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Azelnidipine prevents cardiac dysfunction in
streptozotocin-diabetic rats by reducing
intracellular calcium accumulation, oxidative
stress and apoptosis
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Abstract

Background: Numerous evidences suggest that diabetic heart is characterized by compromised ventricular
contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation,
oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress
could be therefore helpful in improving the cardiac function under diabetic condition.

Methods: This study was designed to examine the effect of long-acting calcium channel blocker (CCB),
Azelnidipine (AZL) on contractile dysfunction, intracellular calcium (Ca2+) cycling proteins, stress-activated signaling
molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single
intraperitoneal (IP) injection of streptozotocin (STZ). Contractile functions were traced from live diabetic rats to
isolated individual cardiomyocytes including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR90),
maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ fluorescence.

Results: Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+

clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics
but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of
superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit,
restored the levels of the mitochondrial superoxide dismutase (Mn-SOD), calcium regulatory proteins RyR2 and
SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were
reconciled by AZL treatment.

Conclusion: Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering
intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property.
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Background
Individuals with diabetes develop cardiomyopathy inde-
pendent of coronary artery disease, hypertension or
atherosclerosis [1-3]. This ‘diabetic cardiomyopathy’ is
characterized in the early stages by reduced relaxation
rates (diastolic dysfunction) while in later stages the sys-
tolic dysfunction becomes more prominent [4-6]. Also,

hyperglycemia-induced defective intracellular Ca2+

([Ca2+]i) homeostasis and increased reactive oxygen
species (ROS) production have been implicated in this
impaired electromechanical performance [7,8]. A combi-
nation of these events ultimately leads to diabetic cardio-
myopathy [9,10]. Accumulating evidences implicate that
ROS plays pivotal role in the pathogenesis of cardiac dys-
function during diabetes, and is likely to be a causative
agent for the disturbance in intracellular Ca2+ signaling.
Several ion-transport pathways are highly sensitive to
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redox regulation and oxidative stress directly impedes
intracellular Ca2+ homeostasis [11].
In the diabetic heart, abnormal Ca2+ handling during

the contractile cycle results in a decreased upstroke
phase of the Ca2+ transient due to reduction in the
release of Ca2+ from the sarcoplasmic reticulum (SR) by
ryanodine receptor (RyR2) [12]. In addition, the diastolic
decline of the Ca2+ transient is diminished due to
reduced activity of the sarco(endo)plasmic reticulum
Ca2+-ATPase (SERCA)2a pump [13]. Recent evidences
indicate that ventricular dysfunction secondary to myo-
cardial infarction in diabetic rat model was attenuated
by restoring the balance of calcium regulatory proteins
[14]. As far as the endogenous sources of ROS are con-
sidered, NADPH oxidase and mitochondria are the
important centers of ROS production and essentially
determine the redox state of the myocardium [15-20].
Also, higher myocardial NADPH oxidase activity and
increased mitochondrial ROS generation have been
detected in diabetes way before diastolic dysfunction is
detected indicating a subtle role of hyperglycemia in
generation of ROS [21-24]. More importantly, NADPH
oxidase activity is markedly increased by high glucose
levels [25]. Therefore, improving the abnormal Ca2+ flux
in the heart with calcium channel blockers (CCBs) that
possesses additional antioxidant property is an attractive
strategy to effectively normalize the disturbed Ca2+ tran-
sients and improve contractile function.
Long-acting CCBs have been reported to be effective in

treating ischemic heart disease; however, their effects on
diabetic cardiomyopathy are still unclear. Our previous
study showed beneficial effects of AZL in the animal
model of STZ-induced diabetes on the circulating mar-
kers of cardiac damage, oxidative stress, homocysteine,
pro- and anti-inflammatory cytokines [26]. The present
study was designed to examine the effect of AZL on car-
diomyocyte contractility and intracellular Ca2+ homeo-
static defects in the streptozotocin (STZ)-diabetic rat
model with special relevance to oxidative stress and
apoptosis.

