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Abstract

DNA phosphorothioation is widespread among prokaryotes, and might function to restrict gene transfer among different
kinds of bacteria. There has been little investigation into the structural mechanism of the DNA phosphorothioation process.
DndA is a cysteine desulfurase which is involved in the first step of DNA phosphorothioation. In this study, we determined
the crystal structure of Streptomyces lividans DndA in complex with its covalently bound cofactor PLP, to a resolution of
2.4 Å. Our structure reveals the molecular mechanism that DndA employs to recognize its cofactor PLP, and suggests the
potential binding site for the substrate L-cysteine on DndA. In contrast to previously determined structures of cysteine
desulfurases, the catalytic cysteine of DndA was found to reside on a b strand. This catalytic cysteine is very far away from
the presumable location of the substrate, suggesting that a conformational change of DndA is required during the catalysis
process to bring the catalytic cysteine close to the substrate cysteine. Moreover, our in vitro enzymatic assay results
suggested that this conformational change is unlikely to be a simple result of random thermal motion, since moving the
catalytic cysteine two residues forward or backward in the primary sequence completely disabled the cysteine desulfurase
activity of DndA.
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Introduction

DNA phosphorothioation is a unique type of epigenetic

modification which occurs on the DNA backbone. During this

process, a sulfur atom replaces a non-bridging oxygen atom of the

phosphodiester backbone of DNA. DNA phosphorothioation was

first discovered in Streptomyces lividans [1,2], and was later found to

widely exist in many other kinds of bacteria [3,4]. The biological

consequences of DNA phosphorothioation have not been fully

understood, though it has been suggested that it might function to

restrict transfer of genetic materials among different species of

bacteria [5].

Five proteins (DndA, DndB, DndC, DndD, and DndE) encoded

by the dnd gene locus are necessary and sufficient for the process

of DNA phosphorothioation in Streptomyces lividans [2,6]. Among

these five proteins, DndA has been found to be a cysteine

desulfurase, catalyzing the removal of sulfur from the substrate L-

cysteine and reconstituting the iron-sulfur cluster in DndC.

Therefore, it has been suggested that the DndA-catalyzed sulfur

mobilization is the first step during the DNA phosphorothioation

procedure [7].

Cysteine desulfurases are involved in the syntheses of many

kinds of sulfur-containing biomolecules, such as assemblies of iron-

sulfur clusters in proteins involved in nitrogen fixation, syntheses of

thiamin and molybdopterin cofactors, and formation of thionu-

cleosides in tRNAs [8,9]. IscS (for iron-sulfur cluster), NifS (for

nitrogen fixation), and SufS (for sulfur utilization) are typical

cysteine desulfurases which have been studied most extensively

[10–12]. They all catalyze the formation of L-alanine and

elemental sulfur from the substrate L-cysteine. CsdB, a selenocys-

teine lyase, is related to cysteine desulfurases. However, it is

specific for L-selenocysteine and catalyzes its decomposition into

L-alanine and selenium [13]. IscS, NifS, SufS, and CsdB all

contain a tightly bound pyridoxal 59-phosphate (PLP) cofactor,

which forms Schiff base with a highly conserved lysine residue. In

addition, they all have an active site cysteine which is essential for

their desulfurization/deselenoation reaction. This catalytic cyste-

ine uses its thiolate anion to attack the sulfur atom of the substrate

cysteine, and forms a persulfide bond with it. Crystal structures of

Escherichia coli IscS [14, PDB code 1P3W], Thermotoga maritima NifS

[15, PDB code 1ECX], Synechocystis sp. PCC 6803 SufS [16, PDB

code 1T3I], and Escherichia coli CsdB [17–18, PDB code 1C0N]
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have been solved. In these structures, the catalytic cysteines were

found to exist either on a long and flexible loop (in the cases of IscS

and NifS), or on a short loop (in the cases of SufS and CsdB).

