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ABSTRACT

Recent, large-scale expression–based subtyping has advanced our understanding 
of the genomic landscape of colorectal cancer (CRC) and resulted in a consensus 
molecular classification that enables the categorization of most CRC tumors into 
one of four consensus molecular subtypes (CMS). Currently, major progress in 
characterization of immune landscape of tumor-associated microenvironment has 
been made especially with respect to microsatellite status of CRCs. While these studies 
profoundly improved the understanding of molecular and immunological profile of 
CRCs heterogeneity less is known about repertoire of the tumor infiltrating immune 
cells of each CMS.

In order to comprehensively characterize the immune landscape of CRC we re-
analyzed a total of 15 CRC genome-wide expression data sets encompassing 1597 
tumors and 125 normal adjacent colon tissues. After quality filtering, CRC clusters 
were discovered using a combination of multiple clustering algorithms and multiple 
validity metrics. CIBERSORT algorithm was used to compute relative proportions of 
22 human leukocyte subpopulations across CRC clusters and normal colon tissue. 
Subsequently, differential expression specific to tumor epithelial cells was calculated 
to characterize mechanisms of tumor escape from immune surveillance occurring in 
particular CRC clusters.

Our results not only characterize the common and cluster-specific influx of 
immune cells into CRCs but also identify several deregulated gene targets that may 
contribute to improvement of immunotherapeutic strategies in CRC.

INTRODUCTION

The Cancer Genome Atlas (TCGA) and other 
large-scale cancer molecular profiling efforts showed 
that colorectal cancer (CRC) is a heterogeneous disease, 
arising from a number of possible etiological pathways 
that are responsible for driving CRC development [1]. 
Recent integration of various CRC gene expression-
based subtypings resulted in a consensus molecular CRC 
classification that enables the segregation of most tumors 
into one of four consensus molecular subtypes (CMS) [2]. 
Each of CRC CMS has been marked by distinct driver 
mutations and genetic or epigenetic signatures that include 

microsatellite instability (MSI), CpG island methylator 
phenotype (CIMP), chromosomal instability (CIN) and 
diverse spectrum of pathway activation (for details see 
Dienstmann et al. [3]). A gene-set enrichment analysis 
of gene expression data has provided initial insight into 
immune microenvironment CMS groups [3, 4]. It has 
been demonstrated that CMS1 tumors are characterized by 
high infiltration of immune cells associated with adaptive 
immunity. In contrast, CMS4 displays so called “inflamed 
phenotype” associated with expansion of innate immunity 
cells and expression of immunosuppressive factors [3]. 
Finally, CMS2 and CMS3 exhibit low immune system 
activation.
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Currently, we are witness to major progress 
in detailed characterization of immune landscape of 
tumor microenvironment, especially with respect to 
microsatellite status (microsatellite-stable [MSS] and 
microsatellite-instable [MSI]) of CRCs [5]. Recent high 
–resolution genomic and transcriptomic analyses of CRC 
have uncovered a strong positive correlation between 
high mutational load, lymphocytic infiltration and 
prolonged patient survival [5, 6]. Lately, Angelova et al. 
and Giannakis [6] et al. performed detailed lymphocyte 
profiling of CRCs classified by MSI/MSS status and tumor 
mutational heterogeneity [5, 6]. Both studies showed that 
MSI tumors have favorable immune (increased influx 
of cytotoxic T lymphocytes) and genetic characteristics 
(high neo-antigen load) when compared to MSS tumors 
(reduced levels of cytotoxic T cells, low mutational load, 
presence of immunosuppressive cells). Finally, above 
mentioned studies discussed the mechanisms of tumor 
escape from immune surveillance for example associated 
with upregulation of immunoinhibitory molecules (PD-1), 
positive selection of HLA mutations or downregulation 
of major histocompatibility complex (MHC) molecules 
[5]. While these studies profoundly improved the 
understanding of molecular and immunological profile 
of CRCs heterogeneity less is known about the immune 
landscape (that is, the repertoire of the tumor infiltrating 
immune cells) of each consensus molecular CRC subtype.

In the present study, we performed robust expression 
subtype classification of CRCs followed by computation 
of relative proportions of 22 subpopulations of human 
leukocytes across 4 identified CRC transcriptional 
subtypes and normal colon tissues. We provided detailed 
repertoire of the tumor infiltrating immune cells for 
each CRC subtype. Finally, we identified significantly 
deregulated immune-related genes in epithelial tumor cells 
that may significantly influence the activity of immune 
cells infiltrating different CRC clusters.

