
Modelling of mycobacterial load reveals bedaquiline’s
exposure–response relationship in patients with drug-resistant TB

Elin M. Svensson* and Mats O. Karlsson

Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, 75124 Uppsala, Sweden

*Corresponding author. Tel: !46184714418; Fax: !464714003; E-mail: elin.svensson@farmbio.uu.se

Received 7 April 2017; returned 4 July 2017; revised 28 July 2017; accepted 31 July 2017

Background: Bedaquiline has been shown to reduce time to sputum culture conversion (SCC) and increase cure
rates in patients with drug-resistant TB, but the influence of drug exposure remains uncharacterized.

Objectives: To investigate whether an exposure–response relationship could be characterized by making better
use of the existing information on pharmacokinetics and longitudinal measurements of mycobacterial load.

Methods: Quantitative culture data in the form of time to positivity (TTP) in mycobacterial growth indicator tubes
obtained from a randomized placebo-controlled Phase IIb registration trial were examined using non-linear
mixed-effects methodology. The link to individual bedaquiline exposures and other patient characteristics was
evaluated.

Results: The developed model included three simultaneously fitted components: a longitudinal representation
of mycobacterial load in patients, a probabilistic component for bacterial presence in sputum samples, and a
time-to-event model for TTP. Data were described adequately, and time to SCC was well predicted. Individual
bedaquiline exposure was found to significantly affect the decline in mycobacterial load. Consequently, the pro-
portion of patients without SCC at week 20 is expected to decrease from 25% (95% CI 20%–31%) without beda-
quiline to 17% (95% CI 13%–21%), 12% (95% CI 8%–16%) and 7% (95% CI 4%–11%), respectively, with half the
median, median and double the median bedaquiline exposure observed in patients with standard dosing.
Baseline bacterial load and level of drug resistance were other important predictors.

Conclusions: To our knowledge, this is the first successful description of bedaquiline’s exposure–response rela-
tionship and may be used when considering dose optimization. Characterization of this relationship was possible
by integrating quantitative information in existing clinical data using novel models.

Introduction

Drug-resistant TB remains a huge public health problem. In 2015,
the WHO estimated there were close to half a million new cases of
MDR-TB and the global treatment success rate in adults was as
low as 50%.1 There is an acute lack of knowledge of how best to
select combinations and doses of the available second-line anti-TB
drugs, and the WHO classifies the quality of evidence for the cur-
rently used recommendations as very low.2 This uncertainty is
linked to the poor or absent description of dose exposure–
response relationships for the drugs currently in use.

The clinical endpoint for treatment of TB is usually relapse-free
cure,3 which is burdensome to study directly due to the long treat-
ment period (typically 20 months for MDR-TB2) and follow-up time
needed. A multitude of biomarkers have been proposed as alterna-
tive endpoints for earlier assessment of treatment response.4,5

Stable sputum culture conversion (SCC) is commonly defined as
the first of two negative samples taken at least 30 days apart with
no positive intervening samples.3 In recent clinical trials, time to
sputum culture conversion (TSCC) has often been the preferred
endpoint.6–8 The metric is based on mycobacterial cultures from
sputum samples, either on solid or in liquid media (where the latter
is regarded as more sensitive).9–11 TSCC is reported as the average
time from start of treatment to SCC and/or as Kaplan–Meier sur-
vival curves and hazard ratios. Quantitative information about the
bacterial load in a patient, obtained from cultures, either as the
number of colony-forming units on solid media or the time to posi-
tivity (TTP) in liquid media, is ignored when the results are eval-
uated only as positive or negative. Assessing treatment effects by
serial colony counts,12–15 or serial measures of TTP,14,16,17 is ex-
pected to be a more powerful analysis method for differentiating
between regimens or defining exposure–response relationships,
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and enables a more granular evaluation, since the quantitative in-
formation then is utilized rather than discarded.