Up to now, there has been not much structural investigation on

proteins involved in DNA phosphorothioation [19]. In this study,

we determined the crystal structure of DndA from Streptomyces

lividans, to a resolution of 2.4 Å. Our structure reveals the

molecular mechanism that DndA employs to recognize the PLP

cofactor. Moreover, the catalytic cysteine of DndA, Cys327, was

found to exist on a b strand, different from other cysteine

desulfurases. In addition, our in vitro biochemical cysteine

desulfurase activity assay demonstrates that the position of this

catalytic cysteine is essential for its activity, and moving it two

residues forward or backward on the primary sequence completely

disabled its cysteine desulfurase activity.

Results

Structure determination and overall structure of DndA
To understand the molecular basis of how DndA performs its

function, we tried crystallization on both full length wild type (WT)

Streptomyces lividans DndA and a C327S point mutant in which the

catalytic cysteine, Cys327, was replaced by a serine. Despite

considerable effort, we were not able to obtain crystals for WT

DndA, presumably due to protein heterogeneity caused by

oxidation of the highly reductive Cys327. On the other hand,

we successfully crystallized the C327S mutant of DndA (referred to

as DndA hereafter), and determined its crystal structure to a

resolution of 2.4 Å (Table 1).

In the crystal structure, DndA forms a homodimer in which the

two protomers are related by a two-fold rotation axis (Figure 1A),

similar to other cysteine desulfurases IscS, NifS, SufS, and CsdB

[14–18]. In each protomer, there is a PLP cofactor which forms a

Schiff base covalent bond with the amino group of Lys200

(Figure 1B).

Each protomer of DndA consists of a larger N-terminal domain

and a smaller C-terminal domain (Figure 1B). The larger domain

(residues 1–262), where the PLP cofactor resides on, is more

conserved among cysteine desulfurases (Figure 2). It mainly

consists of a seven-stranded b sheet, flanked by a helices on both

sides. The smaller domain (residues 263–380) exhibits greater

variance and has only a few conserved residues, including Cys327.

It is composed of a three-stranded b sheet and four a helices

(Figure 1B).

The interaction interface between DndA and PLP
Similar to other cysteine desulfurases, DndA uses a deep surface

pocket to harbor the PLP cofactor (Figure 3A). Besides Lys200

which forms a Schiff base with PLP, there are many other residues

forming hydrogen bonds and van der Waals interactions with it

(Figure 3B). For example, His99 uses its imidazole ring to stack on

top of the pyridine ring of PLP, making multiple van der Waals

interactions with it. In addition, Asp175, which is at the bottom of

the surface pocket, forms a couple of hydrogen bonds with the

pyridine N1 atom of PLP. Moreover, the main chain of Ala69, the

main chain and side chain of Thr70, and the side chains of Ser197

and His199 hydrogen bond to the phosphate group of PLP

(Figure 3B). Interestingly, Thr70, His99, Asp175, Ser197, His199,

and Lys200 are all strictly conserved among all the cysteine

desulfurases/selenocysteine lyases we examined (Figure 2 and data

not shown) [3]. Therefore, DndA uses multiple interactions to fix

PLP at this position, so that it would not dissociate from its binding

site even when its Schiff base with Lys200 is broken in exchange of

forming a Schiff base with the amino group of the substrate L-

cysteine.

Potential binding site for the substrate L-cysteine
Despite considerable effort, we were not able to obtain co-

crystals of DndA in complex with the substrate L-cysteine.

However, by comparison with structures of other cysteine

desulfurases/selenocysteine lyase, we can infer where the binding

site for the substrate L-cysteine is on DndA.

When the substrate L-cysteine enters, its amino group will make

a Schiff base with the aldehyde group of PLP, in exchange of the

Schiff base between the amino group of Lys200 and PLP [15]. In

addition, it has been suggested that Arg379 and Asn175 in CsdB

probably serve as recognition residues for the carboxylate group of

Table 1. Data collection and refinement statistics.