Methods
Development and characterization of diabetic rats
Six to eight-week-old male Wistar rats (NCCS, Pune,
India), weighing 250 to 280 g, were made diabetic by sin-
gle intra-peritoneal (IP) injection of streptozotocin (STZ)
(55 mg/kg, Sigma, St. Louis, MO). Control animals were
treated with vehicle (0.1 mol/L sodium citrate buffer, pH
4.5). Hyperglycemia (blood glucose > 200 mg/dL) was
confirmed 3 days post STZ injection using a glucometer
(AccuCheck; Roche, Germany). Diabetic animals were
treated with single dose of 5 mg/kg AZL suspended in
1% carboxy methyl cellulose, administered orally by
gavage, starting the 4th day of STZ treatment (n = 12)

daily for a period of 12 weeks. Blood glucose and body
weight were measured weekly and at the end of the
study. All procedures were approved by Institutional Ani-
mal Care and Use Committee and were performed in
accordance to the standards for the care and use of ani-
mal subjects, as stated in the Guide for the Care and Use
of Laboratory Animals (Institute of Laboratory
Resources, National Academy of Sciences, Bethesda,
MD).

Measurement of cardiac contractility in vivo
Urethane (1 g/kg bw IP) was selected as an anesthetic
agent as its single dose induces long-term anesthesia and
analgesia with minimal cardiovascular and respiratory
system depression [27]. The right carotid artery was can-
nulated with a microtip pressure transducer (SPR-671,
Millar Instruments) connected to 8-channel PowerLab
instrument via bridge amplifier (AD Instrument). The
pressure-tip transducer catheter was then advanced into
the left ventricle for the evaluation of ventricular pres-
sures. LV systolic and end-diastolic pressures, the maxi-
mum rate of LV systolic pressure rise (+ΔP/Δtmax) and
minimum rate of LV systolic pressure decay (-ΔP/Δtmin)
were monitored and recorded using Chart 5.5. Rectal
temperature was maintained at 36-38°C throughout the
procedure [28].

Measurement of cell shortening/relengthening and
intracellular Ca2+ fluorescence in isolated cardiac
myocytes
Adult rat ventricular myocytes (ARVMs) were isolated
as described previously [29]. The mechanical properties
of ventricular myocytes from control and treated rats
were assessed using a SoftEdge MyoCam system
(IonOptix Corp., Milton, MA, USA) [29]. Cell shorten-
ing and relengthening were assessed using the following
indices: peak shortening (PS)–indicative of peak ventri-
cular contractility, time to PS (TPS)–indicative of con-
traction duration, time to 90% relengthening (TR90)–
representing cardiomyocyte relaxation duration, and
maximal velocities of shortening (+dL/dt) and relength-
ening (-dL/dt)–indicators of maximal velocities of ven-
tricular pressure rise/fall. Briefly, myocytes were loaded
with Fura-2AM (0.5 μM) for 10 min and fluorescence
measurements were recorded. Resting calcium, qualita-
tive changes in the intracellular calcium, and fluores-
cence decay time (Tau) were also measured. Both
single- and bi-exponential curve-fit programs were
applied to calculate the intracellular Ca2+ decay constant
[29]. At least 25 individual myocytes were used for data
collection. Changes in [Ca]i were calculated by deter-
mining the rise in [Ca]i relative to basal levels measured
immediately before that particular experimental
maneuver.
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Determination of intracellular superoxide (O2·
-) levels in

diabetic ARVMs
ROS generation was measured using fluorescent probe
DHE, an O2·

--sensitive probe [30,31]. DHE at a final con-
centration of 2 μM was added to the ARVMs from con-
trol and diabetic rat, and the staining was carried out at
37°C. The cells were washed using phosphate-buffered
saline (PBS) and fixed with 4% buffered paraformalde-
hyde. The coverslip was mounted with antifade on a glass
slide and observed using a confocal laser-scanning micro-
scope (Zeiss 510; Zeiss GmbH, Oberkochen, Germany).
Quantitative determination of DHE fluorescence was
done using fluorimetry. Briefly, post treatment, the cells
were washed with PBS, and re-suspended in HEPES buf-
fer (5 mM HEPES, pH 7.4; 5 mM KCl, 140 mM NaCl,
2 mM CaCl2, 1 mM MgCl2 and 10 mM glucose), stained
with DHE for 20 min and their fluorescence intensities
were acquired by fluorimetery (SpectraMaxPro, USA).