RESULTS

Identification of transcriptional subtypes in CRC 
and normal tissue content estimations

In the present study, we initially performed analysis 
of RNA degradation measurements across 15 CRC 
genome-wide expression data sets that included 1597 
tumor and 125 adjacent normal colon samples. After 
excluding samples with high RNA degradation (dk < 
0.45), we conducted unsupervised clustering on a group 
of 1492 CRCs using COMMUNAL algorithm [7, 8]. 
COMMUNAL incorporates information from multiple 
variable subsets, clustering algorithms and validity 
metrics, therefore it allows a reliable identification of 
transcriptional subtypes. Using this approach K=5 stable 
CRC clusters were revealed (Supplementary Figure 1). We 
then computed normal tissue content for each sample in 

each COMMUNAL cluster using gene expression profiles 
of normal colon samples as a reference [9]. Comparison 
of tumor purity between clusters revealed that Cluster 1 
(composed of 226 samples) had significantly lower tumor 
purity (mean = 0.65) when compared to the other clusters 
(adjusted p –value < 0.001 for all comparisons, data not 
shown) (Figure 1A). Given that the presence of a high 
proportion of normal cells in the sample may significantly 
affect all other downstream computations we decided to 
remove samples that were included in Cluster 1. Therefore 
all subsequent analyses were performed on the remaining 
1225 CRCs.

We next compared our cluster assignments to 
consensus clustering subtypes (CMS) published by 
Guinney et al. based on 896 samples that were included in 
our study [2]. As shown in Table 1 we found statistically 
significant overlap between cluster2 and CMS2 (92 % 
samples), cluster3 and CMS1 (87 % samples), cluster4 
and CMS4 (87 % samples), cluster5 and CMS3 (71 % 
samples). Given, that CMS division of CRCs is highly 
recognized in recent literature we decided to combine 
COMMUNAL cluster labels with that proposed by 
Guinney et al. (Cluster2-CMS2, Cluster3-CMS1, 
Cluster4–CMS4 and Cluster5-CMS3).

Microsatellite instability classifier

Given that MSI status in one of the most important 
molecular correlates in studies related to immune-cell 
infiltrates in CRC we developed binary MSI classifier to 
predict microsatellite status in 554 out of 1225 samples 
lacking this information. Classifier average sensitivity 
and recall calculated over random 20 test sets were 
0.88 and 0.9 for the MSI class and 0.97 and 0.96 for 
the MSS class, respectively. Supplementary Figure 2 
provides visualization of performance of MSI classifier 
acrossrandom 20 test sets.

After imputation of the missing MSI status we found 
out that 19% of tumors were classified as MSI. As shown 
in Table 1, Cluster3-CMS1 was significantly enriched 
with MSI tumors (72% samples, adjusted p-value < 0.001 
for all pairwise comparisons) when compared to other 
clusters. Cluster5-CMS3 displayed moderate enrichment 
with MSI tumors (16% samples) whereas in Cluster2-
CMS2 and Cluster4-CMS4 MSI tumors were rare (1% 
and 6% samples, respectively). All associations between 
COMMUNAL clusters and MSI status are in agreement 
with those presented by Guinney et al. for CMS [3].

Differences in tissue infiltrating leukocyte 
proportions between CRC subtypes and normal 
colon tissue

Using the leukocyte gene signature (LM22) and 
CIBERSORT algorithm we computed relative proportions 
of 22 leukocyte subpopulations in 1225 tumor and 83 
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Figure 1: (A) Violin plots illustrating densities of tumor purities in five COMMUNAL clusters computed by “ISOpureR” package. 
Median is marked with a white circle. Note the significantly lower tumor purities in Cluster1 (cluster with the highest normal tissue 
content). (B and C) Clustered heatmaps (Euclidean distance, average linkage) characterizing leukocyte subpopulations in CRC subtypes.
(B) Comparison between normal colon and CRC subtypes. Enrichment (red) has been defined as positive mean fold-change and adjusted 
p-value ≤ 0.05. Depletion (blue) has been defined as negative mean fold-change and adjusted p-value ≤ 0.05. Insignificant differences 
(white) had adjusted p-value ≥ 0.05.(C) Comparison between CRC subtypes presented as a log-transformed odd ratios provided by CRC 
subtype versus remaining samples comparison. For better visualization, rows were scaled to z-score after calculating the dendogram.
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Table 1: Molecular characteristics of 1225 CRCs (after quality filtering and exclusion of samples from Cluster1)

All samples Cluster2 Cluster3 Cluster4 Cluster5

n=1225 n=456 n=250 n=296 n=223

MSI 237 (19.3%) 5 (1.1%) 180 (72.0%) 17 (5.7%) 35 (15.7%)

MSS 988 (80.7%) 451 (98.9%) 70 (28.0%) 279 (94.3%) 188 (84.3%)