Parameter Values

Data collection

Space group P2

Wavelength (Å) 0.97915

Unit cell parameters a = 77.9 Å, b = 67.3 Å,
c = 85.6 Å, b= 97.0u

Number of molecules/asymmetric unit 2

Resolution (Å) (outer shell) 45-2.40 (2.53-2.40)

Oscillation range per frame (u) 1

Crystal mosaicity 0.51

Data multiplicity (outer shell) 7.3 (7.4)

Matthews coefficient (Å3Da21) 2.78

Solvent content (%) 55.81

Total reflections 251,126

Unique reflections 34,563

I/sI (outer shell) 3.9 (1.7)

Completeness (%) (outer shell) 99.8 (100.0)

Rmerge (%) (outer shell) 14.7 (41.0)

Refinement

Number of reflections used 32,825

Rwork (%) 19.2

Rfree (%) 23.4

B-factor (Å2)

Overall 27.9

protein 27.8

ligand 17.8

solvent 31.5

RMSD bond lengths (Å) 0.008

RMSD bond angles (u) 1.117

RMSD B factor of main chain bond (Å2) 0.907

RMSD B factor of side chain bond (Å2) 1.486

Final model (number of protein atoms) 5,472

Final model (number of water atoms) 269

Rmerge =ShSi |Ih,i2Ih|/ShSi Ih,i for the intensity (I) of i observation of reflection h.
R factor =SIFobs|2|FcalcI/S|Fobs|, where Fobs and Fcalc are the observed and
calculated structure factors, respectively. Rfree = R factor calculated using 5% of
the reflection data chosen randomly and omitted from the start of refinement.
RMSD, root-mean-square deviations from ideal geometry. Data for the highest
resolution shell are shown in parentheses.
doi:10.1371/journal.pone.0036635.t001
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the substrate L-selenocysteine [17,18]. Both Arg379 and Asn175

in CsdB are conserved in DndA, and they correspond to DndA

residues Arg353 and Asn150 which are in close vicinity to PLP.

The guanidine group of Arg353, the amino group of Asn150, and

the amino group of the nearby Gln178 all carry positive charges,

and all point to the same direction (the orange circle in Figure 3B).

Importantly, Asn150, Gln178, and Arg353 are stringently

conserved among all the cysteine desulfurases/selenocysteine

lyases we examined (Figure 2 and data not shown). Therefore,

we hypothesize that the empty space surrounded by Asn150,

Gln178, and Arg353 (the orange circle in Figure 3B) is the binding

site for the carboxylate group of the substrate L-cysteine.

The catalytic cysteine of DndA, Cys327, resides on a b
strand

In contrast to previously determined structures of cysteine

desulfurases/selenocysteine lyase, in which the catalytic cysteines

are all located on flexible loops, the catalytic cysteine Cys327

of DndA (mutated to serine in our study) was found to reside

on a b strand (Figure 2 and Figure 3B). It is on the surface of the

DndA protein, and its side chain is pointing into the solvent.

Therefore, we do not believe that this structural difference was

caused by the cysteine to serine mutation. The distance between

Cys327 and PLP is about 16 Å (Figure 1B), and the distance

between Cys327 and the presumable position of L-cysteine

substrate is also more than 10 Å (Figure 3B). Therefore, a

dramatic conformational change is needed for Cys327 to

approach near the L-cysteine substrate to carry out the nucleo-

philic attack.

The position of the catalytic cysteine is essential for the
cysteine desulfurase activity of DndA

It has been suggested that the flexibility of the loop containing

the catalytic cysteine might be the reason why the catalytic

cysteine can overcome the long distance to attack the substrate L-

cysteine [14]. If this flexibility simply results from a random

thermal motion, then residues close to the catalytic cysteine in the

primary sequence should also have certain chances to approach

the substrate cysteine. Under this circumstance, moving the

catalytic cysteine to a nearby position on the primary sequence

would not expect to cause a disastrous effect, and should retain

some of the cysteine desulfurase activity. To test whether this

possibility is true for DndA, we created two double point mutants

of DndA, S325C/C327S and C327S/S329C, with the apparent

result that the position of the catalytic cysteine was moved two

residues forward or backward on the primary sequence. We chose

Ser325 and Ser329 to mutate for two reasons. First, the side chain

of serine is most similar to cysteine; and second, the residues one

spacing (Thr328) or three spacings (Ala330) forward are on the

opposite side of the b strand.