Western blot analysis
Ventricular tissue was homogenized into radioimmuno-
precipitation assay lysis buffer (120 mM NaCl, 1.0% Tri-
ton X-100, 20 mM Tris-HCl, pH 7.5, 10% glycerol, 2 mM
EDTA, protease inhibitor cocktail (Roche GmbH,
Germany) and the protein concentration for each sample
was determined using a Bradford-based protein assay kit
(Bio-Rad, Hercules, USA). For immunoblotting, 50-60 μg
of protein lysate per sample was denatured in 2× SDS-
PAGE sample buffer and resolved on SDS-PAGE (4% to
10%), transferred to a PVDF membrane (Millipore,
Germany), blocked with non-fat milk, and probed for
Troponin I (Cell Signaling, USA), RYR2, Mn-SOD
(Sigma), Bcl-2 and p-67phox (Santa Cruz Biotechnology,
Inc, USA), SERCA2 ATPase (Affinity Bioreagents, USA)
and b-actin (ICN Biomedicals Inc. USA) and HRP-conju-
gated appropriate secondary antibody (Bio-Rad, Hercules,
USA). The enhanced chemiluminescence was detected
using chemiluminescence detection system (Pierce Che-
mical, Rockford, IL, USA). Membranes were stripped and
reprobed with b-actin (ICN Biomedicals, USA) primary
antibody (1:10, 000) as a protein loading control.

Terminal Transferase dUTP Nick End Labeling (TUNEL)
Assay
Apoptotic cell death in cardiomyocytes in heart was
detected by in situ terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling. TUNEL staining was
performed on the cardiac tissue sections using the fluor-
escent In situ Cell Death Detection Kit (Roche Diagnostic
GmbH, Mannheim, Germany) according to the manufac-
turer’s instructions. TUNEL-positive nuclei were counted
in a minimum of 150 cells per group by fluorescence
microscopy and an apoptotic index (AI) was determined
as the percentage of TUNEL-positive nuclei which was

scored blindly by two evaluators. The statistical analysis
revealed a good correlation (Pearson’s correlation coeffi-
cient 0.91, p < 0.0001).

Statistical analyses
At least six to seven rats were used per group for each
treatment (control and diabetic with or without AZL) for
mechanical and intracellular Ca2+ recordings. For each
experimental series, data are presented as means ± SE.
Statistical significance (P <0.05) for each variable was
estimated by ANOVA by using Tukey-Kramer post tests
using Prism 4.0 GraphPad software (GraphPad, San
Diego, CA, USA). A p value less than 0.05 was considered
statistically significant.

Results
AZL improves cardiac contractile dysfunction in diabetic
rat heart
I) In vivo
STZ-induced diabetic animals showed stable signs of dia-
betes, including hyperglycemia, reduced levels of insulin.
Also there was a noted increase heart/body weight ratio
(H/BW). Diabetic rats treated with AZL showed
improvement in these physiological parameters. STZ
group showed reduced rate of contraction (+ Δp/Δt) and
rate of relaxation (- Δp/Δt) as compared with control
group. A significant reduction in the heart rate and
impairment in left ventricular pressure (LVP) as well as
left ventricular end diastolic pressure (LVEDP) was
observed in STZ-diabetic animals. Table 1 shows AZL-
treated diabetic rats significantly improved left ventricu-
lar parameters.
II) In isolated single myocytes from diabetic rat
The contractile dysfunction observed in vivo could be
partly due to extrinsic factors, such as changes in circu-
lating metabolites or hormones. In isolated myocytes, the
influence of extrinsic factors is eliminated, which allows
for the evaluation of intrinsic contractile dysfunction.
Therefore, contractile function was examined in isolated
myocytes from control, diabetic and AZL-treated groups.
Peak shortening (PS) amplitude normalized to cell

length was significantly decreased in ventricular myocytes
under STZ-induced diabetes (27.82% ± 8.17, p < 0.05).
Myocytes from the diabetic group also demonstrated sig-
nificantly prolonged time-to-peak shortening (TPS,
(29.30% ± 11.2, p < 0.05) and time-to-90% relengthening
(TR90, (25.72% ± 20.67, p < 0.05) compared with control.
AZL treatment completely abolished the diabetes-
induced abnormalities of PS, TPS and TR90 (Figure 1A-
D). The maximal velocities of shortening (+dl/dt) and
relengthening (-dl/dt) were significantly reduced by dia-
betes and AZL treatment restored the diabetes-induced
dysfunction (Figure 1A and 1B). Myocytes isolated from
12-week AZL-treated diabetic rats had significantly
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smaller deviation from corresponding values when com-
pared to the myocytes isolated from the control group
suggesting role of AZL in maintaining ventricular func-
tion of the heart along with preserving the contractile
properties of individual myocytes.