Age 69.0 [60.0;77.0] 70.0 [61.5;76.5] 72.0 [63.5;78.8] 67.0 [57.2;75.0] 69.0 [60.0;76.8]

female 261 (44.0%) 91 (40.8%) 66 (61.7%) 55 (37.9%) 49 (41.5%)

male 332 (56.0%) 132 (59.2%) 41 (38.3%) 90 (62.1%) 69 (58.5%)

CMS1 173 (19.3%) 1 (0.3%) 156 (87.2%) 2 (1.0%) 14 (8.0%)

CMS2 343 (38.3%) 312 (92.0%) 0 (0.0%) 9 (4.4%) 22 (12.6%)

CMS3 126 (14.1%) 0 (0.0%) 2 (1.1%) 0 (0.0%) 124 (71.3%)

CMS4 201 (22.4%) 10 (2.9%) 13 (7.3%) 178 (87.3%) 0 (0.0%)

NOLBL 53 (5.9%) 16 (4.7%) 8 (4.5%) 15 (7.4%) 14 (8.0%)

Microsatellite instability data (MSI/MSS) includes 671 CRC samples with known MSI status and 554 CRC samples 
with predicted MSI status. Age, gender and CMS cluster variables were available for 473 samples, 593 samples and 896 
samples, respectively. ‘NOLBL’ stands for samples that could not be attributed to any CMS subtype (for details see main 
text, ref. Guinney et al. 2015).

normal colon samples. Detailed characteristics of cells 
included in LM22 and abbreviations we used are available 
in Supplementary Table 1. Next we used computed 
proportions to characterize profile of leukocyte influx of 
each CRC subtype and normal colon. Violin plots visualize 
the densities of computed proportions of each leukocyte 
subpopulation in each CRC cluster and normal colon 
(Supplementary Figure 3). We used clustered heatmap to 
visualize immune cells that were enriched, depleted or did 
not show statistically significant changes when compared 
to normal colon (Figure 1B). In Supplementary Figure 
4 we provided volcano plots that visualize average fold 
change in addition to statistical significance for CRC 
subtype versus normal colon comparisons.

In comparison to normal colon tissue for all 4 CRC 
clusters we observed significant enrichment of innate 
immune cells (macrophages M0 and M1, activated mast 
cells and neutrophils). In contrast, plasma cells, resting 
mast cells and resting DCs displayed significant depletion 
in all CRC groups. Frequent enrichment (for 3 out of 4 
clusters) was also observed for: Tregs (except Cluster3–
CMS1) and memory activated Th (except Cluster5-
CMS3)), whereas, frequent depletion was observed in 
respect to CTLs (except Cluster3–CMS1), memory resting 
Th (except Cluster5-CMS3), and macrophages M2 (except 
Cluster4-CMS4).

Comparison of tumor infiltrating leukocyte 
proportions between CRC subtypes

To enable visualization of subtle differences in the 
immune cell influx between CRC subtypes we clustered 

log-transformed odd ratios provided by comparing CRC 
subtype versus remaining CRCs (Figure 1C; see alsoviolin 
plots provided in Supplementary Figure 3). Cluster3–
CMS1 displayed both, enrichment of leukocytes related to 
adaptive immunity (Tfh, memory activated Th and CTLs) 
and to innate immunity (activated NK cells, γδT cells, 
M1 macrophages, activated DCs, activated mast cells 
and neutrophils) [10, 11]. In addition, Cluster3–CMS1 
was characterized by depletion of Tregs. Cluster4–CMS4 
was characterized by highest proportions of leukocytes 
related to pro-tumor activity (eosinophils, monocytes, 
macrophages M2, resting DCs and Tregs) and depletion 
of activated DCs. Cluster2-CMS2 displayed the highest 
enrichment in Th cells (naive and memory activated) and 
memory B cells. Finally, the Cluster5-CMS3 displayed 
relatively low levels of immune activation that was 
manifested by high levels of memory resting Th, naive 
B cells and low levels of macrophages, neutrophils and 
activated Th.

Characterization of tumor cellular composition 
and immune escape mechanisms in CRC clusters

To identify genes potentially involved in tumor-
specific immune response regulation, we determined the 
differences in immune-related gene expression in tumor 
epithelial cells for each CRC subtype. This required 
construction of expression signature specific for cell types 
that form tumor (epithelial cells, leukocytes, endothelial 
cells and cancer associated fibroblasts (CAFs)), 
calculation of relative cell proportions and subsequent 
calculation of differential expression specific to each cell 
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fraction. Available data enabled us to construct expression 
signature for epithelial cells, leukocytes and endothelial 
cells combined with CAFs. Estimated relative proportions 
of each tumor compartment are provided in Figure 2A-2C.

