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The loss of cognitive function in Alzheimer’s disease is pathologically linked with
neurofibrillary tangles, amyloid deposition, and loss of neuronal communication. Cerebral
insulin resistance and mitochondrial dysfunction have emerged as important contributors
to pathogenesis supporting our hypothesis that cerebral fructose metabolism is a key
initiating pathway for Alzheimer’s disease. Fructose is unique among nutrients because it
activates a survival pathway to protect animals from starvation by lowering energy in cells
in association with adenosine monophosphate degradation to uric acid. The fall in energy
from fructose metabolism stimulates foraging and food intake while reducing energy and
oxygen needs by decreasing mitochondrial function, stimulating glycolysis, and inducing
insulin resistance. When fructose metabolism is overactivated systemically, such as from
excessive fructose intake, this can lead to obesity and diabetes. Herein, we present
evidence that Alzheimer’s disease may be driven by overactivation of cerebral fructose
metabolism, in which the source of fructose is largely from endogenous production
in the brain. Thus, the reduction in mitochondrial energy production is hampered by
neuronal glycolysis that is inadequate, resulting in progressive loss of cerebral energy
levels required for neurons to remain functional and viable. In essence, we propose
that Alzheimer’s disease is a modern disease driven by changes in dietary lifestyle
in which fructose can disrupt cerebral metabolism and neuronal function. Inhibition
of intracerebral fructose metabolism could provide a novel way to prevent and treat
this disease.
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INTRODUCTION

Alzheimer’s disease is the sixth most common cause of death in the United States. The prevalence
of dementia is expected to double in the next 20 years, and to affect 81 million people worldwide
(Rizzi et al., 2014). Thus, there is a pressing need to identify the cause of Alzheimer’s disease and to
establish effective therapies.
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Alzheimer’s disease is defined as dementia associated
with cerebral atrophy and white matter degeneration with
neurofibrillary tangles consisting of hyperphosphorylated tau
protein and extraneuronal β-amyloid plaques containing Aβ

peptides. A favored hypothesis is that Alzheimer’s disease
is mediated by the effects of the amyloid plaques to alter
neurological function (the amyloid cascade hypothesis).
However, the results of several clinical trials focusing on
preventing the amyloid formation and/or degrading amyloid
deposits have been disappointing (Anderson et al., 2017;
Morris et al., 2018). While the amyloid cascade hypothesis
has not been discounted, other hypotheses are now receiving
attention, including the role of cerebral insulin resistance
and glucose hypometabolism (Neth and Craft, 2017),
neuroinflammation (characterized by high cytokine levels
at sites of tissue degeneration), synaptic dysfunction, and
the role of mitochondrial dysfunction with alterations
in intracerebral ATP levels (Demetrius et al., 2014; de la
Monte, 2017; Cenini and Voos, 2019). There is also evidence
that Alzheimer’s disease may be linked with obesity and
diabetes, and with the western diet (Arvanitakis et al.,
2004; Gomez-Pinilla and Yang, 2018). However, while
obesity and diabetes are risk factors for Alzheimer’s disease
(Arnold et al., 2018), Alzheimer’s disease may occur in
the absence of these conditions. Therefore, a unifying
mechanism for the initiation of Alzheimer’s disease has
remained enigmatic.

Herein, we present a unifying hypothesis that brings
together prior hypotheses by proposing that intracerebral
fructose metabolism may be a key contributing factor for
Alzheimer’s disease. We will present evidence of how this
hypothesis can account for known risk factors and how it can
explain Alzheimer’s disease pathophysiology. To understand this
hypothesis, we will first review recent breakthroughs in our
understanding of fructose metabolism and then relate this to the
development of Alzheimer’s disease.

RECENT INSIGHTS IN FRUCTOSE
METABOLISM

Two major simple sugars present in our diet are glucose and
fructose. Polymers of glucose make up starch and is a primary
component of high glycemic carbohydrates, such as bread, rice,
and potatoes. Fructose, or fruit sugar, is the primary sugar
present in fruits and honey. Two common added sweeteners in
our diet are sucrose (table sugar) and high fructose corn syrup
(HFCS). Both of these sweeteners contain glucose and fructose,
with the glucose and fructose bonded as a disaccharide in sucrose,
and with both mixed as monosaccharides in different ratios (but
usually 55:45 fructose: glucose) in HFCS. Together, intake of
sugar and HFCS comprises 15% of the total calories ingested in a
western diet but may reach 25% of the total calories in different
populations (Yang et al., 2014). These sweeteners are also present
in 70% of processed foods in supermarkets (Ng et al., 2012).

FIGURE 1 | Purine degradation pathway induced by fructose. Fructose can come from the diet or be endogenously produced by the polyol pathway. In turn, the
metabolism of fructose by fructokinase C (KHK-C) can lead to ATP consumption, with intracellular phosphate depletion, resulting in activation of AMP deaminase
(AMPD) that eventually leads to the production of uric acid. Key: green color shows the sources of fructose, the blue color the caloric pathway of fructose
metabolism, and the red color the pathway involving nucleotide degradation that activates the survival pathway.
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Biological Effects of Fructose Are Distinct
From Glucose
An important insight has been the discovery of unique
differences in glucose and fructose metabolism that translates
into differences in biologic function. While glucose acts as an
energy-producing fuel, like most nutrients, fructose appears to be
used as an energy-storing fuel (Johnson et al., 2020). This feature
of fructose is due to its unique metabolism that decreases energy
(adenosine triphosphate; ATP) within the cell (Maenpaa et al.,
1968; van den Berghe et al., 1977). Themechanism is mediated by
a specific enzyme, fructokinase C (also known as ketohexokinase
C, or KHK-C) that phosphorylates fructose to fructose-1-
phosphate so rapidly that intracellular phosphate and ATP levels
fall. In turn, the low intracellular phosphate activates adenosine
monophosphate (AMP) deaminase, resulting in the stepwise
degradation of AMP to inosine monophosphate (IMP) and
eventually uric acid (Figure 1). Activation of AMP deaminase-2
(AMPD2) results in a removal of AMP, thereby reducing the
ability of the cell to replenish ATP levels, while stimulating
the production of uric acid that inhibits AMP-activated protein
kinase (AMPK), thereby reducing ATP generation (Lanaspa
et al., 2012a; Cicerchi et al., 2014). The ability of fructose to
reduce intrahepatic ATP levels and increase intracellular and
serum uric acid levels occurs with the ingestion of soft drinks (Le
et al., 2012; Bawden et al., 2016). In contrast, other major food
groups (glucose, protein, and fats) act to increase energy levels in
the cell.