AZL maintains global Ca2+ homeostasis in diabetic rat
heart
Our data indicated enhanced level of resting intracellu-
lar Ca2+ in STZ induced diabetic rat myocytes. The rise
of intracellular Ca2+ in response to electrical stimuli was
significantly reduced. “Diabetic” myocytes showed
reduced intracellular Ca2+ clearing rate (single and bi-
exponential decay). Furthermore, 12-weeks of AZL
treatment significantly ablated intracellular Ca2+

abnormalities in STZ treated diabetic rats. Consistent
with its response in cardiomyocyte shortening, AZL
treatment improved diabetes induced changes in Ca2+

homeostasis including elevated resting intracellular Ca2+

levels, depressed intracellular Ca2+ rise in response to
electrical stimuli and prolonged intracellular Ca2+ decay
(Figure 2 A-C).

AZL reduces superoxide (O2·
-) from diabetic ARVMs

Superoxide overproduction in the cellular systems is an
important feature of diabetic cardiomyopathy. A signifi-
cant increase in the DHE fluorescence was observed in
isolated myocytes from the STZ diabetic rats indicating
generation of superoxide radicals in comparison to the
myocytes isolated from control rats. Myocytes from 12-
week AZL-treated diabetic rats showed significant
decrease in the fluorescent levels indicating that AZL can
reduce the superoxide production (Figure 3A).
Qualitative analysis of DHE fluorescent intensity showed

that there was a 5.6 ± 0.5 fold (p < 0.001) increase in the
DHE fluorescence in the “diabetic” myocytes when com-
pared to the “control” myocytes. The fluorescence inten-
sity of DHE showed a 2.7 ± 0.8 fold (p < 0.001) decrease
in the AZL treated group when compared to the STZ dia-
betic rats (Figure 3B). These results suggest that AZL
treatment prevents diabetes-induced accumulation of
superoxide in the myocytes.

AZL neutralizes the increased expression levels of
contractile proteins (Troponin I) in diabetic heart
Since mechanical dysfunction that characterizes diabetic
cardiomyopathy plays an essential role in the Ca2+ regu-
lation of muscle contraction, we studied the effect of
AZL on the expression level of cardiac Troponin I in our
experimental model. Our western blot results showed a
2.15-fold increase (p < 0.05) in the expression of Tropo-
nin I in the heart of STZ treated animal when compared
with the control. The increased cardiac Troponin I
expression counter-balanced in the cardiac tissue from
AZL treated diabetic rats (Figure 4A). These findings
suggest that AZL treatment under diabetic condition pre-
vents cardiac damage by reducing the expression of car-
diac Troponin I.

AZL regulates the expression of calcium regulatory
receptors and channels in diabetic heart
Downregulation of key Ca2+-handling proteins like sarco
(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a and
ryanodine receptor (RyR2) is one of the major cause of
abnormal Ca2+ homeostasis in diabetic cardiomyopathy
[13,32-34]. The alteration in SERCA2a and RyR2 expres-
sion results in altered cytosolic Ca2+ transients, leading to
abnormal contraction. Our western blot results indicated a
complete loss of expression of RYR2 and a significant
reduction in SERCA-2a in STZ-treated diabetic rats com-
pared to the controls (Figure 4B). Reduction in the RyR2
expression induced by uncontrolled diabetes was attenu-
ated with AZL treatment. Similarly, the expression of
SERCA- 2a was also restored after AZL treatment (Figure
4B). These findings indicate that AZL treatment under
diabetic condition prevents dysregulation of calcium regu-
latory proteins in the heart.

AZL induces downregulation of NADPH oxidases and
prevents oxidative stress
We determined effect of AZL treatment on the endo-
genous pro-oxidants and antioxidants like p67phox and
Mn-SOD. Our western blot results showed increased
expression of p67phox in diabetic heart. This indicated
that endogenous pro-oxidant system was triggered

Table 1 Hemodynamic parameters from control, diabetic rats and diabetic rats treated with AZL (5 mg kg-1 day-1)

Parameters Control
(n = 10)

STZ*
(n = 10)

AZL** (5 mg/kg/day) (n = 12)