Bedaquiline, a novel diarylquinoline that inhibits the energy me-
tabolism of Mycobacterium tuberculosis,18,19 was granted condi-
tional approval for treatment of MDR-TB based on TSCC and
conversion and cure rates 30 months after the start of treatment.
In a placebo-controlled Phase IIb trial, addition of 24 weeks beda-
quiline treatment to a background regimen shortened the typical
TSCC from 125 to 83 days and increased the rate of conversion at
follow-up (month 30) from 44% to 62%.6 Only one bedaquiline
dosing regimen has been evaluated in long-term trials and no rela-
tionship between bedaquiline plasma concentrations and TSCC or
conversion status at week 24 was found in previous analyses com-
paring the outcome between quartiles of static exposure metrics,
e.g. AUC0–24.6,20

In this work, we aimed to investigate whether an exposure–
response relationship for bedaquiline could be characterized by
making better use of the existing information on pharmacokinetics
(PK) and quantitative measures of mycobacterial load. A non-
linear mixed-effects pharmacodynamic (PD) model was de-
veloped and linked to a previously published PK model for a
detailed exposure–response analysis.21 PK-PD models can be used
to optimize and/or individualize dosing regimens and to evaluate
the clinical importance of PK drug–drug interactions known to
occur between bedaquiline and antiretroviral drugs or other anti-
TB drugs.22–24

Patients and methods

Study design and patient population

Data were obtained from a Phase IIb study (TMC207-C208, ClinicalTrials.gov
number NCT00449644) sponsored by Janssen Pharmaceuticals and shared with
the authors through the PreDiCT-TB consortium (http://www.predict-tb.eu).
Safety outcomes, TSCC and conversion rates at 24 weeks and 30 months
have been presented earlier.6,25 The design of the study was randomized,
double-blinded and placebo-controlled, enrolling newly diagnosed pul-
monary MDR-TB patients between 18 and 65 years old. The study was per-
formed in two stages where the patients in the first group (stage 1) were
randomized to receive 8 weeks of either bedaquiline or placebo, while the
second group (stage 2) received the randomized intervention for 24 weeks.
All patients were also treated with an optimized background regimen (OBR)
of five second-line anti-TB drugs (kanamycin, ofloxacin, ethionamide, pyra-
zinamide and terizidone; a few predefined substitutions were allowed) for
18–24 months. Bedaquiline was administered orally following the recom-
mended regimen of 400 mg daily during the first 2 weeks and thereafter
200 mg three times per week. The intake was supervised with directly
observed therapy according to national guidelines. Subjects with TB-HIV
coinfection were excluded if they had a CD4! count ,300 cells/mm3 and/
or were receiving ART.

Ethics
The trial was conducted in accordance with Good Clinical Practice standards
and received ethics approval from appropriate local authorities. The data
were anonymized when shared with the authors.

Microbiological sampling and analysis
Triplicate spot sputum samples were collected the day before the start of
treatment, weekly until week 8 and every second week until week 24 after
the start of treatment. Ten additional samples were collected over the

96 week follow-up period. Liquid cultures in a mycobacterial growth indica-
tor tube system (MGIT; Becton Dickinson, Sparks, MD, USA) were initiated
from each sample and the TTP, i.e. time in hours to a signal indicating pres-
ence of M. tuberculosis, was automatically recorded. Samples without a
positive signal within 42 days were classified as negative.