The fall in intracellular ATP levels with the generation of uric
acid activates various alarm signals, including mitogen-activated
protein kinases (MAPK) and nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (Maenpaa et al., 1968; Kang et al.,
2002; Lanaspa et al., 2012b; Sanchez-Lozada et al., 2012). A burst
of intracellular oxidative stress occurs, especially inmitochondria
(Lanaspa et al., 2012a). Fructose magnifies this effect by blocking
the Nrf2-Keap1 antioxidant pathway (García-Arroyo et al.,
2019a). A reduction in mitochondrial function occurs, with a
blockade in fatty acid beta-oxidation (due to inhibition of enoyl
CoA hydratase) and a shift to glycolysis (Lanaspa et al., 2012b;
Softic et al., 2019). The mitochondrial enzyme, aconitase-2, is
inhibited, leading to citrate accumulation that passes into the
cytoplasm where it stimulates lipogenesis. Lactate generation
occurs that enhances mitochondrial dysfunction (San-Millán
and Brooks, 2017). As a consequence, total energy production
stays low, with much of the energy being produced by aerobic
glycolysis (Warburg effect; Nakagawa et al., 2020). This helps
cells maintain the low energy state in concert with the fall in
intracellular ATP levels.

Many biologic effects associated with energy depletion are
mediated, in part, by the generation of intracellular uric acid.
Uric acid, while an anti-oxidant in the extracellular environment,
is pro-inflammatory in the intracellular environment, and
activates p38 MAP kinase and NF-κB, induces NADPH
oxidase-induced oxidative stress, and stimulates the production
of chemotactic factors, vasoconstrictive substances (renin-
angiotensin system), and growth factors (Johnson et al., 2013).
Uric acid also reduces endothelial nitric oxide bioavailability

via several mechanisms. Concerning fructose biology, the
mitochondrial oxidative stress, the induction of insulin
resistance, and the inhibition of AMPK are all partially
dependent on the uric acid (Nakagawa et al., 2006; Lanaspa et al.,
2012b; Cicerchi et al., 2014).

The ability of fructose metabolism to lower energy in the
cell requires the presence of both fructokinase C (KHK-C) and
fructose. Fructose may come from the diet, especially from sugar
and HFCS-containing foods. However, fructose is also generated
in tissues by activation of the aldose reductase (AR)-sorbitol
dehydrogenase (SDH) pathway (polyol pathway), which converts
glucose to sorbitol (via AR) and then sorbitol to fructose by SDH
(Table 1). The rate-limiting enzyme is AR, but it can be induced
by a variety ofmechanisms, including ischemia, hyperosmolarity,
alcohol, hyperglycemia, and fructose and uric acid themselves
(Johnson et al., 2020). AR is also induced and AR activity is
increased in the brain and other organs with aging (Cao Danh
et al., 1984; Kwee et al., 1991). Certain foods that do not contain
fructose also activate AR and stimulate endogenous fructose
production, including high glycemic carbohydrates, salty foods,
and alcohol (Lanaspa et al., 2013, 2018; Wang et al., 2020).

The enzyme, KHK-C, is also regulated. Under normal
conditions, KHK-C is primarily located in the small bowel
intestinal epithelium, the hepatocyte, and the kidney proximal
tubular cells, but it is also present in the pancreatic islets, the
adipocytes, the vascular endothelium, and the brain (including
the hippocampus and hypothalamus; Diggle et al., 2009; Oppelt
et al., 2017; Song et al., 2017). KHK-C expression is enhanced
by fructose or high uric acid levels (Roncal-Jimenez et al., 2011;
Lanaspa et al., 2012c). KHK-C can also be induced in ischemic
tissues, such as the heart (Mirtschink et al., 2015).

In summary, fructose does not simply come from the diet
but is also produced in the body, and the ability to metabolize
fructose is regulated.

Fructose Metabolism Activates an
Evolutionary-Based Survival Pathway
Animals that are starving activate behavioral and metabolic
changes to aid survival once fat stores are depleted. This includes
foraging behavior, a reduction in energy production, and the
development of insulin resistance (which reduces glucose uptake
in muscle, thereby favoring preferential uptake by the brain)
(Koffler and Kisch, 1996; Cahill, 2006). To avert starvation,
animals store fat in preparation for times of food shortage, such

TABLE 1 | Sources of dietary and endogenous fructose.

Dietary Fructose
Honey and Fruits
Added Sweeteners (Sucrose, HFCS)
Endogenous Fructose (Requires induction of Aldose Reductase)
Foods

High glycemic carbohydrates (glucose, starch, potatoes, rice, bread)
Salty Foods

Ischemia or Hypoxia
Tissue Injury (Trauma, Vascular Injury)

Hyperosmolarity
Dehydration

Hyperuricemia
Aging
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as before hibernation, long-distance migration, or nesting. One
approach used by many animals is to ingest fructose-rich foods,
such as from fruits and honey, as the fall in energy within the cell
triggers the same behavioral and metabolic effect as starvation
and thereby acts as an alarm signal for the host to store fat
(Johnson et al., 2013, 2020).

Fructose metabolism stimulates several survival
pathways (Figure 2).