Systolic Pressure (mm Hg) 138.1 ± 4.7 93.8 ± 4.1 124.6 ± 8.9

Diastolic Pressure (mm Hg) 85.8 ± 6.2 64.0 ± 3.5 82.5 ± 7.1

Systolic duration (s) 0.085 ± 0.01 0.140 ± 0.01 0.084 ± 0.01

Diastolic duration (s) 0.117 ± 0.02 0.297 ± 0.02 0.127 ± 0.01

Heart rate (BPM) 323.3 ± 20.9 244.9 ± 10.8 312.2 ± 14.1

LV+dp/dt (mm Hg/s) 5861.4 ± 729.5 3219.3 ± 297.8 6098.6 ± 395.4

LV-dp/dt (mm Hg/s) -6846.8 ± 752.1 -3553.0 ± 437.3 -7015.9 ± 391.5
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under diabetic condition which may further aggravate
oxidative stress. Treatment with AZL significantly atte-
nuated the p67phox expression (Figure 4C). On the other
hand, a significant decrease (0.46 fold, p < 0.05) in the
expression of Mn-SOD in STZ-diabetic heart was
observed as compared to control hearts. Treatment with
AZL resulted in a 2.5-fold (p < 0.05) increase in the
expression of Mn-SOD in the diabetic condition. These
results indicate that AZL exerts its protective effects by
targeting the NADPH oxidase and mitochondrial redox
enzymes (Figure 4C).

AZL prevents STZ-induced cardiac apoptosis
Apoptosis was also evaluated in the cardiac tissue by
TUNEL assay. Diabetic rats showed significant myocardial
apoptotic cell death manifested by a 6 fold increase in the

percent TUNEL-positive cell labeling compared with con-
trol rats (Figure 5A and 5B). The counts of TUNEL-posi-
tive nuclei significantly decreased in AZL-treated group.
Under oxidative stress, mitochondria play an important
role in apoptosis and a decrease in the level of bcl-2 is
observed. This decreasing bcl-2 expression is one of the
hallmarks of apoptosis through mitochondrial pathway.
STZ diabetic animal showed elevated cardiac apoptosis, as
indicated by decreased bcl-2 protein expression, compared
to the control animals. AZL-treated diabetic rats expressed
enhanced level of bcl-2 in the heart lysates indicating that
AZL plays protective role in cardiac apoptosis.

Discussion
The key findings of our present study demonstrated that
AZL treatment for 12 weeks in diabetic animal inhibits

Figure 1 Contractile properties of cardiomyocytes isolated from control, diabetic rats and diabetic rats treated with AZL (5 mg kg-1 day-1).
A: Maximal velocity of shortening (+dL/dt, A) and relengthening (-dL/dt, B) of ventricular myocytes isolated from control, diabetic rats and diabetic rats
treated with AZL (5 mg kg-1 day-1). B. Graph illustrates Peak shortening (PS, normalized to cell length) of the myocytes isolated from control, diabetic
rats and diabetic rats treated with AZL. C. Graph illustrates time-to-peak shortening (TPS) of the myocytes isolated from control, diabetic rats and
diabetic rats treated with AZL. D. Graph illustrates time-to-90% relengthening (TR90) of the myocytes isolated from control, diabetic rats and diabetic
rats treated with AZL. Values are means ± SE; n = 151-163 cells from 5-7 rats per group, *P < 0.05 vs. control group; **P < 0.05 vs. diabetic group.
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the development of early characteristics of diabetic cardi-
omyopathy, such as, prolonged relaxation and abnormal
E-C coupling in vivo in the intact myocardium as well as
in the isolated ventricular myocytes. Delayed diastolic
relaxation in diabetic cardiomyopathy is related to dimin-
ished removal of [Ca2+]i from cardiomyocytes after the
systolic contraction event. Treatment with AZL showed
improvement in the systolic and diastolic duration. Also
the markers for diastolic dysfunction, viz., maximal rise
and decay in the blood pressure showed improvement.
These mechanical abnormalities may be underscored by
altered intracellular Ca2+ homeostasis that was associated
with enhanced oxidative stress. We found that AZL
prevents maladaptive ventricular remodeling. Untreated
diabetes further accelerated oxidative stress at molecular
level by upregulating the endogenous NADPH oxidases
like p67phox and downregulation of Mn-SOD. Treatment
with AZL normalized the p67phox and Mn-SOD

expression. Also, AZL treatment normalized the levels of
cardiac troponin I, RyR2, and SERCA2a. The ability of
AZL to restore all the parameters to the control level
provides a plausible explanation for its ability to prevent
diabetes-induced defects in calcium signaling. The intrin-
sic antioxidant activity of AZL might thus contribute to
its beneficial effects on LV dysfunction and cardiac
failure.
Abnormalities in the myocardial calcium handling can

contribute to deranged cardiac mechanics in the diabetic
heart. Diabetes impairs sarcoplasmic reticular calcium
pump activities, which reduces the rate of Ca2+ removal
from the cytoplasm in diastole [7]. Such alterations may
contribute to the increased diastolic stiffness characteristic
of diabetic cardiomyopathy. Intracellular retention of cal-
cium in diabetes is associated with the depletion of high-
energy phosphate stores, derangement of cellular ultra-
structure and can lead to cardiac dysfunction. Calcium

