaKaRa, Kyoto), and used as the material for cDNA syn-
thesis. More detailed information is available in our previ-
ous reports.*> 19

The drategy of the cDNA-AFLP method: The AFLP
method adapted for cDNA was as described in our previ-
ous report.’® PCR products which were preferentially
amplified in either of the cell lines were recovered. To pre-
vent biased subcloning, we picked up five independent
clones and sequenced them. Northern blotting was per-
formed to confirm differential expression.

For expression analysis, we used cell line RNAs
obtained from LK9d(L), LK9d(R), ERC (Eker rat Renal
Carcinoma) 33, S.LK9d(L)-SLMs, Hep G2, and human
renal carcinoma cells (hRCCs). Tissue RNAs were aso

869


mailto:ohino@ims.u-tokyo.ac.jp

Jpn. J. Cancer Res. 91, September 2000

obtained from Eker rat small rena tumors and normal
Wistar rat organs such as the kidney. LK9d(L) is a slow-
growing cell line, but LK9d(R) and ERC33 are fast-grow-
ing cell lines.*%® SLK9d(L)-SLM (selected lung metas-
tasis) cell lines were established from LK9d(L) in vivo
using nude mice and are dlightly faster-growing than
LK9d(L).**® Human renal carcinoma cells (hRCCs) were
established from human rena carcinomas obtained at sur-
gery (manuscript in preparation). Hep G2 is a commonly
employed cell line established from a hepatoblastoma. To
check the expression of “Niban” in human normal organs,
we used Clontech human multiple tissue northern blots
membrane.
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Fig. 1. Northern blot analysis of “Niban.” A human glyceralde-
hyde-3 phosphate dehydrogenase (GAPDH) probe was utilized
as the loading control for northern blot analysis. (A) Note the
strong expression in LK9d(L), the intermediate level expression
in SLK9d(L)-SLM, but very faint bands for LK9d(R) and
ERC33. (B) In tissues, there is strong expression in Eker rat
small renal tumors, but none in Wistar rat normal kidney and
Eker rat normal liver. (C) In human renal carcinoma cells, there
is strong-moderate expression, while Hep G2 cells are negative.
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The cloned cDNAs were *P-labeled by a random hex-
amer method, and used as probes for northern and South-
ern blotting. Two hundred nanograms of poly-A tailed
RNA or 5 ug of total RNA derived from LK9d(L) and
LK9d(R) was run on formalin denaturing gels and trans-
ferred to Biodyne B nylon membranes (Pole, East Hills,
NY).

BLAST and FASTA homology searches were per-
formed with the nucleotide sequence information. For the
unknown clones, longer cDNAs were obtained using the
Marathon cDNA amplification system (Clontech, Palo
Alto, CA) based on rapid amplification of cDNA ends
(RACE) with long distance PCR or the ZAP-cDNA syn-
thesis system (Stratagene, La Jolla, CA).%®
Genomic DNA isolation and Southern blot analysis: DNAs
were isolated from LK9d(L) and LK9d(R) by the sodium
dodecyl sulfate (SDS)/proteinase K method with phenol
extraction. After restriction enzyme digestion, the DNAS
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Fig. 2. Northern blot analysis with poly-A rich RNAsin normal
tissues. (A) In the normal Wistar rat, there is expression in brain,
lung, spleen, and skeletal muscle, but not in kidney, pituitary
gland, heart, uterus, ovary, and liver. LK9d(L) is the positive
control. (B) In normal human tissues, there is expression in heart,
skeletal muscle, pancreas, white blood cell (WBC) and prostate,
moderate expression in colon and spleen and none in thymus,
testis, ovary, small intestine, brain, placenta, lung, liver, or kid-
ney.
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Fig. 3. Southern blot analysis to define that “Niban” is not a
gene complex. (A) Three clear bands with EcoRI digestion of rat
DNA from LK9d(R) and LK9d(L). Note no “smear” or “ladder.”
(B) Two or three bands are evident with Pstl, Ncol, Aval, and
Xbal digestion of human kidney DNAS.