Foraging and Bingeing Behavior
While mice generally prefer glucose over fructose when it
is provided chronically, when sugar is given intermittently,
fructose causes a stronger bingeing response (Rorabaugh et al.,
2015). This is associated with hunger responses mediated by
the release of orexin from the lateral hypothalamus and is
distinct from that observed with glucose (Rorabaugh et al., 2014).
The mechanism could involve the depletion of ATP in the
hypothalamus (Lane and Cha, 2009). Over time, animals develop
leptin resistance that drives excessive food intake while reducing
the oxidation of fat (Shapiro et al., 2008). Fructose also stimulates
the production of vasopressin (Song et al., 2017) that results in
urinary water retention; however, the retained water passes from
the extracellular space into the cell and likely binds newly-made
glycogen, resulting in continued thirst (Johnson et al., 2020).
Degradation of ATP to uric acidmay also play a role in increasing
locomotor activity (Barrera et al., 1989), exploratory behavior,
and impulsivity (Sutin et al., 2014), all features needed when
foraging for food and water (Robin et al., 1998).

Studies in humans have largely confirmed these findings.
Fructose administration has unique effects on attention and
reward centers resulting in more hunger and desire for sweet
foods than glucose (Luo et al., 2015) and which is linked with
reduced cortical activity involved in the control of behavior by
blood oxygen level-dependent (BOLD)MRI (Purnell et al., 2011).

Increasing Fat Stores
In addition to stimulating hunger, thirst, and foraging, fructose
preferentially increases the storage of fat, including in the liver,
blood (triglycerides), and adipose tissues, thereby providing
stored energy as well as metabolic water in times of need
(Johnson et al., 2016). The primary mechanism appears to be
the induction of mitochondrial oxidative stress that leads to
lipogenesis (from blocking aconitase) and reduced beta fatty acid
oxidation (from blocking enoyl CoA hydratase; Lanaspa et al.,
2012a,b; Softic et al., 2019).

Protecting Against Hypoxia
The fructose-induced switch from mitochondrial function to
glycolysis protects by minimizing oxygen demands and reducing
energy needs. Endogenously produced fructose is key for the
survival of the naked mole-rat in its hypoxic burrows (Park et al.,
2017) and is also produced by the placenta of many species
(including humans) where it may protect the developing fetus
before the establishment of blood supply (Jauniaux et al., 2005).

Maintenance of Blood Pressure and Activation of
Inflammatory Pathways
Fructose also has effects on blood pressure, likely mediated in
part by activation of vasopressin, the renin-angiotensin system,

and other vasoconstrictor pathways. Fructose also stimulates
sodium reabsorption in the proximal tubule (Cabral et al., 2014).
Uric acid, generated by the fructose, increases blood pressure
responses by reducing endothelial nitric oxide, stimulating
oxidative stress, and activating the renin-angiotensin system
(Sanchez-Lozada et al., 2020). There is also a very active
stimulation of innate immunity likely mediated by the uric acid
(Joosten et al., 2020). These are all protective systems to aid
survival in extreme conditions.

Brain Protection
Insulin resistance also develops, which reduces uptake of glucose
by the skeletal muscle, thereby leading to its preferential uptake
by the brain.

Fructose, either from the diet or endogenously produced,
is used by many species to aid survival (Johnson et al., 2020).
Of interest, mutations that could enhance this pathway have
occurred in various species, including humans (Johnson and
Andrews, 2015). Onemutation involved the uricase gene. Uricase
is an enzyme that breaks down uric acid to allantoin and is the
primary way most mammals regulate their uric acid levels. Our
early ancestors also had uricase, but as they lived primarily on
fruit, they were still able to eat enough fructose to provide the key
energy they needed. Unfortunately, during the Miocene Epoch,
there was global cooling that affected fruit availability, especially
during the cooler months, and as the fruit became scarce, many
apes starved to extinction. During this time a mutation in uricase
occurred which amplified the uric acid response during fructose
metabolism. This provided a survival advantage by resulting in
enhanced storage of fat in response to fructose. This mutation,
which is present in all humans, amplifies ourmetabolic responses
to fructose compared to most other mammals (Johnson and
Andrews, 2015).

Fructose and the Metabolic Syndrome
In the setting of most hunter-gatherer diets, the intake of
fructose is limited to fruits and honey and obesity, and metabolic
syndrome is rare. Serum uric acid levels also tend to be low
and blood pressure is in the normal range (Johnson et al.,
2005). Under these conditions, the amount of fructose ingested
is relatively low, and the survival pathway is utilized to protect
against starvation rather than to cause obesity. It is noteworthy
that fruits and honey contain other nutrients such as flavonoids
that have the neuroprotective capacity (Gomez-Pinilla and
Nguyen, 2012).

However, the remarkable increase in sugar and HFCS intake
has led to excessive and chronic activation of this pathway,
resulting in increased risk for metabolic syndrome, obesity, and
diabetes (Figure 2; Johnson et al., 2013). The risk is particularly
high with liquid sugars, such as soft drinks, as the high fructose
content coupled with rapid intake leads to high concentrations
in the liver that can lead to more profound intracellular energy
depletion (Sundborn et al., 2019). While dietary fructose is a
major source of fructose, endogenous production of fructosemay
also drive the metabolic syndrome, such as in response to high
glycemic carbohydrates and high salt diets (Lanaspa et al., 2013,
2018). There is also evidence that excessive fructose increases the
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FIGURE 2 | Physiological and pathological effects of fructose. Fructose is used in nature as an innate survival pathway that helps protect animals from food and
water shortage. In contrast, excessive intake of fructose-containing sugars overactivated this pathway, resulting in various metabolic disorders.

risk for hypertension (Jalal et al., 2010), systemic inflammation
(Cox et al., 2011), and cancer metastases and growth (Goncalves
et al., 2019; Nakagawa et al., 2020).

Over time, chronic mitochondrial oxidative stress causes
impaired mitophagy with the accumulation of damaged
mitochondria and fewer functional mitochondria (Shefa
et al., 2019), thereby affecting overall energy production and
metabolism and causing increased reliance on glycolysis. While
low fructose diets or low salt diets can help recovermitochondrial
numbers (Hernandez-Rios et al., 2013), if energy levels cannot
be maintained, such as by impaired glycolytic compensation,
then cell death may result. Chronic mitochondrial oxidative
stress may also have a role in the aging process and aging-
associated disease (Sun et al., 2016), and, interestingly, low-grade
endogenous fructose metabolism has also been linked with
certain aging-related pathologies (Roncal-Jimenez et al., 2016).