Figure 2 Intracellular Ca2+ transient properties of ventricular myocytes isolated from control, diabetic rats and diabetic rats treated
with AZL (5 mg kg-1 day-1). A: Baseline intracellular Ca2+ concentrations; B: Increase in intracellular Ca2+ transient in response to electrical
stimulus; C: rate of cytosolic free Ca2+ decrease (Tau). Values are means ± SEM; n = 104 to 126/group. *P < 0.05 vs. control group; **P < 0.05 vs.
diabetic group.
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channel blockers in conjunction with antioxidants can
reverse the intracellular calcium defects and prevent dia-
betes induced myocardial changes. The present study
investigates Ca2+-dependent regulation of cellular function
in diabetic cardiomyocytes and highlights role of AZL in

prevention of early onset of diastolic dysfunction at cellular
and organ level.
AZL is a novel dihydropyridine calcium channel

blocker which has a long lasting anti-hypertensive action
[35]. It is generally well tolerated and its use is not

Figure 3 Generation of O2·
- in ventricular myocytes isolated from control, diabetic rats and diabetic rats treated with AZL (5 mg kg-1

day-1). A. Representative confocal laser scanning microscopy images of cells fluorescently stained with DHE. B. Graph shows quantification of
DHE fluorescence emission (Arbitrary Units) of the myocytes isolated from control, diabetic rats and diabetic rats treated with AZL after staining
with DHE. Data represents Means ± SEM; n = 104 to 126/group. *P < 0.05 vs. control group; **P < 0.05 vs. diabetic group.
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associated with reflex tachycardia [35]. AZL has recently
been approved in Japan for the treatment of patients with
hypertension. Very recently, the results from OSCAR
trial revealed that regimen that included AZL showed
less composite fatal and nonfatal cardiovascular events
compared to the group treated with other CCBs like
amlodipine. Another study demonstrated the novel bene-
ficial aspect of azelnidipine, whereby azelnidipine could
play a protective role against atherosclerosis by suppres-
sing monocyte chemoattractant protein-1 overexpression
in endothelial cells [36]. Very recently, azelnidipine treat-
ment have been shown to be useful in conditions like
glucose tolerance, insulin sensitivity, inflammation, and
number of circulating progenitor cells in non-diabetic
patients with essential hypertension [37]. Another com-
parative study between azelnidipine and olmesartan
revealed that AZL was equally effective in reducing the
blood pressure but also reduced the urinary albumin/
creatinine ratio and 8-hydroxydeoxyguanosine and renal
fatty acid binding protein levels significantly compared

with the amlodipine group. Also, AZL group showed
lower plasma aldosterone levels indicating that AZL is far
more effective in preventing albuminuria and oxidant
stress in hypertensive diabetic patients with CKD than
amlodipine [38]. In the settings of oxidative stress-
induced hepatotoxicity mice model, Azelnidipine signifi-
cantly decreased inflammatory cell infiltration, profibro-
tic gene expressions, Hematopoietic stem cell activation,
lipid peroxidation, oxidative DNA damage and fibrosis
and also prevented the decrease in the expression of anti-
oxidant enzymes [39]. It has been now well known that
AZL can produce some beneficial effects independent of
its anti-hypertensive effect [26], so the direct pharmaco-
logical effect of AZL on the initial management and pre-
vention of diabetic cardiomyopathy are paid more
attention.
Our study was an attempt to identify the effect of AZL

on alteration of cardiomyocyte contraction and related cal-
cium regulatory proteins, which might explain the effect of
AZL on cardiac performance under diabetic conditions.