were separated on 1% agarose gels and transferred onto
nylon membranes under akaline conditions. Pre-hybrid-
ization and hybridization were performed in 0.2 M phos-
phate buffer (pH 7.2), 1 mM EDTA, 1% bovine serum
albumin, and 7% SDS, at 65°C. After addition of 3P-
labeled probes, hybridization was performed in the same
solution at 65°C. The filters were then washed twice in 1x
standard saline citrate (SSC; 0.15 M NaCl and 15 mM
sodium citrate) and 0.1% SDS for 15 min at room temper-
ature and then washed once in 1x standard saline citrate
and 0.1% SDS for 30 min a 65°C. The filters were
exposed to X-ray film with an intensifying screen at
—-50°C for 1-3 days. More detailed information is avail-
able in our previous reports.*¥

“Niban” Gene in Renal Carcinogenesis
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Fig. 4. Map of the open reading frame (ORF). The codon
“ATG" is indicated by <7, and the termination codons “TAA,
TAG, and TGA” are indicated by |. Top frame is the ORF.

Cloning of differentially expressed genes in LK9d(L):
Comparison of cDNA-AFLP patterns revealed different
cDNA fragments between LK9d(L) and LK9d(R). These
bands were excised from gels and cloned into the plasmid.
We picked out and further analyzed one fragment that
exhibited especially prominent differences, with greater
expression in LK9d(L). Three other bands are obviously
not novel genes, resembling mitochondrial DNA, atrial
natriuretic peptide and ribosomal RNA in a homology
search. So we focused only on the “Niban” gene.

Sequencing and homology evaluation with the BLAST
and FASTA programs in DDBJ were performed. The size
of “Niban” transcript was about 6.5 kb (Fig. 1A). Northern
blot analysis revealed strong expression in LK9d(L), very
low expression in LK9d(R) and ERC33, and an intermedi-
ate level in S'LK9d(L)-SLM (Fig. 1A). Importantly strong
expression was also found in Eker rat small rena tumors,
but not in normal Wistar kidney or Eker rat liver (Fig. 1B).
Furthermore human renal carcinoma cells (hRCCs) were
positive with arat probe, while the Hep G2 line was nega-
tive (Fig. 1C).

Northern blot analysis with poly-A rich RNAs demon-
strated expression in normal brain, lung, spleen, and skele-
tal muscle, but not in kidney, pituitary gland, heart, uterus,
ovaries and liver of Wistar rats. LK9d(L) was the positive
contral in this experiment (Fig. 2A). In normal human tis-
sues, strong expression was found in heart, skeletal mus-
cle, pancreas, white blood cells, and prostate, moderate in
colon and spleen and none in thymus, testis, ovary, small
intestine, brain, placenta, lung, liver or kidney (Fig. 2B).

To define “Niban” as a single gene, we performed
Southern blot analysis. If it were a multi-gene complex, a
“smear” or “ladder” might be expected on Southern blot
analysis. With LK9d(R) and LK9d(L), as rat sources of
DNA, we observed three clear bands on EcoRI digestion
(Fig. 3A). With human kidney DNAS, we observed two
or three bands on Pstl, Ncol, Aval, and Xbal digestion
(Fig. 3B).
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AGT CCT
ACT GGA
ARA CTT
CGC AGC
CCC CCA
GAG GAC
GTG GAA
AGA ATT
TTA TCT
cce TTC

AGG CAC
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His Tyr
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TGA
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36
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AGG GAA
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ACC TCA

GCT TCE
522
GTG TAC
576

630
CAC GAT

684

Gln Phe
738
GAT GAA

Asp Glu
792
CAG ACT

Gln Thr
TGG TTT
Trp Phe

GGA TTA
Gly Leu

954
ACC ATC
Thr Ile

1008
BAG ATC
Lys Ile
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GCT
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AGT
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CTT
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Glu
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Ser Ser
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AGT CAG
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1377
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Ser Arg
1485
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Asp Tyr
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GAT
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Thr
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TAT