Next, we will discuss how chronic activation of this pathway
may underlie the pathogenesis of Alzheimer’s disease.

FRUCTOSE METABOLISM AND
ALZHEIMER’S DISEASE

Here we present the hypothesis that overactivation of the
fructose ‘‘survival’’ pathway in the brain may be a driving
cause of Alzheimer’s disease, similar to the data that supports
overactivation of the fructose pathway systemically plays a role
in the metabolic syndrome. A key aspect of the hypothesis is
that one may be able to have overactivation of the fructose
system in the brain despite minimal activation systemically,

and vice versa. The strength of the hypothesis is based
on a series of observations that link various aspects of
the epidemiology, clinical presentation, and biology into one
pathway (Table 2; Figure 3).

Dietary Intake of Fructose Is Associated
With Cognitive Dysfunction in Animals and
Humans
There has been substantial interest in the role of diet,
especially fructose-containing sugars, and it’s potential for
affecting cognition and the risk for Alzheimer’s disease
(Beilharz et al., 2015).

Animal Models
Intake of sugar or HFCS has been reported to induce cognitive
dysfunction in laboratory rats and mice. For example, the
administration of sucrose or HFCS causes inflammation in the
hippocampus in association with memory deficit in rats, and
this defect is worse in rats fed HFCS that has higher fructose
content (Hsu et al., 2015). Sugar provided in liquids (liquid
sugar) tends to induce more cognitive dysfunction than when
sugar is administered in solid form, or of diets high in fat,
and occurs independently of weight gain (Beilharz et al., 2016).
Chronic feeding of sugar to adolescent rats also increases the
risk for the development of cognitive dysfunction in adulthood
(Reichelt et al., 2015).

Chronic fructose consumption in rodents disrupts
hippocampal pathways associated with cell energy metabolism
involving peroxisome proliferation-activated receptor gamma
coactivator 1-alpha (PGC-1α), mitochondrial transcription
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TABLE 2 | Evidence for cerebral fructose metabolism playing a role in
Alzheimer’s disease.

• Dietary Intake of Fructose is Associated with Cognitive Dysfunction in
Animals and Humans

• Many Risk Factors for Alzheimer’s Disease Activate Endogenous
Fructose Metabolism

• Fructose Metabolism is Active in the Brain of Alzheimer’s
Disease Patients

• Cerebral Fructose Metabolism may have a Role in the Alzheimer
Disease Pathogenesis

Cerebral Insulin Resistance and Cerebral Glucose Hypometabolism
Mitochondrial Dysfunction and Energy Depletion
Neuroinflammation
Amyloid Production and Tau Protein Hyperphosphorylation

factor A (TFAM) and sirtuin 1, and synaptic plasticity
modulators such as cAMP response element-binding protein
(CREB; Agrawal et al., 2016).

Cognitive dysfunction in fructose-fed rats is associated with
substantial epigenomic and transcriptional reprogramming in
both the hypothalamus and hippocampus including alterations
in the Bgn and Fmod extracellular matrix genes (Meng et al.,
2016). These studies suggest that fructose may disrupt the
interface between cell metabolism and synaptic plasticity, making
the brain susceptible to neurological disorders.

The effect on memory-driven by the fructose component
of sugar is amplified by diets low in omega-3 fatty acids
(Agrawal and Gomez-Pinilla, 2012). Combining fructose with
saturated fats (coconut oil) causes worse memory defects than
when combined with fats rich in omega-6 polyunsaturated
fats (such as soybean oil; Lin et al., 2017). Furthermore,
supplementation of omega-3 fatty acids can improve both
fructose-induced metabolic syndrome and fructose-induced
cognitive defects (Meng et al., 2016). In contrast, high-fat diets
alone usually do not cause memory deficits (such as spatial
or short term memory testing) unless combined with fructose
(Cordner and Tamashiro, 2015).

Human Studies
Sugar intake, especially soft drinks, is also associated with
cognitive dysfunction. In the FraminghamHeart Study, intake of
soft drinks and fruit juices was associated with dose-dependent
reductions in the total brain and hippocampal volume along
with worse episodic memory (Pase et al., 2017). Total sugar
intake was associated with worse cognition in older community
dwellers in Malaysia, while the intake of natural fruits appeared
protective (Chong et al., 2019). Similar findings were reported
with a population from Puerto Rico and in this study intake of
liquid sugars was especially linked with cognitive dysfunction
while natural sources of fructose (such as fruits) were not (Ye
et al., 2011). Another study reported that cognitive dysfunction
in elderly subjects is increased by high carbohydrate diets
compared to diets high in fat or protein (Roberts et al.,
2012). Likewise, Mediterranean style diets low in sugar and
high in omega-3 fatty acids appear to be protective (Berti
et al., 2015). Recently, a clinical study placed subjects on
a high-sugar, high-fat diet with a more healthy diet, and

found that at 4 days an impairment in short term memory
and hippocampal function could be shown in the high
sugar, high-fat diet group (Attuquayefio et al., 2017). The
observation that total and liquid sugars are more likely associated
with cognitive dysfunction is consistent with studies showing
that liquid sugars cause more significant ATP depletion and
metabolic effects, while the negative studies with natural fruits
are also consistent given the presence of antioxidants and
flavonols in fruits that are known to counter fructose effects
(Sundborn et al., 2019).

These associations may begin early in life. Maternal intake
of soft drinks during pregnancy as well as soft drink intake
in early childhood is associated with cognitive dysfunction in
children (Cohen et al., 2018). Children with a higher intake of
refined carbohydrates also show lower nonverbal intelligence
scores (Abargouei et al., 2012). Our group also reviewed the
strong experimental, pathophysiological, and clinical association
of chronic sugar intake with attention deficit hyperactivity
syndrome (Johnson et al., 2011).