When we performed the in vitro enzymatic activity assay, WT

DndA exhibits high specific activity (48.9 units/mg), similar to that

previously reported (38.6 units/mg) [7] and comparable with those

reported for E. coli IscS (78 units/mg) [10] and A. vinelandii NifS (89

units/mg) [20]. In contrast, the C327S mutant of DndA

completely lost the cysteine desulfurase activity (1.3 units/mg).

Importantly, the S325C/C327S (0.9 units/mg) and C327S/

S329C (0.6 units/mg) double point mutations also drastically

eliminated the cysteine desulfurase activity of DndA (Figure 4).

Therefore, we conclude that the conformational change of DndA

which brings the catalytic cysteine to the substrate cysteine is

unlikely to be a simple result from random thermal motion.

Discussion

The crystal structure of DndA is similar to those of other

cysteine desulfurases/selenocysteine lyase, with root-mean-square

deviation (RMSD) of 1.166 Å over 266 Ca atoms with NifS

(37.1% sequence identity), 1.267 Å over 276 Ca atoms with IscS

(46.6% identity), 1.773 Å over 206 Ca atoms with SufS (24.7%

identity), and 1.800 Å over 216 Ca atoms with CsdB (25.6%

identity) (Figure 5A). The active site cysteines of IscS (Cys328) and

of NifS (Cys324) exist on long and flexible loops. Unfortunately,

parts of these loops containing the catalytic cysteines (residues

328–333 of IscS, and residues 321–332 of NifS) are disordered in

the crystal structures. The distance between PLP and the residues

closest to the catalytic cysteines in their primary sequences (Ala327

and Glu334 in IscS, Thr320 and His333 in NifS) are all no less

than 9 Å (Figure 5C and 5D). On the other hand, the active site

cysteines of CsdB (Cys364) and of SufS (Cys372) are located on

relatively shorter loops, which are visible in the crystal structures.

The distances between PLP and these catalytic cysteines are ,7 Å

(Figure 5E and 5F). Although this distance is much shorter than

those in IscS and NifS, it is still greater than expected for the

nucleophilic attack of the thiolate group of catalytic cysteine on the

sulfur atom of the substrate cysteine to occur. In DndA, the

distance between the catalytic Cys327 and PLP is about 16 Å,

more similar to those in IscS and NifS. The distance between

Cys327 and the supposed substrate binding site (the orange circle

Figure 1. Crystal structure of DndA from Streptomyces lividans. (A) Overall structure of the DndA dimer. The structure is viewed
perpendicular to the two-fold axis of the dimer. The two protomers are shown in magenta and green, respectively. Their bound PLP cofactors are
presented as sticks, with carbon atoms yellow, nitrogen atoms blue, oxygen atoms red, and phosphorus atoms orange. (B) Structure of a
protomer of DndA. a helices are shown in cyan, b sheets are shown in magenta, and loops are shown in pink. PLP and its covalently linked Lys200
of DndA, as well as the catalytic Cys327 (mutated to serine in our study), are shown in stick representation.
doi:10.1371/journal.pone.0036635.g001
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in Figure 3B) is also greater than 10 Å. Therefore, similar to

previously suggested for other cysteine desulfurases [14], a

conformational change is required to bring Cys327 to the vicinity

of the substrate cysteine for nucleophilic attack. As suggested by

our in vitro enzyme activity assay using site-directed mutants, it is

unlikely that this conformational change results simply from a

random thermal motion.

In order for the catalytic cysteine to carry out the nucleophilic

attack on the substrate cysteine, its thiol group needs to be

deprotonated first to enhance its nucleophilicity. The residue

Figure 2. Structure-based sequence alignment of DndA and related cysteine desulfurases/selenocysteine lyase. The amino acid
sequences of DndA from Streptomyces lividans, IscS from Escherichia coli, NifS from Thermotoga maritima, CsdB from Escherichia coli, and SufS from
Synechocystis sp. PCC 6803 are aligned based on their sequence homology and secondary structures. a helices are shaded in cyan, and b sheets are
shaded in yellow. Residues conserved in all five proteins are shown in bold letters. Secondary structure elements and residue numbers for DndA are
shown above the sequences. The conserved catalytic cysteine residues (Cys327 in DndA) are emphasized with a red box. The conserved lysine
residues (Lys200 in DndA) which form Schiff base covalent links with bound PLP’s are indicated with a magenta box. The residues which are
presumed to recognize the carboxylate group of L-cysteine substrates (Asn150, Gln178, and Arg353 in DndA) are marked with green boxes.
doi:10.1371/journal.pone.0036635.g002