Figure 4 Western blot showing altered expression of calcium and ROS regulatory proteins in control, diabetic rats and diabetic rats
treated with AZL (5 mg kg-1 day-1). A: Troponin I, B: RyR-2 and SERCA2ATPase, C: p67phox and Mn-SOD. Image is representative of the best of
three separate experiments. b-actin served as loading control. Normalized densitometric quantification has been depicted by numerical value
below the bands.
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Diabetes is characterized by consistently elevated blood
glucose levels, decreased insulin levels and increased
heart/body weight ratio indicative of hypertrophied heart
was observed in the STZ diabetic rat. Cardiac hypertro-
phy involves remodeling of entire heart especially in the
left ventricular region which eventually leads to impaired
diastolic function, further causing deterioration of cardiac
morphology and function. The important finding of the
present study is that STZ-induced hyperglycemia leads to
dilapidated cardiac function further leading to diabetic
cardiomyopathy. Our STZ diabetic rats showed left ven-
tricular dysfunction. This study along with our previous
report [26] provides evidence that hyperglycemia-induced
left ventricular dysfunction due to oxidative stress
induced by reactive oxygen species (ROS) and reactive
nitrogen species (RNS) and defective antioxidant system

contributing to the development of cardiomyopathy.
Apoptosis induced by hyperglycemia is an early event in
the pathophysiology of diabetic cardiomyopathy [40].
Hyperglycemia and insulin resistance independently con-
tribute to functional alteration in the heart [41-44]. AZL
treatment in streptozotocin diabetic rats has been shown
to improve these functional cardiac abnormalities per-
haps through tyrosine kinase-dependent increases in
intracellular [Ca2+]i removal after systole. In the present
study, treatment with AZL showed improvement in the
systolic and diastolic duration. Also the markers for dia-
stolic dysfunction, viz., maximal rise and decay in the
blood pressure showed improvement. In the present
study, we found that AZL prevents ventricular remodel-
ing accompanied by cardiac dysfunction. We also
demonstrated that AZL did not alter blood pressure and

Figure 5 Apoptosis in diabetic rat hearts and treated with AZL. A: representative photographs of in situ detection of apoptosis in heart
tissue from controls, diabetic rats treated with vehicle, and diabetic rats treated with AZL (5 mg kg-1day-1). Total nuclei were labeled with DAPI
(blue), and apoptotic nuclei were detected by TUNEL staining (green). B: average number of percent TUNEL-positive nuclei in tissue sections
from each group (n = 4 to 5 sections each per group). *P < 0.05 vs. control group; **P < 0.05 vs. STZ treated group. C: Western blot showing
bcl-2 expression in hearts from the same groups. Image is representative of the best of three separate experiments. b-actin served as loading
control. Normalized densitometric quantification has been depicted by numerical value below the bands.
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this suggests that AZL has preventive effects on cardiac
dysfunction beyond its antihypertensive effects. Oxidative
stress might play an important role in the progression of
LV dysfunction and failure, the data somewhat is consis-
tent with previous finding using STZ diabetic models
[45-47]. These mechanical abnormalities may be under-
scored by altered intracellular Ca2+ homeostasis that was
associated with enhanced oxidative stress. The intrinsic
antioxidant activity of AZL might thus be a contributor
to its beneficial effects on LV dysfunction in diabetic car-
diomyopathy. Although these findings are of interest, no
clinical trials to date have investigated the effect of AZL
on the development and progression of congestive heart
failure in diabetic patients.
In our study, certain diabetes-induced mechanical

defects were not improved or protected by AZL treatment.
For example, AZL improved the diabetes-induced reduc-
tion in PS but not Ca2+-induced Ca2+ release. Although
the underlying mechanism is largely unknown, the ability
of AZL to enhance myofilament Ca2+ sensitivity may play
a role. This is somewhat supported by the results shown
in Figure 1, where myocytes from the AZL-treated group
exhibit an improved PS compared with the myocytes from
the diabetic group. The results from this study revealed
that AZL treatment lowered the resting intracellular Ca2+