Many Risk Factors for Alzheimer’s Disease
Activate Endogenous Fructose Metabolism
As mentioned, humans can produce fructose (fructoneogenesis),
and the only known way is via activation of aldose reductase
(AR) of the polyol pathway (Figure 1). If the fructose pathway
is key for the development of Alzheimer’s disease, one might
expect some evidence of a relationship between conditions
associated with endogenous fructose production (Table 1) with
the development of dementia.

Obesity, Metabolic Syndrome, and Diabetes
Metabolic syndrome, hypertriglyceridemia, type 2 diabetes, and
obesity are all risk factors for Alzheimer’s disease (Seaquist,
2010; Solfrizzi et al., 2011; —, 2005; Rosales-Corral et al., 2015;
Anjum et al., 2018). All of these conditions have been linked
with increased dietary intake of sugar and HFCS (Johnson
et al., 2013; Malik and Hu, 2015), however, experimental
evidence also links these conditions with endogenous fructose
production (Lanaspa et al., 2013, 2018). The high glycemic state
associated with diabetes also activates AR in multiple tissues
associated with endogenous fructose production, including the
brain (Stewart et al., 1967). Poor glycemic control in subjects
with type 2 diabetes has also been found to acutely worsen
memory (Greenwood et al., 2003). The amount of endogenous
fructose produced in diabetes can be significant, for blocking
AR prevents nonalcoholic fatty liver disease (NAFLD) in diabetic
mice (Qiu et al., 2012).

High Glycemic Diets
Clinical studies have linked intake of refined carbohydrates
(which includes both sugar and high glycemic carbohydrates
such as bread and rice) with dementia (Abargouei et al., 2012;
Roberts et al., 2012). While one might interpret this to mean
it is due to the inclusion of fructose-containing foods, there
is an experimental study showing that maltodextrin can cause
memory deficits in rats (Kendig et al., 2014). Maltodextrin
does not contain fructose, but rather is similar to starch and
is broken down to glucose. However, our group has reported
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FIGURE 3 | Hypothesis for the development of Alzheimer’s disease. According to the hypothesis, various risk factors can induce cerebral fructose metabolism that
can initiate a variety of processes, leading to the pathological and clinical manifestations of Alzheimer’s disease.

that intake of glucose, a high glycemic carbohydrate, results
in activation of AR in the liver that results in endogenous
fructose production that then drives the development of the
metabolic syndrome and insulin resistance (Lanaspa et al., 2013).
Studies in humans have also shown that the ingestion of glucose
causes a rise in serum glucose that is then converted to fructose
in the brain (Hwang et al., 2017). These studies suggest high
glycemic carbohydrates may also be a potential risk factor for
Alzheimer’s disease.

High Salt Diets
While the western diet is associated with high sugar content,
there has also been a remarkable increase in salt intake over the
last century. Today the average intake of salt is approximately
8–10 grams/day. For a long time, diets high in salt were
thought to be primarily of interest for their potential role
in causing high blood pressure and cardiovascular disease
(He and MacGregor, 2011). More recently high salt intake
has been associated with obesity, metabolic syndrome, and
diabetes (Libuda et al., 2012; Lanaspa et al., 2018). Experimental
studies suggest that these effects may be mediated by the
effect of dietary salt to induce hyperosmolarity (Suckling et al.,
2012; Kanbay et al., 2018), which is known to stimulate
AR and endogenous fructose production (Ko et al., 1997).
Our group reported that a high salt diet-induced endogenous
fructose production in multiple tissues in mice, including the
liver and hypothalamus, with the development of metabolic
syndrome (Lanaspa et al., 2018). If fructose metabolism was
inhibited, neither metabolic syndrome nor elevated blood
pressure develops (Lanaspa et al., 2018).

High salt diets are now being linked with dementia. High
salt diets initially stimulate exploratory behavior in mice, but
later it leads to a reduction in the short term and long-term
memory with oxidative stress to the hypothalamus (Liu et al.,
2014; Ge et al., 2017; Guo et al., 2017) that tends to be
worse in older animals (Chugh et al., 2013). Moreover, a high

salt diet induces hyperphosphorylation of tau protein in the
hypothalamus (Faraco et al., 2019). High salt concentrations also
increase amyloid Aβ peptides in cultured embryonic kidney cells
(Cheng et al., 2015).

Trauma
Traumatic brain injury increases the risk of developing
Alzheimer’s disease (Al-Dahhak et al., 2018). Based on
experimental studies, this involves disruption of the
microvasculature, leading to local ischemia that triggers
oxidative stress (Leker and Shohami, 2002). One mechanism
by which ischemia causes oxidative stress is by stimulating
AR and fructose generation (Andres-Hernando et al., 2017).
Traumatic brain injury activates pathways involved in lipid
metabolism in the hypothalamus and liver (Rege et al.,
2019). Dietary fructose intake also magnifies the oxidative
stress associated with traumatic brain injury, resulting in
worse spatial memory deficits, depression in mitochondrial
function, and development of cerebral insulin resistance
(Agrawal et al., 2016).

Alcohol
Alcohol, while capable of inducing dementia on its own, also
predisposes subjects to Alzheimer’s disease (Venkataraman et al.,
2017). Alcohol intake, by increasing serum osmolality, can
activate AR and endogenous fructose production in the liver
in both humans and experimental animal models (Wang et al.,
2020). Blocking AR has also been reported to inhibit the
development of hepatic steatosis in response to alcohol in animal
models (Shi et al., 2017). Whether blocking AR is beneficial
in alcohol-induced models of dementia has not been tested, to
our knowledge.