PD modelling
The PD model simultaneously included two time-scales: the time after start
of treatment (TAST) for patients, and the time after inoculation in the
growth tube for each sample. The PD models evaluated consisted of a com-
ponent describing the mycobacterial load (MBL) in patients over time after
the start of treatment linked to a time-to-event component where the posi-
tive signal in the MGIT system was defined as an event, either directly as in
the model presented by Chigutsa et al.,16 or with a linking probabilistic com-
ponent describing the risk of bacterial presence in a sputum sample.
Parameter values in the sub-models were estimated simultaneously.
The decline in MBL in a patient over time after the start of treatment was
described by the analytical solutions of either one or two separate compart-
ments, signifying one or more subpopulations with a different half-life for
bacterial kill, as described earlier for TB regimens.13,14,16 When included, the
probability of bacterial presence was linked to the underlying MBL with ei-
ther an exponential, Poisson or negative binomial distribution or with an
Emax model with or without an estimated slope coefficient. Hazard func-
tions evaluated for the time-to-event component included constant and
Weibull models, as well as more complex functions linked to bacterial
growth in the MGIT system. The latter included exponential, logistic and
Gompertz growth models and models where the growth of the mycobacte-
ria was described with the previously presented multistate TB model.26

Stochastic variability and covariate and PK effects were evaluated on
the parameters of the model describing MBL in patients. The considered
covariates were: type of drug resistance, presence of lung cavitation, gen-
der, age and ethnicity. Individual estimates of secondary PK metrics were
obtained from a previously developed population PK model.21 These
included static exposure metrics from different timepoints during the treat-
ment as well as dynamic metrics changing over time, and they were tested
with and without adjustment for individual albumin concentrations (ex-
pected to impact the protein binding of bedaquiline). For continuous covari-
ates and PK effects the following types of relationships were considered:
linear with and without estimated intercept, power, and Emax with and
without estimated slope coefficient. For patients missing PK, the metrics
were imputed to the median of observed values. A description of the soft-
ware used is included in the Supplementary data (available at JAC Online).

Model selection and evaluation
The model development was guided by the fit of the model to the observa-
tions, quantified by the objective function value (OFV, equal to#2 log likeli-
hood). Graphical evaluation primarily utilized categorical visual predictive
checks (VPCs) of the probability of a positive sample (i.e. bacterial presence)
over time after start of treatment and Kaplan–Meier VPCs of TTP stratified
on week after start of treatment. Statistical testing of model extensions
was conducted with likelihood ratio tests and a significance level of 5%
(DOFV ,#3.84 for 1 degree of freedom). Parameter precision was obtained
by the SIR procedure, and a detailed description of the settings used can be
found in the Supplementary data.27 Posterior predictive checks of TSCC cal-
culated based on observed and model simulated datasets (n"100) were
performed.28 TSCC was defined the same way as in the primary analysis,
namely as the time between the start of treatment and the first of two con-
secutive sampling occasions with only negative cultures obtained at least
25 days apart.6 The predicted clinical importance of detected covariate ef-
fects was assessed through repeated simulations including parameter un-
certainty (n"100) of a large dataset of patients (n"2000) with a selected
set of characteristics and sampled weekly until week 24. The metrics
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evaluated for each scenario were the time to 50% of patients reaching SCC
(median TSCC) and proportion of patients without SCC at week 20.

Results

Demographics and TTP data

TTP data were available for 47 subjects (23 in the bedaquiline arm)
from stage 1 and for 159 subjects (79 in the bedaquiline arm) from
stage 2. Individual pharmacokinetic data were available for all pa-
tients on bedaquiline except four. Demographic characteristics
and mean TTP at baseline are summarized in Table 1. Samples
collected during the period up to week 8 for the bedaquiline arm
of stage 1 or up to week 24 otherwise, and as long as the patient
had not dropped out of the study, were considered in the ana-
lysis. In total, the dataset included 7385 MGIT evaluations, of
which 3900 samples resulted in a positive signal before 42 days.
The data are shown in Figure S1. A detailed description of which
patients and observations that were excluded from the model
development process can be found in the Supplementary data.
Baseline TTP values from before initiation of treatment were
used as a covariate and not as observations. The dataset used
for model building included 5833 TTP observations (56.6% posi-
tive) from 189 individuals (98 in the placebo arm and 91 in the
bedaquiline arm).