In general, Cluster2–CMS2 and Cluster5-CMS3 
displayed significantly higher epithelial cell content 
than Cluster3–CMS1 and Cluster4–CMS4 (Figure 2A). 
In contrast, tumors from Cluster3–CMS1 and Cluster4–
CMS4 displayed significantly higher enrichment of tumor 
infiltrating cells when compared to other CRC clusters. 
Specifically, Cluster3–CMS1 displayed the highest 
leukocyte concentration (Figure 2B), whereas, Cluster4–
CMS4 displayed highest level of Epcam(-) / CD45 (-) cells 
[endothelial cells and CAFs] (Figure 2C).

In order to explore the possible effect of tumor 
cells on the regulation of immune influx and activity we 
focused on differential expression of genes in epithelial 
fraction of tumors. We selected 54 genes that previously 
have been reported to be involved in modulation of 
antitumor immune response (Figure 3A-3C) [5, 12].

Firstly, we addressed gene expression changes that 
occur in all/majority of clusters. As shown in Figure 3A 
IL6R (interleukin-6 receptor), TNFRSF17 (BCMA, B cell 
maturation antigen), TNFRSF13B (TACI, Cyclophilin 
ligand interactor) and CD27 genes, that belong to immune 
stimulatory class showed concordant downregulation 
across all CRC clusters. In at least 3 out of 4 CRC 
clusters we also revealed striking upregulation of genes 
involved in immune system activation, including TNFSF9 
(CD137L), TMEM173 (STING) and ICOS. A significant 
fraction (40%) of genes involved in suppression in tumor 
microenvironment including CXCL1, CXCL2, CXCR2, 
MIF (macrophage migration inhibitory factor), IDO1 
(Indoleamine 2,3-dioxygenase 1), TDO2 (TRP-2,3-
dioxygenase 2), ARG2 (arginase 2), and VEGFA (vascular 
endothelial growth factor A) displayed upregulation in at 
least 3 out of 4 CRC clusters (Figure 3B). On the other 
hand, some of them were downregulated in majority of 
CRC clusters (VISTA, CD160 and TNFRSF14).

Secondly, we explored the cluster-specific gene 
expression changes. In general, there were significant 
similarities between Cluster3–CMS1 and Cluster4–CMS4 
and between Cluster2-CMS2 and Cluster5–CMS3 (Figure 
3A-3C). As shown in Figure 3C family of MHC genes 
involved in antigen processing (TAP) and presentation 
(HLA) were predominantly downregulated in Cluster2–
CMS2 and Cluster5–CMS3. In cluster Cluster3–CMS1 
the downregulation of HLA class I genes (HLA-A, HLA-B 
and HLA-C) was also noticeable. However, Cluster3–
CMS1 was characterized also by increased expression 
of certain genes belonging to HLA class II family (HLA-
DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1) and two 
antigen processing genes (TAP1 and TAP2), which were 
also noticeable in Cluster4–CMS4. Interestingly, ~50% 
immune stimulatory genes were concordantly upregulated 
in Cluster3-CMS1 and Cluster4-CMS4 including IL6, 

TNFRSF9, TNFSF9, CD80 and TNFSF13B (Figure 
3A). However, Cluster3–CMS1 differed from the rest of 
CRC clusters by a relatively high number of upregulated 
members of TNFR (tumor necrosis factor receptor) family 
including CD40 and OX40. Finally, Cluster3–CMS1 and 
Cluster4–CMS4 exhibited notably higher number of genes 
involved in immunosupression than the remaining CRC 
clusters (Figure 3B). Apart from immunosuppressive 
genes shared by most clusters, Cluster4–CMS4 exhibited 
overexpression of TIM3 (T-cell immunoglobulin mucin 3) 
and TGFB1 (transforming growth factor-β1). In general, 
in Cluster3–CMS1 and Cluster4–CMS4 visibly more 
immunosuppressive genes were upregulated than in 
Cluster2–CMS2 and Cluster5–CMS3 [3].

DISCUSSION

In the present study, we characterized 22 immune 
cell populations infiltrating colorectal tumors and defined 
cancer epithelial cell-specific differential gene expression. 
Subsequently, we placed the immune-tumor interface 
into a CRC consensus molecular subtype context. This 
led to the identification of common and cluster-specific 
properties of immune landscape as well as immune escape 
mechanisms.