Aging
Aging is well known to be associated with increased risk for
cognitive decline and the development of Alzheimer’s disease. Of
interest, AR expression and activity are increased in the aging
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brain and this is associated with low intracellular phosphate
(which activates AMPD2) and increased sorbitol levels (Cao
Danh et al., 1984; Kwee et al., 1991). Our group also found
evidence that low-grade endogenous fructose production may
be causing aging-associated pathology in the kidney. Specifically,
aging-associated kidney disease did not occur in mice lacking
fructokinase who were being fed with a normal chow that had
minimal (<5%) fructose (Roncal-Jimenez et al., 2016).

Genetics
Alzheimer’s disease is associated with the apolipoprotein E4
(Apo E4) genetic polymorphism, as well as numerous other
genes identified through genome-wide associated screening
(GWAS; Beecham et al., 2014). Humans administered HFCS
show elevations of apolipoprotein E postprandially in addition to
developing hypertriglyceridemia (Price et al., 2018). More
importantly, a nutrigenomics study found that fructose
consumption in rodents promoted selective transcriptomic
and epigenomic reprogramming in brain regions related
to cognitive processing such as the hippocampus. Fructose
signature genes found in rats overlapped with top genes
associated with lipid biology and energy metabolism that have
been identified as risk factors for Alzheimer’s disease by GWAS
studies (Meng et al., 2016).

Dietary Fructose
An interesting question is how the intake of sugar and HFCS
can induce changes in cognition when most of the fructose is
removed by the intestines and liver before reaching the systemic
circulation (Jang et al., 2018). Typically serum levels of fructose
are quite low compared to glucose, and following the intake of
a soft drink is approximately 5 mg/dl (Le et al., 2012). Indeed,
studies utilizing labeled fructose suggest only 1–2% reaches the
brain (Oldendorf, 1971).

While it is possible that such low concentrations of dietary
fructose could be having a direct role in brain function, it is
also possible that the metabolism of fructose systemically might
lead to the release of factors or neural stimuli that could affect
brain metabolism and function. One possibility is that it may be
inducing endogenous fructose production andmetabolism in the
brain. For example, sugar intake can upregulate aldose reductase
(García-Arroyo et al., 2017), SDH (García-Arroyo et al., 2017),
fructose transporters (Glut5; Roncal-Jimenez et al., 2011), and
fructokinase (KHK-C; Korieh and Crouzoulon, 1991; Roncal-
Jimenez et al., 2011; Lanaspa et al., 2012c) and xanthine oxidase
(García-Arroyo et al., 2019b) through a positive feedback system.
That this may occur in the brain is suggested by a study reporting
that dietary fructose can increase expression of the fructose
transporter, Glut5, in the brain (including the hypothalamus) of
rats (Shu et al., 2006). One potential mechanism could be by
the release of uric acid into the circulation following fructose
metabolism in the liver (Perheentupa and Raivio, 1967), as uric
acid can pass freely across the blood-brain barrier (Shao et al.,
2016) where it could stimulate expression of AR and KHK-C
(Lanaspa et al., 2012c; Sanchez-Lozada et al., 2019). Another
possibility is that the fall in ATP in the liver can mediate CNS
effects, possibly by the release of factors such as FGF21 or by

effects on the vagal nervous system (Friedman, 2007; Talukdar
et al., 2016).

Fructose Metabolism Is Active in the Brain
of Alzheimer’s Disease Patients
Figure 1 reviews the steps involved in fructose generation
and metabolism, focusing on the KHK-C dependent purine
degradation pathway that leads to intracellular ATP depletion.

Endogenous Fructose Produced in Alzheimer’s
Disease Brains
Aldose reductase is expressed in neurons, including in the
hippocampus (Picklo et al., 2001; Hwang et al., 2017). Activation
of AR with the generation of fructose has been shown in
the brain following dehydration in rats (Song et al., 2017) as
well as following glucose loading in humans (Hwang et al.,
2017). Importantly, there is evidence for endogenous fructose
production in Alzheimer’s disease patients, with intracerebral
levels of sorbitol and fructose 3–5-fold greater than normal (Xu
et al., 2016). While the expression of AR does not change in
subjects with Alzheimer’s disease, the fact that there is a decrease
in neuron numbers suggests a relative increase in AR expression
and activity per neuron (Picklo et al., 2001).

Purine Degradation Pathway Is Activated in
Alzheimer’s Disease Brains
Once fructose is generated, it can be metabolized by KHK-
C, triggering a fall in intracellular phosphate and ATP that
triggers the purine degradation pathway, generating AMP that
is metabolized by AMPD2 to produce IMP and ammonia
(van den Berghe et al., 1977; Figure 1). Fructose can also
be metabolized by hexokinase, and this may be a significant
route of metabolism in the normal rat brain cortex (Hassel
et al., 2015). However, it is preferentially metabolized by
KHK-C if this enzyme is present. Indeed, KHK-C is expressed
in the brain, including the hypothalamus and hippocampus
(Oppelt et al., 2017). To date, no studies have examined the
expression of KHK-C in Alzheimer’s patients. However, the
first enzyme in the purine degradation pathway in fructose
metabolism is AMPD2, and studies have reported both increased
expression and activity of AMPD-2 in Alzheimer’s patients (Sims
et al., 1998). One of the products of AMPD2 is ammonia,
and several studies have reported increased blood ammonia
levels in Alzheimer’s patients (Adlimoghaddam et al., 2016;
Jin et al., 2018). One study also reported that ammonia
production is increased in the brain of Alzheimer’s patients
(Hoyer et al., 1990).

The IMP generated by AMPD2 also continues to degrade,
eventually generating hypoxanthine that can either be recycled
back to IMP or can be further degraded by xanthine oxidase
to generate intracellular uric acid. As a consequence, one
might expect to observe higher uric acid levels in the brains
of Alzheimer’s patients, but the only study to date showed
no difference from age-matched controls (McFarland et al.,
2013). However, once energy stores are depleted (as occurs in
Alzheimer’s subjects), there may not be enough substrate for
further uric acid formation.
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A Potential Mechanism for Alzheimer’s
Disease
We hypothesize that Alzheimer’s disease is a relatively modern
disease of western culture and that it represents a disorder of
chronic fructose metabolism (Figure 3).