PD model

The developed model included three simultaneously fitted com-
ponents: a longitudinal representation of MBL in patients, a prob-
abilistic component for bacterial presence in sputum samples, and
a time-to-event model for TTP. The MBL in patients over TAST was

described by a mono-exponential decline as expressed in
Equation (1). MBL0 is the estimated number of bacteria per sample
inoculum at the start of treatment and was informed by each indi-
vidual’s observed TTP at baseline (mTTP0; mean of triplicate), nor-
malized to the population median value and with an estimated
effect-size (COVTTP). Stochastic inter-individual variability with a
Box–Cox transformed distribution29 was included on the half-life
(HL) of the decline in MBL. The typical half-life was estimated to be
0.8 weeks; i and p denote individual and population values,
respectively.

MBL TASTð Þi ¼ MBL0�
mTTP0;i

mTTP0;p

� �COVTTP

�e
�ln 2ð Þ

HLi
� TAST

(1)

The probability of bacterial presence (Ppos) given the MBL was
described by an Emax model including the maximal risk of bacterial
presence (Pmax) and the MBL value corresponding to 50% of Pmax

(MBL50) as described by Equation (2). Inter-occasion variability in
the sputum sampling procedure was included in the MBL with log-
normal distribution (IOVsputum, identifiable thanks to the triplicate
sampling).

Ppos ¼
Pmax�MBL TASTð Þi�eIOVsputum

MBL TASTð Þi�eIOVsputum þMBL50
(2)

Reflecting the sensitivity of MGIT, Pmax was fixed to the proportion
of positive samples observed at baseline before the start of treat-
ment: 96.9%. MBL50 was fixed to 0.5 bacteria/inoculum. The fit of
the model to the observed proportion of positive samples over
time after the start of treatment is shown in Figure 1.

The hazard function in the time-to-event model describing
observed TTP was linked to a model of mycobacterial growth in the
MGIT system. The number of bacteria in the tube over time after in-
oculation [B(t)] was described by logistic growth and an inoculum
size corresponding to MBL with the above-mentioned additional
inter-occasion variability representing the week-to-week random-
ness in the sampling. The model was defined by Equation (3)
where kg is the growth rate and Bmax is the maximal bacteria-
carrying capacity of the system.

Table 1. Summary of patient characteristics at start of treatment

Variable (unit) Value [median (range) or n (%)]

Age (years) 33 (18–63)

Weight (kg) 54 (35–83)

Female sex 71 (34.5)

HIV-positive 30 (14.6)

Presence of lung cavitation 188 (91.7)

Race

Caucasian 21 (10.2)

Black 82 (39.8)

Hispanic 28 (13.6)

Asian 15 (7.3)

other 59 (28.6)

missing 1 (0.5)

TB type

drug susceptible 8 (3.86)

MDR 96 (46.4)

pre-XDR 52 (25.1)

XDR 11 (5.31)

missing 39 (18.9)

Mean TTP MGITa (n"191) (days) 6.8 (2.3–42)

aThe average of the three TTP observations from MGIT.
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Figure 1. VPC (n"1000) of final logistic model describing the probability
of having a positive sample given the estimated underlying mycobacter-
ial load over time on treatment for the placebo and bedaquiline arms.
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dB tð Þ
dt
¼ B tð Þ � kg � Bmax � B tð Þð Þ

B t ¼ 0ð Þ ¼ MBL TASTð Þi � eIOVsputum

(3)

The hazard of a positive signal was directly proportional to the
amount of bacteria in the tube, scaled by an estimated factor
(hscale). The fit of the final model to the observed TTP per week is
shown in Figure 2.

Covariate and PK effects

Patients with pre-XDR-TB were typically found to have a 28.1%
(95% CI 9.1–51.6) longer half-life of the MBL. Patients with missing
information about TB-type (19%) were assigned as MDR-TB.