In comparison to normal colon tissue the majority 
of clusters exhibited significant enrichment in innate 
as well as in adaptive immune cells. We also observed 
a common decrease of plasma cells, macrophages 
M2 and CTLs. As numerously reported, an increased 
concentration of activated Th, CTLs and plasma cells in 
tumor microenvironment is predictor of better prognosis 
for patients [13]. In contrast, high density of cells that 
promote immunosuppresion (mast cells, neutrophils and 
Tregs) are associated with tumor progression and reduced 
patient survival [14]. Taking together, our results illustrate 
the dichotomy (tumor promoting and anti-tumor) of 
immune cell populations that infiltrate CRC. In line with 
previous studies, we expected to observe the decrease 
of macrophage M1/M2 ratio in CRC [15]. However, 
in our study we found a contradictory association: 
M1 were enriched in CRC whereas M2 were depleted 
when compared to normal colon tissue (Supplementary 
Figure 5) [14, 16]. In the light of latest studies, the role 
of differentially polarized TAMs in CRC progression is 
not completely explained [17]. For example, Koelzer et 
al. provided evidence that increased M2 infiltration (but 
not M1) was associated with favorable clinicopathological 
characteristics of CRC. On the other hand Edin et 
al. reported that M1 macrophages were significantly 
associated with an improved prognosis [18, 19]. 
These conflicting results suggest that tumor associated 
macrophage (TAM) polarization stage in CRC is variable 
and correlates with the tumor microenvironment context, 
direct interaction of macrophages with tumor cells as well 
as the stage of disease.
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Figure 2: (A-C) Violin plots visualizing the densities of computed proportions of 3 main tumor compartments: epithelial cells (A), 
leukocytes (B) endothelial cells and CAFs (Epcam (-) / CD45 (-)) (C) in each CRC cluster and normal colon samples. Mean is marked 
with a white circle.
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Next, we addressed the inter-cluster differences 
in the immune cell influx. As expected, MSI-associated 
Cluster3–CMS1 displayed an increased infiltration of 
leukocytes related to adaptive and innate immunity [5, 20]. 
As has been described recently, MSI results in a higher load 
of neoantigens which in turn promotes increased leukocyte 
infiltration and immune response activation [5, 6]. Except 
for pro-tumoral activated mast cells and neutrophils 
other immune cells enriched in Cluster3–CMS1 were 
reported to play an anti-tumor role [10, 11]. In contrast 
to Cluster3–CMS1, Cluster4–CMS4 was highly infiltrated 
by cells showing pro-tumor activity accompanied by 
increased proportions of CAFs and endothelial cells. [21]. 
The immune infiltrate composition of Cluster4–CMS4 
is likely the effect of chronic inflammation processes 
ongoing in this type of CRC and correlates with increased 
angiogenesis and EMT processes [3]. The Cluster2-CMS2 
and Cluster5–CMS3 were characterized by significantly 
lower influx of leukocytes, CAFs and endothelial cells 
and reduced immune activation. In Cluster2-CMS2 we 
observed decreased levels of leukocytes in their active 
states with exception of anti-tumoral memory B cells and 
active T CD4 memory cells. Cluster5–CMS3 displayed 
low levels of immune activation except of elevated levels 
of active dendritic cells. These results confirm previous 
observations concerning Cluster2-CMS2 and Cluster5–
CMS3 as a poorly immunogenic [3].

Subsequently, we focused on epithelial-specific 
differential expression of 54 immune related genes. We 
assumed that the expression or secretion of some of 
these proteins by CRC epithelial cells in soluble forms 
or by tumor-derived exosomes may create a favorable 
environment to support tumorigenesis by protecting tumor 
cells from immune anti-tumor actions [22].

In all clusters we observed a significant 
downregulation of several immune stimulatory genes. 
TNFRSF13B (TACI) and TNFRSF17 (BCMA) act as B-cell 
stimulation factors [23, 24]. Both genes are expressed by 
colon epithelial cells and play a role in maturation of naive 
B cells into mature IgA-secreting plasma cells which is 
one of the crucial elements in the maintenance of intestinal 
immune homeostasis [25]. Given the striking decrease of 
plasma cells content in the tumor tissue that we observed 
in this study we hypothesize that this could be the result 
of depletion of B cells maturation signals maintained by 
TACI and BCMA. Significant downregulation of IL6R with 
retention/upregulation of IL-6 expression observed in our 
study suggests that so called IL-6 trans-signaling plays an 
important role in CRC [26]. A possible meaning of IL-6 
trans-signaling in CRC has been recently provided by 
Tseng-Rogenski et al. who have shown that IL-6 regulates 
localization of hMSH3 protein which in turn contributes 
to carcinogenesis by formation of microsatellite 
alterations at selected tetranucleotide repeats (EMAST) 
in 60% of CRCs [27]. This phenomenon supports our 