Step 1: Endogenous Fructose Is Produced in the
Brain
We suggest that disease begins when we unconsciously activate
the fructose survival pathway by eating excess sugar and HFCS,
with the greatest risk being from drinking soft drinks in which
large amounts of fructose are ingested rapidly, resulting in
more severe ATP depletion. Recurrent intake of sugar slowly
increases expression and activity of enzymes involved in both
endogenous fructose production and metabolisms, such as AR,
SDH, KHK-C, and xanthine oxidase in various tissues, including
the brain. Other foods may also activate endogenous production
of fructose, including salty foods, high glycemic carbohydrates,
and alcohol. It is also possible to partially bypass the fructose
pathway by eating umami-rich foods, as the glutamate can be
metabolized to uric acid (Feigelson and Feigelson, 1966) via an
AMPD-dependent pathway while the purines such as IMP can
be degraded to uric acid in the gut and liver. Other mechanisms
may also increase intracerebral production of fructose, such
as episodes of postprandial hyperglycemia in the subject with
metabolic syndrome, persistent hyperglycemia in type 1 or type
2 diabetic subjects, or ischemia following traumatic brain injury.
Subjects with marked hyperuricemia may also carry some level of
risk, although local uric acid production may be more important.

Step 2: Fructose Is Metabolized, Setting off an Innate
Survival Pathway
As the brain starts metabolizing fructose by KHK-C, there
is a transient fall of ATP in the neurons with activation
of AMPD2 generating ammonia and IMP. As mentioned,
AMPD2 activity and expression are high in the brains of
Alzheimer’s subjects (Sims et al., 1998) as are blood and CNS
ammonia levels (Hoyer et al., 1988, 1990). While the ammonia
may contribute to some cognitive dysfunction, the IMP is then
broken down to uric acid, which may be more important
to the pathology, given that intracellular uric acid stimulates
mitochondrial oxidative stress and inflammation.

Step 3: Intracellular Uric Acid Induces
Neuroinflammation
An important article by Shao et al. (2016) demonstrated the
importance of uric acid as a neuroinflammatory substance. The
authors first showed that the induction of hyperuricemia in
rats (using a uricase inhibitor) could induce cognitive defects
in addition to its known effects on impulsivity (Sutin et al.,
2014) and this was associated with hippocampal inflammation
with NFκB and Toll-like receptor 4 activation and inflammatory
cytokine production (interleukin 1b and interleukin 6; Shao et al.,
2016). The hypothalamic inflammation could be reproduced
by direct injection of uric acid into the hippocampus whereas
allantoin (the product of uricase) did not. Uric acid also caused
cellular activation of primary hippocampal cells and culture.
Finally, humans with hyperuricemia showed gliosis of their

hippocampal region by MRI (Shao et al., 2016). Another study
reported that uric acid could potentiate Aβ amyloid peptides in
inducing neuronal death in cell culture (Desideri et al., 2017).
These results are consistent with a study that used functionalMRI
and demonstrated that hyperuricemic individuals (especially
males) showed poorer cognition and less spontaneous electrical
activity in the basal ganglia, including the putamen and pallidum
(Lin et al., 2019).

The argument that uric acid may have a role in Alzheimer’s
disease may seem inconsistent with reports that Alzheimer’s
disease is associated with lower serum uric acid levels (Euser
et al., 2009; Ye et al., 2016). However, other studies have
reported that hyperuricemia may predict dementia (Khan et al.,
2016). Indeed, hyperuricemia has been associated with deficits
in memory and word processing in older adults (Schretlen et al.,
2007), and with white matter, hyper-intense signaling suggestive
of ischemic pathology (Schretlen et al., 2007). Hyperuricemia
was also associated with cognitive dysfunction in subjects with
chronic kidney disease (Afsar et al., 2011) and worse cognition
and white matter disease in older adults in the Rotterdam study
(Verhaaren et al., 2013).

We believe the reason lower serum uric acid levels are
common in Alzheimer’s patients is because serum uric acid also
reflects overall nutrition status (Beberashvili et al., 2016), and
it is known that subjects with Alzheimer’s disease often lose
a significant amount of weight even before they manifest with
dementia (Stewart et al., 2005; Johnson et al., 2006). Another
argument in support of the importance of uric acid in the disease
process comes from two epidemiological studies investigating
whether lowering serum and intracellular uric acid levels with
allopurinol protects against the development of dementia. A
longitudinal Taiwanese study found that subjects with gout who
were being treated with urate-lowering therapy had a 30% lower
risk for developing dementia than did untreated subjects with
gout or controls (Hong et al., 2015). In another study using
Medicare claims data, subjects taking allopurinol or febuxostat
showed a reduced risk for dementia with higher doses of these
uric acid lowering drugs (Singh and Cleveland, 2018).

Step 4: Cerebral Insulin Resistance and Glucose
Hypometabolism
The fructose survival pathway was meant to reduce energy needs
and encourage food intake, and the development of insulin
resistance was a protective response to reduce glucose uptake
by skeletal muscle, thereby favoring its uptake by the brain.
However, some regions of the brain, such as the hippocampus,
hypothalamus, striatum, and sensorineural cortex use insulin for
glucose uptake, which is mediated by insulin receptor-A (IR-
A) and involves glucose transporters-4 and 8 (Glut4 and Glut8;
Neth and Craft, 2017). When insulin signaling is blocked to these
neurons, it signals hunger and food intake. Of interest, chronic
fructose ingestion has been found to reduce the activation
(phosphorylation) of IR-A and insulin receptor substrate-2 (IRS-
2) in the hippocampus of rats (Agrawal et al., 2016). Also, the
peripheral insulin resistance is known to raise serum insulin
levels which inhibit insulin transporters in the blood-brain
barrier and thereby might reduce CNS insulin levels. Some
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studies also show that peripheral insulin resistance and cerebral
glucose hypometabolism frequently coexist, suggesting they are
pathogenically linked (Burns et al., 2013). Regardless, in the
Alzheimer’s disease patient, there appears to be a decrease in
both cerebral insulin levels and the expression of the insulin
receptor that occurs early in the course of the disease (Agrawal
and Gomez-Pinilla, 2012; Moreira, 2013).