The assumption was tested by estimating a separate effect for the
group with missing information, which showed that this group was
not significantly different from the patients with MDR-TB. Patients
in the bedaquiline arm generally had a shorter half-life of the MBL
compared with patients in the placebo arm. The magnitude of the
bedaquiline effect was significantly connected to the patients’
exposure levels. Weekly average concentration (which changed
dynamically, reflecting the impact of loading dose and the accu-
mulation over the treatment period) was the best predictor of the
evaluated metrics. An Emax model with maximum effect on the
half-life fixed to –100% was selected to describe the relationship.
The estimated EC50 was 1.42 mg/L (95% CI 1.00–2.05), which is
higher than the median observed average concentration in the
continuation phase of bedaquiline treatment, but falls within
the observed range. For a patient with bedaquiline exposure
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Figure 2. VPC (n"100) of time to positivity in MGIT per week on treatment. The solid lines represent the observed time to positivity and the shaded
areas the 95% prediction intervals based on model simulations of time to positivity.
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corresponding to the 5th, 50th or 95th percentile of observed ex-
posures at week 2 of treatment, the half-life of bacterial clearance
would typically be 32.8% (25.9%–41.0%), 51.6% (43.2%–60.3%)
or 64.2% (56.2%–71.9%) shorter than for a typical patient in the
placebo arm, respectively. All parameter estimates of the final
model and their precision are presented in Table 2; the model
code detailing the parameterization is provided in the online
Supplementary data.

Posterior predictive check: TSCC

The validity of the model was further confirmed with a posterior
predictive check of TSCC per study arm. The 95% prediction interval
for TSCC according to the model is compared with the observed
TSCC in Figure 3 and demonstrated good agreement.

Impact of covariates

The following scenarios were evaluated for patients with MDR- and
(pre-) XDR-TB patients, respectively: placebo and bedaquiline with
low, median or high exposure. The low and high exposures eval-
uated were half and double the median observed weekly average
concentration, both falling within the observed range of exposures.
The median TSCC and proportion of patients without SCC at week
20 for the different scenarios are listed in Table 3. The confidence

intervals primarily reflect parameter uncertainty since the random
variability is expected to be small for the simulated study size.
Kaplan–Meier TSCC profiles for MDR-TB patients are shown in
Figure 4.

Discussion

To our knowledge, we present here the first analysis successfully
characterizing bedaquiline’s exposure–response relationship in pa-
tients with drug-resistant TB. The characterization was made pos-
sible by application of an analysis method that was able to utilize
quantitative information in microbiological load data from a Phase
IIb registration study. Earlier analyses of the same study focused
on secondary metrics derived from the culture data, such as the
proportion of patients with SCC6 or TSCC.20 These analyses could
not identify any relationship with exposure, probably because of
the lower statistical power related to the depleted information in
such derived metrics. The model presented here analyses the
quantitative observations directly, but can be translated to differ-
ent types of secondary metrics, such as TSCC (Figure 3), or average
change in (log) TTP between given days.

Higher bedaquiline exposure was found to have a beneficial ef-
fect on treatment response during the first 20 weeks. This is not
the same as showing an effect on the clinical outcome variable,
namely relapse-free cure. However, for this dataset it has previ-
ously been shown that the bedaquiline arm with shorter mean
TSCC also achieved higher cure rates at month 30, but without any
exposure–response relationship.6 Therefore, we anticipate that
faster microbiological response with bedaquiline treatment is cor-
related to the clinical endpoint of relapse-free cure.