Crystal Structure of DndA
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which performs this task of activating the catalytic cysteine has

been proposed to be the histidine stacking on top of the pyridine

ring of PLP (His99 in NifS) [15]. This histidine residue is highly

conserved, and corresponds to His99 in DndA (Figure 2).

Therefore, His99 in DndA might be one candidate that

deprotonates the catalytic Cys327. Besides His99, there is another

highly conserved basic residue, Arg353, which is closer to Cys327.

The distance between Arg353 and Cys327 is 10.5 Å, about half of

that (19.9 Å) between His99 and Cys327 (Figure 3B). Thus,

Arg353 could be another candidate that activates Cys327.

Up to now, it has not been entirely elucidated what is the

difference in molecular basis between cysteine desulfurases and

selenocysteine lyases for sulfur/selenium discrimination. Com-

pared to the selenocysteine lyase CsdB, DndA is more similar to

cysteine desulfurases IscS and NifS in terms of both sequence

identity and structural homology. However, DndA exhibits a

higher specific activity for L-selenocysteine over L-cysteine [7].

Elucidation of the mechanistic basis for L-selenocysteine/L-

cysteine substrate differentiation would await further investigation.

Materials and Methods

Protein Expression and Purification
The cDNA encoding full length wild type (WT) Streptomyces

lividans DndA (residues 1–380) was cloned into the pET28a

(Novagen) vector, with an N-terminal His-tag. Point mutation of

C327S on DndA was introduced by the overlapping PCR method.

Successfully constructed plasmids were further confirmed by DNA

sequencing.

Both WT and C327S mutant DndA proteins were overex-

pressed in E. coli strain BL21(DE3). Cells were grown at 37uC in

Luria Broth medium to an OD600 of 0.6–0.8, and were then

induced overnight at 16uC with 0.2 mM IPTG. Cells were

harvested by centrifugation, and resuspended in the binding buffer

(25 mM Tris-HCl, pH 8.0, 300 mM NaCl, and 20 mM imidaz-

ole). Harvested cells were lysed by sonication, followed by

centrifugation. Supernatant of the cell lysate was then purified

by Ni2+-NTA affinity chromatography (Qiagen), Source 30Q

anion exchange chromatography (GE Healthcare), and Superdex

200 gel filtration chromatography (GE Healthcare). The Superdex

200 buffer contained 25 mM Tris-HCl, pH 8.0, 150 mM NaCl,

and 2 mM dithiothreitol (DTT). Peak fractions were combined

and concentrated to 15 mg/ml, flash-frozen in liquid nitrogen,

and stored in 280uC until use.

Crystallization and structure determination
Crystallization trials for both WT and C327S mutant DndA

were performed at 14uC by the hanging-drop vapor-diffusion

method, either in the presence or absence of the substrate L-

cysteine. Despite considerable effort, we were only able to obtain

crystals of C327S mutant DndA in the absence of L-cysteine. The

crystallization condition was 20% PEG3,350, 0.1 M sodium

acetate, pH 5.5, and 0.2 M ammonium citrate. X-ray diffraction

data sets of DndA-C327S were collected at the beamline BL17U1

at Shanghai Synchrotron Radiation Facility (China), using an

ADSC Quantum 315r CCD area detector. The diffraction data

were processed using the CCP4 program MOSFLM [21].