Tyr

TAT

Tyr

GAA

Glu

AGT

ser

Phe His
1224
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Leu Val
1386
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Ala val
1454
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324
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Ala Cln
1080
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1125
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1179
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1287
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1611
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Ser Ser
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1566
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GAC CAC
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ATC CTC
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CAC AAC
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ACA GAC

Thr Asp

AGC

CTC

GAA
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Ala ser
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TCC GGT
Ser Gly
2061
ccr cre
Pro Leu
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2223
ART GAT
Asn Asp
2277
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TTG GAA
Leu Clu
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CCT ACC
Pro Thr
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CCC ATA
Pro Ile
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> ACA GTT

Thr Val
2601
ACA GTC
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GAG AAT
Glu Asn
2709
GAT AGC
Asp Ser
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GAG TGC

Asp Cys
2871
TCT TTT
2925
CAT GTG
2979
CAG AGT
3033
cce ATG
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CCA TIC
3141
AAT AAT
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CAC CTG
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ATA ATA
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A
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GCC GGG
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2133
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ACA CCT
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Met Asp
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CTT TGG
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ACT
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Glu val
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CIG GCC
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2043
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Ala Asp
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Glu Pro
2151
CCA GGG
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Ser Ala
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GAT ARA

Asn Thr
2529
GAG GAG
Glu Glu
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GAR GTG
Glu val

2745
ARC GAT
Asn Asp
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GAC ATC
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CAG TTT

2907
GGT ATC
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3015
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AAT GGT
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3t
ACT GAG

Fig. 5. The cDNA sequence containing the open reading frame (ORF) and the amino acid sequence.
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2214
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Fig. 6. Similarity of amino acid sequence encoded by “Niban”
to known proteins. P Carboxylase is phosphoenolpyruvate car-
boxylase protein 1 (BLO0O781C, similarity score 1054). Ribonu-
clease 2 is ribonuclease 2 family proteins (BLO1175C, similarity
score 1011). Chaperon TCP-1 is chaperonins TCP-1 protein
(BLOO750C, similarity score 1010). PP zinc finger is poly(ADP-
ribose)polymerase zinc finger domain protein (BL00347B, simi-
larity score 1020). MARCKS is myristoylated alanine-rich C-
kinase substrate family proteins (BLO0826A, similarity score
1015). S54 ATP-binder is Sigma-54 interaction domain ATP-
binding region A (BL00675D, similarity score 1006). Chaperon
cpn60 is chaperonins cpn60 protein (BLOO296E, similarity score
1014). Peroxidases PH ligand is peroxidases proxima heme-
ligand protein (BLO0435A, similarity score 1062).

The chromosomal assignment of the “Niban” gene was
determined by Southern blot analysis of a human/rat
somatic cell hybrid panel.2® The membrane filters for
hybrid cell panel analysis were kindly provided by Dr. G.
Levan (University of Goteborg, Goteborg, Sweden).?2)
The chromosome assignment was to RNO13 in the rat and
HSA1 in the human case (data not shown).

Cloning of longer cDNA fragments and identification of
the “ Niban” gene: We obtained longer cDNA fragments
from conventiona library screening and 5' or 3'-RACE
reactions based on long-distance PCR. Two overlapping
cDNA clones (2.3 kb and 3.0 kb) contained a complete
open reading frame (ORF) of 2748 bp (Fig. 4 and Fig. 5).
We have not determined the initiation codon in this ORF.
If the first ATG at nt 634 is the initiation codon, this gene
codes for 737 amino acid. The mRNA size was estimated
to be 6.5 kb by northern blotting. Homology search
revealed several sequences with some homology to the
ORF of “Niban.” These sequences are listed in the Gen-
bank database as EST (expressed sequence tags) or HTG
(high throughput genome). Among them, those coded by
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