Patients with pre-XDR- or XDR-TB were typically found to have
slower clearance of bacteria compared with patients with MDR-TB,
resulting in 2–4 weeks longer median TSCC and a notably lower
conversion rate at week 20 (Table 3). The baseline bacterial load
was found to be strongly influential: the estimated effect predicted
a four times longer median TSCC in patients with the lowest
observed mTTP0 compared with those with the highest. Degree of
cavitation and HIV infection, factors known to influence the out-
come of TB treatment,7,30,31 were not significant factors in this

Table 2. Parameter estimates of final model including uncertainty

Sub-model/parameter (unit) Value 95% CI

MBL in patients

MBL0 (n bacteria/inoculum) 2.14%103 1.39%103–3.46%103

half-life MBL (weeks) 0.81 0.71–0.93

IIV half-life MBL (variance) 0.33 0.25–0.45

Box–Cox transformation IIV

half-life MBL

0.66 0.34–1.05

bedaquiline maximal effect

on half-life MBL

–1 FIX —

EC50 bedaquiline effect on

half-life MBL (mg/L)

1.42 1.00–2.05

(pre-) XDR effect on half-life

MBL (%)

28.1 9.1–51.5

baseline TTP effect on MBL0 –3.69 #4.15 to#3.30

IOV sputum sampling MBL

(variance)

3.71 3.29–4.38

Probability of bacterial presence

PMAX bacterial presence 0.969 FIX —

MBL50 (n bacteria/inoculum) 0.5 FIX —

Growth in MGIT (hazard)

kg [1/(day% bacteria)] 1.38%10#6 7.77%10#5–2.24%10#6

Bmax (n bacteria) 4.76%105 2.79%105–8.88%105

scaling of hazard 9.52%10#5 5.08%10#5–1.64%10#6

Abbreviations: RSE, relative standard error; MLB, mycobacterial load; IIV,
inter-individual variability; IOV, inter-occasion variability; Pmax, maximal
probability; MBL50, MBL value corresponding to 50% of Pmax; kg, growth
rate in MGIT; Bmax, maximal bacteria carrying capacity in MGIT.
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Figure 3. Posterior predictive check of time to sputum culture conversion
(SCC). The solid lines represent the observed time to SCC and the shaded
areas the 95% prediction intervals based on time to SCC calculated from
model simulations of time to positivity. The vertical dashes represent
censoring events.
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analysis, perhaps due to the low numbers of patients without cavi-
tating disease or with HIV infection. Addition of bedaquiline clearly
accelerated bacterial clearance and the magnitude of the effect
was exposure driven. The best exposure metric was dynamic, but
several static PK metrics early during treatment (e.g. AUC0–24,day14

and Cmin,day14) were also significantly correlated to the response.
Predicted steady-state exposure could not be linked to efficacy,
possibly due to correlations between time-varying covariates, such
as body weight and albumin concentrations,21 affecting PK and
the treatment response. Adjustment of the PK metrics with individ-
ual albumin levels—an attempt to mimic unbound concentration
which is expected to correlate better with the pharmacological ef-
fect—did not improve the fit. This could imply either that in this
case albumin concentrations are a poor marker for protein binding,
that unbound plasma concentration is not a better predictor of ef-
fect than total concentration, or that albumin levels are influenced
by disease progression, which obscures the relation. The simula-
tions performed to investigate different exposure levels (Figure 4,
Table 3) suggest that an increased bedaquiline dose should be
considered, if the safety of higher exposures can be confirmed.

The foundation of the developed model is similar to the model
presented by Chigutsa et al.:16 an underlying and unobserved

dynamic variable describing the bacterial load in TB patients which
drives a time-to-event model of TTP observations from MGIT.
We found that MBL could be represented by a mono-exponential
decline when individual baseline TTP informed the starting point,
and inter-individual variability in the half-life was included.
A model with bi-exponential decline is expected to perform better
for other datasets with more frequent sampling during the first
treatment weeks, but was not supported in this dataset. The esti-
mated number of bacteria/inoculum at the start of treatment was
of the magnitude of 103 which is somewhat low compared with
the values commonly seen with other quantification methods,
e.g. cfu. This may partly be because an initial fast decline in MBL,
commonly observed in early bactericidal activity studies,13,15 went
unnoticed due to the lack of samples during the first treatment
week. There are several novel aspects of our model, such as the
probability component describing the risk of bacterial presence in a
sample. The probability model is mechanistically justified as a
means to handle the fact that the number of bacteria in the spu-
tum sample can be zero, while an exponentially declining function
could never take on that value. The model handles the increasing
portion of negative samples over time on treatment and contrib-
utes to the description of the characteristic shape of the TTP