Figure 3: Clustered heatmaps showing selected immune modulators that were significantly deregulated in the tumor 
epithelial cells as revealed by csSAM [68]. Both, rows and columns of the heatmaps, were clustered. For clarity, insignificant 
expression differences (FDR>0.05) were replaced by ‘0’ (A) Genes involved in immune system stimulation. (B) Genes involved in immune 
system suppression. (C) Major histocompatibility (MHC) genes.
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finding of prevalent retention/upregulation of IL-6 by 
CRC epithelial tumor cells [28]. In most clusters, we 
also revealed upregulation of genes involved in immune 
system activation. Overexpression of immunostimulatory 
molecules by tumor epithelial cells might seem conflicting 
at first glance, contrasting with numerous reports showing 
that in general immune stimulation generates anti-tumor 
T cell immune responses [29]. However, as described 
above for IL-6, a number of pro-tumoral roles of 
immunostimulators has recently emerged. Recent study by 
Eun et al. provided evidence that ligation of TNFSF9 on T 
cells limits their differentiation or expansion and indirectly 
supports generation of Tregs [30]. Huang et al. as well 
as Lemos et al., provided evidence that DNA sensing 
via STING is capable of mediating immunosupression 
by activation of IDO1 [31, 32]. Consistent with this 
notion, we observed upregulation of STING and IDO1 
in the same CRC clusters. Finally, recent data obtained 
on melanoma and breast cancer indicated that there is 
an association between the expression of ICOS and 
the production of immunosuppresive interleukin IL-
10 in Tregs that results in suppression of T cells and 
dendritic cells [33]. Collectively, this data indicates that 
so called immunostimulators may play dual, context-
dependent roles that also include immunosuppression. 
Among the genes known to be involved in immune 
system suppression we found 8 (out of 19 selected genes) 
that have been upregulated in at least 3 CRC clusters. 
Therefore, the secretion of immunosuppressive factors 
can be regarded as a common ‘strategy’ of immune 
escape in CRC. CXCL1, CXCL2 and CXCR2 are potent 
chemoattractants of immunosuppressive cells including 
granulocytic myeloid-derived suppressor cells (MDSCs) 
and neutrophils [14]. Recent studies provided evidence 
that MIF is necessary for the immunosuppressive function 
of TAM and MDSCs in breast cancer and melanoma [34]. 
IDO1 and TDO2 are involved in catabolism of tryptophan 
(trp) which depletion in tumor microenvironment results 
in inhibition of T cell responses. IDO1 is currently well 
recognized as a potent target of anti-tumor therapies 
[35]. Similarly, upregulation of ARG2 by depleting the 
extracellular content of arginine, induces inhibition of T 
cell proliferation [36]. Recently, it has been shown that 
VEGFA also exhibits immunosuppressive properties in 
addition to its pro-angiogenic role. VEGFA can induce the 
accumulation of tumor-associated macrophages, MDSCs, 
Tregs, and inhibit the migration of T lymphocytes to the 
tumor [37].

Next, we explored the cluster-specific gene 
expression changes. In general, there were significant 
similarities between Cluster3–CMS1 and Cluster4–
CMS4 and between Cluster2-CMS2 and Cluster5–CMS3. 
Cluster2-CMS2 and Cluster5–CMS3 displayed widespread 
downregulation of MHC class genes. Downregulation of 
three MHC class I genes was also detected in Cluster3–
CMS1. These findings are in line with reports that clearly 

show that by defective antigen presentation, CRC tumor 
cells evade immune surveillance. However, for the first 
time, we have demonstrated that: a) this phenomenon is 
not exhibited by all microsatellite stable CRC clusters; 
b) to some extent defective antigen presentation might 
be also present in MSI associated Cluster3–CMS1 
[29]. Surprisingly, we noticed upregulation of antigen 
processing genes in Cluster3–CMS1 and Cluster4–
CMS4. This was also shown by Angelova et al. for MSI 
CRCs [5]. Such a phenomenon could be explained by the 
evolution of Cluster3–CMS1 and Cluster4–CMS4 cancer 
clones in the microenvironment with high leukocyte 
infiltration and increased anti-tumor immune activity. 
As proposed by Dunn and co-workers this may lead to 
the elimination of highly antigenic cells and immune-
based selection of tumor cells that exhibit on their surface 
weak/unrecognizable antigenic peptide repertoire (so 
called ‘immunoediting’) [38]. In such cases, in which 
immune surveillance is ineffective, the unchanged or even 
upregulated expression of MHC genes would be permitted 
[39]. In Cluster3–CMS1 and Cluster4–CMS4 we 
revealed upregulation of some genes involved in immune 
system activation (for example CD80). CD80 (B7-1) 
is a costimulator mediating T-cell activation thorough 
CD28 receptor on T cells. However a potent immune 
suppressor CTLA-4 (Cytotoxic T Lymphocyte-associated 
Antigen-4) has much higher affinity for CD80 than CD28 
[40]. CTLA-4 interaction with CD80 suppresses T cell 
activation and induces immunosuppressive Tregs. Given 
that we observed concordant upregulation of CD80 in 
Cluster3–CMS1 and Cluster4–CMS4 it is likely that 
epithelial CD80 expression enhances immunosuppression 
rather than immune activation in this particular context. 
In Cluster3–CMS1 we found relatively high number of 
upregulated members of TNFR (tumor necrosis factor 
receptor) family including CD40 and OX40. All three 
molecules have been reported to exert T effector activity 
and diminish inhibitory effects of Tregs, thus they maintain 
antitumor immune activities [41]. A possible explanation 
for this contradiction may involve similar phenomenon as 
has been described above for IL-6, namely, expression of 
given TNF receptor may confer a growth advantage that 
is pathway-independent of the immune system. Indeed, 
Baxendale et al. have described a favorable contribution 
of CD40 expression to cell transformation and neoplastic 
growth thorough NF-κB signalling pathway [42]. In this 
regard, increased secretion of CD40 from epithelial cancer 
cells may regulate their own properties within the tumor 
mass in an autocrine or paracrine fashion.