In turn, blocking glucose uptake would be expected to have
some negative effects on cerebral energy metabolism (Neth and
Craft, 2017) but with the overall benefit to the organism of
encouraging the foraging process. Also, the oxidative stress to
the mitochondria would further reduce mitochondrial function,
and initially, glycolysis would try to compensate, potentially
leading to a period of glucose hypermetabolism, as is sometimes
observed in early Alzheimer’s disease (Neth and Craft, 2017).
However, the neurons need to protect against this oxidative
stress, and they do this by limiting the glycolysis and shunting
the glucose via the pentose phosphate shunt to generate reduced
glutathione (Herrero-Mendez et al., 2009). This then leads to
cerebral hypometabolism and low intracellular ATP levels.

Consistent with the fructose pathway, early-onset alzheimer’s
disease is associated with glycolysis, lactate production, oxidative
stress, reduced mitochondrial respiration, ammonia generation,
and depressed cerebral glucose metabolism (Hoyer et al., 1988,
1990; Cenini and Voos, 2019). A marker of mitochondrial
oxidative stress (and especially from fructose or uric acid),
aconitase activity, can be shown to be decreased in circulating
lymphocytes of patients with Alzheimer’s disease (Mangialasche
et al., 2015). As the disease progresses cerebral oxygen
consumption falls (Hoyer et al., 1991) along with a stepwise
reduction in cerebral ATP from about 7% in the early stages
to more than 50% late in the course (Hoyer, 1992). As
mitochondrial density falls, some mitochondria may attempt
compensation by accelerating the oxidative phosphorylation
(inverse Warburg effect; Demetrius et al., 2014) but over time
the progressive lack of cellular energy causes the demise of
the neuron.

Step 5: Formation of Amyloid Plaques and
Neurofibrillary Tangles
A direct mechanism whereby the fructose metabolism pathway
can drive the production of amyloid plaques and neurofibrillary
tangles is not fully clear. Peripheral insulin resistance is
associated with increased cerebral amyloid (Morris et al., 2016),
but whether this association carries causality is not known. Sugar
(fructose) intake can cause oxidative stress to the pancreatic
islets, resulting in hyalinosis and injury of the islets (Roncal-
Jimenez et al., 2011), and the latter can increase expression of
amylin, a precursor to amyloid proteins (Hayden and Tyagi,
2001). Theoretically, if amylin were released, it could pass
through the blood-brain barrier where it might interact with the
Aβ amyloid to generate amylin amyloid (Jackson et al., 2013).

One potential mechanism could involve fructose-dependent
impairment of insulin signaling (Imamura et al., 2020) with
suppression of sirtuin 1 in the hippocampus (Agrawal et al.,
2016), which is known to impair the production of heat shock
proteins (Westerheide et al., 2009). Heat shock proteins have a

role in repairingmisfolded proteins, and impairedHSP responses
may predispose to the accumulation of tau protein and amyloid
in patients with Alzheimer’s disease (Chen et al., 2014; Despres
et al., 2017).

Consistent with these ideas, the administration of a high
sugar diet in a mouse model of Alzheimer’s disease led to a
significant increase in serum and brain amyloid levels (Yeh et al.,
2019). More importantly, in a cross-sectional study in cognitively
normal older adults, subjects on high glycemic carbohydrates
and/or high sugar diets had higher cerebral amyloid deposition
as measured by positron emission tomography (PET scan), and
those subjects on a high sugar intake also performed worse on the
Mini-Mental State Examination (Taylor et al., 2017).

The disturbances in cell energy metabolism pose a heavy toll
for themaintenance of neuronal connectivity and function which
can accelerate the pathogenesis of neurodegenerative diseases
such as Alzheimer’s disease (Gomez-Pinilla and Yang, 2018).
Synaptic communication is essential for neuronal function and
cognition and highly demanding on energy such that disruptions
in cell metabolism associated with fructose can heavily damage
overall brain function, beyond simply cell survival. The capacity
of the hippocampus to sustain synaptic plasticity in the forms
of long-term potentiation (LTP) and long-term depression
(LTD)—electrophysiological correlates of learning and memory
have shown to be seriously compromised by fructose feeding
(Cisternas et al., 2015; Agrawal et al., 2016).

LIMITATIONS

The pathogenesis of Alzheimer’s disease is complex and involves
multiple genetic and environmental factors, and our purpose is to
present a new hypothesis that links mitochondrial dysfunction,
cerebral energetics, cerebral insulin resistance, and diet that
might encourage further research. We do not negate the role of
other factors, such as varicella-zoster viral infection, that may
induce similar pathways (Bubak et al., 2019). We also recognize
that the role of dietary fats is complex and that the balance of
omega3 to omega6may also be important, and how this relates to
fructose metabolism requires further study (Simopoulos, 2013).

SUMMARY

We hypothesize that Alzheimer’s disease is driven largely by
western culture that has resulted in excessive fructosemetabolism
in the brain. The fructose metabolism was originally meant
to provide a survival benefit by stimulating foraging behavior
and reducing energy and oxygen demands. Unfortunately,
chronic stimulation in the brain leads to mitochondrial oxidative
stress and local inflammation and a progressive reduction in
cerebral energy levels. While other tissues increase glycolysis
to compensate for the reduced ATP, in neurons glucose is
directed to the pentose phosphate shunt to generate antioxidants
to combat oxidative stress-induced mitochondrial loss. As a
consequence, glucose hypometabolism increased oxidative stress,
and a progressive loss of mitochondria occur, leading eventually
to neuronal dysfunction and death. In this scenario, the amyloid
plaques and neurofibrillary tangles are part of the inflammatory
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response and participate in injury, but are not the central factors
driving the disease. Theoretically, regulating KHK-C in the brain,
or regulating AMPD2, might provide novel ways to prevent and
treat Alzheimer’s disease.
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