Table 3. Model-predicted median time to sputum culture conversion (TSCC) and proportion without SCC at week 20 for MDR- and pre-XDR- or XDR-TB
patients given different bedaquiline treatment scenarios (all scenarios include an optimized background regimen)

Scenario

Median TSCC [weeks (95% CI)] Percentage without SCC at week 20 (95% CI)

MDR pre-XDR or XDR MDR pre-XDR or XDR

Placebo 13 (12–15) 17 (15–19) 25.2 (20.3–30.9) 38.9 (28.8–45.1)

Low exposurea 10 (9–11) 14 (12–15) 17.1 (12.6–21.1) 26.3 (19.9–32.9)

Median exposureb 8 (8–9) 11 (10–13) 12.3 (8.3–16.3) 19.3 (14.6–25.1)

High exposurec 6 (5–7) 8 (7–9) 6.6 (4.2–11.0) 11.3 (6.8–16.4)

aHalf median bedaquiline weekly average concentration.
bMedian bedaquiline weekly average concentration.
cDouble median bedaquiline weekly average concentration.
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Figure 4. Typical impact of bedaquiline exposure on sputum culture conversion (SCC) in MDR-TB patients based on simulations from the final model.
OBR, optimized baseline regimen. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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Kaplan–Meier curves reaching a plateau after about 25 days in the
MGIT system (see Figure 2). Note that even a single viable bacter-
ium in the inoculum is expected to give rise to a positive MGIT sig-
nal around this time. With the probability model in place, it was
possible to have the inoculum size as the driver of TTP without
incorporating large and hard-to-justify changes in the bacterial
growth processes in the MGIT system over time on treatment as
previously needed.16 The logistic bacterial growth model used is
parsimonious and probably does not reflect all the processes in the
MGIT system, but use of a multistate TB model requires multiple
assumptions to enable separation of bacterial sub-states and did
not improve the fit to data in this case.26 The estimated growth
rate and Bmax in the final model corresponds to an initial doubling
time of 1.1 days in the MGIT system, which agrees well with
observed growth rates for M. tuberculosis in liquid in vitro cultures
(doubling time of 0.67–2.2 days).32,33 Further discussion regarding
the interpretation of model parameters and a figure of the prob-
ability of a positive signal in MGIT over time is included in the online
supplementary information (Figure S2).

There are several limitations to the model presented here.
The maximal effect of bedaquiline could not be estimated due to
the limited range of observed exposures. Extrapolation of the ef-
fect far outside the range of exposures included in the estimation
of the relationship will be uncertain; this uncertainty may limit ac-
curacy when using the model to simulate novel regimens with
markedly higher bedaquiline doses. It is also uncertain how well
the model will be able to describe the effect of varying durations of
bedaquiline treatment. The model does not account for any inter-
individual variability in bedaquiline effectiveness caused by
variability in susceptibility between bacterial strains since MIC
measurements were not available. Lastly, the present analysis
characterizes the response during treatment, but cannot describe
recurrence of disease.

In conclusion, a model with three linked components, namely
(i) a longitudinal representation of mycobacterial load in patients,
(ii) a model describing the probability of bacterial presence in a
sputum sample, and (iii) a time-to-event model describing TTP in
MGIT, was developed and fitted the observations well. In contrast
to simpler analyses of secondary metrics calculated from the
same data, this model could detect and describe an exposure–
response relationship for bedaquiline, a property that is crucial for
evaluation of dosing regimens and assessment of drug–drug inter-
actions. The model developed here could be used for analysis of
other Phase II and III studies of novel anti-TB regimens and pro-
vides a more powerful tool for characterization of exposure–
response relationships than commonly used derived metrics.
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