levels in the diabetic group. This AZL-induced reduction
in resting intracellular Ca2+ level may be associated with
an enhanced SERCA Ca2+ clearing ability in the AZL-trea-
ted group (Figure 2) and is consistent with the vasodilatory
and cardioprotective effect against Ca2+ overload under
pathological conditions such as heart failure. The fre-
quency-PS relationship was improved by AZL-treated dia-
betic group (Figure 1), indicating a preserved sarcoplasmic
reticulum (SR)-replenishing function in diabetic hearts.
One possible explanation is that AZL may significantly
augment the basal SR Ca2+ load in the diabetic group. The
impaired intracellular Ca2+ homeostasis may be associated
with a reduction in the main Ca2+-regulating protein
SERCA2 and ryanodine receptor (RyR) proteins indirectly
with reduced levels of Troponin I under the diabetic state
[48]. Interestingly, the STZ diabetes-induced oxidative
stress, apoptosis and alterations in oxidative stress-related
signaling molecule p67phox NADPH oxidase were effec-
tively alleviated by AZL treatment. It also improved the
levels of Troponin I, RyR2, and SERCA2a. Because SERCA
and RYR2 contributes to ~92% of the cytosolic Ca2+

removal workload in rat hearts [49], our finding of an
overt reduction in SERCA2a protein level in STZ-induced
diabetic hearts should have provided one of the most com-
pelling explanations for the slowed intracellular Ca2+

clearing and prolonged duration of relaxation (TR90). The
ability of AZL to restore all the parameters to the control
level provides a plausible explanation for its ability to pre-
vent diabetes-induced defects in calcium signaling.

Further, restoration of TPS after AZL treatment indicates
that AZL may have a significant effect on the key rate-lim-
iting components determining the length of contraction
duration such as SR Ca2+ release, troponin, tropomyosin,
and actin-myosin cross-bridge linking. These observations
are consistent with the functional data of improved intra-
cellular Ca2+ clearing and duration of relengthening
(TR90) after AZL treatment. These results suggest that
AZL treatment may ameliorate contractile disturbances in
cardiomyocytes from diabetic animals and could provide
therapeutic potential in the treatment of diabetic
cardiomyopathy.
Since AZL did not affect the hyperglycemic condition

in diabetes, our data suggest that STZ-induced diabetes
may elicit cardiac contractile dysfunction and intracellu-
lar Ca2+ mishandling likely through enhanced oxidative
stress and cell injury.
Increased oxidative stress is believed to be an initial and

important step in the development of cardiac dysfunction
and cardiomyopathy. NADPH oxidase and mitochondria
are considered to be important sources of ROS [15-20]
and are critical determinants of the redox state of the dia-
betic myocardium. Previous studies reported that mem-
brane translocation of p67phox and the increased
expression of p22phox was prevented by N-acetyl L
cysteine [50]. Therefore, we further tested whether AZL
exerts its antioxidative properties by modulating the
expression and function of NADPH oxidase subunit
p67phox and mitochondrial ROS-eliminating enzyme Mn-
SOD. The results from the isolated cardiomyocytes study
showed that hyperglycemia leads to increased oxidative
stress by enhancing the O2·

- generation, by decreasing the
expression of antioxidant enzyme Mn-SOD and by
increasing expression of p67phox. The main new findings
of this study are that AZL treatment prevents the
increased expression of p67phox, and enhances Mn-SOD
expression, thus reducing myocardial superoxide forma-
tion in the diabetic rat hearts. This reduction of O2·

-

generation and normalization of p67phox and Mn-SOD
after AZL treatment indicate that AZL reduces diabetic
cardiac damage by targeting the redox signaling pathways.
Moreover, an increase in the expression of p67phox and
decrease in the expression of Mn-SOD as well as bcl-2
and normalization of these expressions by AZL indicates a
mutual functional relationship between NADPH oxidase
and mitochondria. AZL in our study not only improves
cardiac contractile function but also offers protection
against oxidative stress, apoptosis and ultimately leading
diabetic cardiomyopathy.

Limitations of the study
We did not test the effect of known antioxidants in
comparison to AZL in the present study. We observed
the changes after the treatment duration of 12 weeks.
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Some of the changes could be result of the overall func-
tional improvement due to AZL treatment and may not
be directly attributable to AZL treatment. The hemody-
namic parameters were evaluated at the end of the
study, and comparisons were made with comparing with
diabetic and non-diabetic control in the experimental
design. As a result of which the signals were recorded
only at the end of the experimental period, leading to
the lack of baseline values in the same animals at the
start of the study.

Conclusion
In conclusion, the present study reveals the beneficial
effects of AZL treatment on diabetes induced early left
ventricular dysfunction. AZL exhibited additional anti-
oxidant properties in addition to its calcium channel
blocking activity. This intrinsic antioxidant property of
AZL may provide a promising advantage over other cal-
cium channel blockers in the management of compro-
mised heart function especially under diabetes.
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