Finally, Cluster3–CMS1 and Cluster4–CMS4 
exhibited notably higher number of upregulated immune 
suppressive genes than the remaining CRC clusters. 
For example, Cluster4–CMS4 exhibited specific 
overexpression of TIM3 and TGFB1. TIM3 is an important 
regulator of CTL exhaustion and apoptosis, whereas 
TGFB1 is a potent immunosuppressor that downregulates 
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the host immune response via multiple mechanisms 
including promotion of M2 macrophages and Tregs and 
suppression of NK cells and T CD8 [43, 44]. Upregulation 
of PD-L1, Lag3 and TIGIT was specifically observed in 
Cluster3–CMS1. All three proteins are well characterized 
negative checkpoint regulators and can function 
synergistically to enable tumor cells to inhibit the anti-
tumoral immunological activities via induction of T cell 
exhaustion and/or induction of Tregs [13, 45, 46].

In summary, our results support the existence of 
both commonalities and cluster-specific differences 
of immunological landscape and profile of immune 
modifiers expressed by tumor epithelial cells. We believe 
that commonalities between CRC clusters will have 
important implications for immunotherapy by allowing 
the development and/or improvement of therapeutic 
strategies for majority of CRC patients. Common anti-
immune mechanisms uncovered in this study include: 
1) downregulation of B-cell stimulation factors (TACI, 
BCMA, CD27) that likely results in significant depletion 
of plasma cells, 2) upregulation of chemoattractants of 
potent immunosuppressive cells (MIF, CXCL1, CXCL2 
and CXCR2), 3) upregulation of enzymes (IDO1, TDO2, 
ARG2) that drain microenvironment from arginine and 
tryptophan which profoundly inhibit T cell proliferation, 4) 
defective antigen processing and presentation, which make 
the proper recognition of tumor cells impossible. Apart 
from the immune escape mechanisms characteristic for all 
identified clusters, we identified two additional mechanisms 
occurring only in Cluster3–CMS1 and Cluster4–CMS4. In 
Cluster3-CMS1 we observed specific upregulation of three 
negative checkpoint molecules (PD-L1, Lag-3 and TIGIT) 
involved in regulation of T cell-mediated immunity. On the 
other hand, the immune escape mechanism dependent on 
TGF-β1 seems to be the most important in Cluster4–CMS4. 
Obtained results show that effective CRC immunotherapy 
will require combinatorial approaches to break suppression 
of anti-cancer immunity. However, only knowledge on 
tumor transcriptional subtype will enable planning a precise 
and efficient anti-tumor therapy. In the light of the above, 
the transcriptional subtyping should be considered as a 
minimal requirement for developing optimal therapeutic 
strategies for CRC in the near future.

MATERIALS AND METHODS

Data collection, preprocessing and identification 
of transcriptional subtypes in CRC

Clinical data and Affymetrix U133 Plus 2.0 
microarray expression raw files (.CEL) were collated from 
15 studies which included 1597 tumor and 125 normal 
adjacent colon samples (Gene Expression Omnibus 
accession numbers: GSE69657, GSE8671, GSE9254, 
GSE13067, GSE13294, GSE14333, GSE17536, 
GSE17537, GSE18105, GSE19860, GSE28702, 

GSE33113, GSE35896, GSE37364 and GSE39582), see 
Supplementary Table 2 [47–58]. All arrays were assessed 
for RNA quality using the “AffyRNADegradation” 
package [7]. Samples with dk < 0.45 [equivalent of RNA 
integrity measure RIN > 7] were removed from further 
analysis as proposed by Fasold et al. [59].