Crystals of the DndA-C327S protein belonged to the P2 space

group, with one dimer of DndA-C327S with covalently bound

Figure 3. The binding site of PLP on DndA. (A) PLP is located in a deep surface pocket on DndA. The two protomers of DndA are shown
in surface representation, with only one PLP shown in stick representation. The protomer of DndA harboring this PLP is colored in light grey, whereas
the other protomer is colored in dark grey. Blue, red, yellow, and orange represent nitrogen, oxygen, carbon, and phosphorus atoms, respectively. (B)
The interaction interface between PLP and DndA. DndA is shown in grey, with carbon atoms of its side chains and PLP shown in green. Blue,
red, and orange represent nitrogen, oxygen, and phosphorus atoms, respectively. Hydrogen bonds are represented by magenta dashed lines. The
orange circle indicates the presumable location of the carboxylate group of the L-cysteine substrate.
doi:10.1371/journal.pone.0036635.g003

Figure 4. Specific activities of WT and point mutants of DndA
measured using in vitro cysteine desulfurase activity assay.
Assays were performed for five times, and the average values of specific
activities along with standard deviations of the measurements were
shown.
doi:10.1371/journal.pone.0036635.g004

Crystal Structure of DndA
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PLP molecules in each asymmetry unit. The structure was

determined to 2.4 Å, by the method of molecular replacement

with the CCP4 program PHASER [21], using the structure of E. coli

IscS (PDB code: 1P3W) as the searching model. Model building was

performed using COOT [22]. After refinement by the REFMAC

program of CCP4 [21], the model has an R factor of 19.2% and

Rfree of 23.4%. The model quality was validated with the CCP4

program PROCHECK [21]. The final model includes residues 2–

359 of DndA together with a covalently bound cofactor PLP. In the

Ramachandran plot, 97.9% and 2.1% of residues are in the most

favored and generally allowed regions, respectively.

Site-directed mutagenesis
Double point mutants of DndA, S325C/C327S and C327S/

S329C, were generated by the overlapping PCR method.

Identities of successfully-made constructs were verified by DNA

sequencing. Proteins of these two double point mutants were

purified as above.

In vitro cysteine desulfurase activity assay
The cysteine desulfurase activity of DndA was measured as

sulfide production using L-cysteine as substrate. The assay was

carried out in a mixture with a total volume of 0.8 ml, containing

50 mM Tris pH 8.0, 0.02 mM PLP, 5 mM DTT, and various

concentrations of DndA. Reactions were initiated with the

addition of 2.5 mM L-cysteine. After 20 minutes incubation at

37uC, the reaction was stopped by adding 100 ml of 20 mM N,N-

dimethyl-p-phenylenediamine sulfate in 7.2 M HCl and 100 ml of

30 mM FeCl3 in 1.2 M HCl. After further incubation for

30 minutes in the dark, the absorption of methylene blue was

Figure 5. Structural comparison of DndA with related cysteine desulfurases/selenocysteine lyase. (A) Structural superimposition of
DndA (red), IscS (green, PDB code 1P3W), NifS (cyan, PDB code 1ECX), CsdB (magenta, PDB code 1C0N), and SufS (blue, PDB code 1T3I). Their bound
PLP’s are shown as sticks. (B) In DndA, the active site Cys327 is located on a b strand, and its distance from PLP is ,16 Å. In IscS (C) and NifS (D), the
active site cysteines are located on relatively long loops, and are not visible in the crystal structure. Visible residues closest to the catalytic cysteines
on the primary sequence are no less than 9 Å from PLP. In CsdB (E) and SufS (F), the active site cysteines are located on relatively short loops, and are
,7 Å from PLP.
doi:10.1371/journal.pone.0036635.g005

Crystal Structure of DndA
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measured at 650 nm. The sulfide concentration was determined

based on a standard sodium sulfide curve. Specific activities of WT

and mutant DndA proteins were expressed as units per milligram

of protein, with one unit of enzyme defined as the amount that

catalyzed the formation of one nanomole of product in one

minute.

Molecular Graphics
All protein structure figures were generated using PyMOL

(http://pymol.sourceforge.net).

Accession codes
The atomic coordinate and structure factor of the DndA protein

with its covalently bound cofactor PLP have been deposited in the

Protein Data Bank with the accession number 3VAX.
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