Raw data was normalized by RMA or MAS5 using 
the “affy” package, mapped to the NCBI Entrez gene 
identifiers using a custom chip definition file (Brainarray, 
Version 20) [60]. Outlier samples were detected and 
removed by principal component analysis (PCA) using 
RMA normalized data. Subsequently, samples that formed 
small batches (n ≤ 5) were removed from further analysis. 
We than used the ComBat algorithm implemented 
in the “swamp” package to correct the data for batch 
effects [61]. Remaining CRC samples (n = 1492) were 
then clustered by use of mapping of multiple clustering 
algorithms (COMMUNAL) approach [8]. Forty-one 
CRC samples were eliminated by COMMUNAL as not 
robustly clustered. The optimal number of K = 5 clusters 
was deduced based on integrative analysis of 5 clustering 
algorithms and 11 cluster validity metrics across the 
increasing variable subsets (from 1000 to 10000).

We used “ISOpureR” package to estimate normal 
tissue content in each sample (in each CRC cluster 
separately) [9, 62]. Consequently, we eliminated samples 
that matched low-purity Cluster 1 (see results section). 
In summary, after data quality control that included 
outlier detection, RNA-degradation, small batch removal, 
tumor purity estimates and lack of COMMUNAL 
cluster assignments, 372 tumors and 42 normal samples 
were removed prior to the following data analysis (see 
Supplementary Table 2).

Development of microsatellite instability 
classifier

Given that MSI constitutes one of the most 
important correlates in CRC, we developed a combination 
of AdaBoost and random forests binary classifier using 
Weka 3.8 software to predict microsatellite status in 554 
samples lacking this information [63]. To develop MSI 
classifier we used MAS5 normalized data. We included 
143 MSI and 528 MSS cases and expression of top 80 
genes selected by information gain attribute evaluation. 
We used random forests as a weak learner of AdaBoost 
[64]. Given the MSI/MSS class imbalance, classifier was 
developed in a cost sensitive mode [65]. We investigated 
the performance of classifier by shuffling samples and 
creating 20 random, independent, non-overlapping 
training (70% of samples) and test sets (30% of samples).

Computation of immune cell relative proportions

MAS5 normalized data was analyzed by the 
CIBERSORT algorithm with 1000 iterations and the 
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LM22 gene signature to predict relative proportions of 22 
human hematopoietic cell phenotypes including naive B 
cells, memory B cells, plasma cells, CD8+ T lymphocytes 
(CTLs), naive CD4+ T lymphocytes (Th), memory resting 
Th, memory activated Th, follicular helper T cells (Tfh), 
regulatory T lymphocytes (Tregs), gamma delta T cells 
(γdT), resting NK cells, activated NK cells, monocytes, 
macrophages M0, macrophages M1, macrophages M2, 
resting dendritic cells (resting DCs), resting dendritic cells 
(activated DCs), resting mast cells, activated mast cells, 
eosinophils and neutrophils (see Supplementary Table 1 
for details) [66].

Characterization of tumor cellular composition 
and cell-specific differential gene expression

To estimate cellular composition of CRC tumors 
we used published expression dataset for cell populations 
purified from human CRCs (Gene Expression Omnibus 
(GEO), GSE39395) [67]. Initially, we created an 
expression signature using expression profiles of 
Epcam(+)/CD45(-) [epithelial cells], Epcam(-)/CD45(+) 
[leukocytes] and Epcam(-)/CD45(-) [endothelial cells 
and cancer-associated fibroblasts (CAFs)]. Then, we 
applied CIBERSORT algorithm with 1000 iterations to 
calculate relative proportions of cell fractions in 1225 
CRCs and 83 normal colon samples [66]. Finally, relative 
cell proportions predicted by the CIBERSORT and gene 
expression profiles were used as an input to csSAM to 
compute cell specific differential gene expression of 
epithelial cells in each cluster with stringent significance 
threshold (FDR≤0.05) [68]. Immune-related genes 
(selected based on the current literature) that were 
significantly deregulated in tumor epithelial cells were 
subsequently used in the analysis of immune escape in 
CRC clusters [12].

Statistical analysis

Estimated cell proportions were assessed for 
distribution (non-normal, normal) using the Shapiro-
Wilks test (p - value ≤ 0.05) and then for comparing cell 
proportions between CRC clusters and normal colon tissue 
using nonparametric Kruskal–Wallis test or t-test [69]. We 
used Holm correction to adjust for multiple comparisons 
(adjusted p - value ≤ 0.05. Resulting odds ratios were 
log transformed and visualized by clustered heatmap in 
“NMF” package [70]. BoxPlotR tool was used to generate 
violin plots [71].
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