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Abstract

Tendons consist of passive soft tissue with non linear material properties. They play a key

role in force transmission from muscle to skeletal structure. The properties of tendons have

been extensively examined in vitro. In this work, a non linear model of the distal biceps

brachii tendon was parameterized based on measurements of myotendinous junction dis-

placements in vivo at different load forces and elbow angles. The myotendinous junction dis-

placement was extracted from ultrasound B-mode images within an experimental setup

which also allowed for the retrieval of the exerted load forces as well as the elbow joint

angles. To quantify the myotendinous junction movement based on visual features from

ultrasound images, a manual and an automatic method were developed. The performance

of both methods was compared. By means of exemplary data from three subjects, reliable

fits of the tendon model were achieved. Further, different aspects of the non linear tendon

model generated in this way could be reconciled with individual experiments from literature.

Introduction

The prediction of human elbow joint movements can be achieved by means of biomechanical

models of the skeleton, soft tissue, and muscles. Muscle forces are actively generated by muscle

contraction, and transmitted to bones via tendons. The force generated by a muscle depends

on its contraction velocity, length, and neural activation. The neural activation is usually mea-

sured indirectly in the form of surface electromyograms (sEMGs). The contraction velocity

and length of the muscle can then be estimated based on biomechanical models which make

use of sEMG signals. In case of a musculoskeletal model including tendons, the muscle length

depends on the skeletal geometry and tendon length. The length of a tendon depends, among

other, non linearly on the exerted force (elasticity) [1]. In several in vitro experiments the elas-

tic properties of mammalian tendon tissue have been measured [1–3], but data on the distal

biceps brachii tendon is sparse [4, 5]. Further, for in vivo elbow movement prediction, an in
vivomethod to access biomechanical tendon parameters is preferable, as in vitro experiments
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with tendons of living subjects requires interventions in the body. In vivo approaches to ana-

lyze the elastic tendon properties are either invasive by implanting sensors into the tissue or

non-invasive by monitoring the tendon shortening by medical imaging and tendon force esti-

mation based on external force measurements [6]. In this context, ultrasonography can be

used as an imaging technique [3, 7–10]. For the upper arm flexor muscles there are currently

only a few studies on in vivo tendon properties as opposed to those studies which focus on ten-

dons of muscles in lower extremities used for walking [11]. The former upper arm studies

focus on the distal biceps brachii tendon [9, 10] but with an emphasis on the analysis of linear

stiffness parameters for medical applications.

As stated above a model, which predicts the elbow movement, depends on the tendon

length. Therefore, the behavior of the biceps brachii tendon is of interest, as the biceps brachii is

a key contributing muscle in elbow flexion [12, 13]. Therefore, in this work, the goal was to

obtain a configurable model for the distal biceps brachii tendon which reflects the non linear

stiffness material properties of the tendon and can be used in conjunction with a muscle

model for model-based elbow movement prediction.

In order to obtain stiffness model parameters for living subjects ideally the tendon length

over tendon force would be measured. Here, the displacement of the distal biceps brachiimyo-

tendinous junction parallel to the humerus was observed by means of ultrasonic imaging at

different loads, for different effective lever arms (due to varying joint angles) and while the

subject maintained a fully supinated hand. As the tendon load could not be measured directly,

it had to be estimated based on a skeletal model. An abstract skeletal model including a simpli-

fied biceps brachii tendon path was used to predict the tendon force corresponding to the force

measured at the wrist for each elbow angle. The tendon displacement parallel to the humerus
was extracted from the ultrasonography images. For this purpose, a manual and an algorithmic

method were used. The algorithmic method was compared with the manual method for data

extraction. It was found that the presented algorithmic method was partially not applicable

resulting in an semi-automatic data extraction. However, the semi-automatic extraction

greatly reduced the effort of feature extraction.

In the following, a general overview on mammalian tendon properties is given before a non

linear tendon model is introduced. The presented stiffness model was fitted onto the manually

and (semi-) automatically extracted tendon displacement dependent on the predicted tendon

force.

Mammalian tendon modeling

In general, tendons connect skeletal muscles to bones. Tendons insert into a bone via the

enthesis and are connected to the muscle via the aponeurosis. The whole junction complex

between muscle and aponeurosis is called myotendionous junction. In case of the distal biceps
brachiimyotendinous junction the aponeurosis additionally connects the biceps brachii with

the forearm fascia [14].

The role of a tendon in joint dynamics is determined by the geometry and material parame-

ters [15]. Independent of the role, each tendon is understood to have elastic, movement damp-

ing properties [16]. Additionally creepage [17] and friction with the surroundings [18] were

observed. A tendon model covering the aforementioned properties (except creepage) is shown

in Fig 1B. The model in Fig 1B is composed of principal mechanical units.

If static conditions where assumed, motion-dependent, i.e. also time-dependent, properties

would have no influence on the behavior of the presented model. If the assumption of static

conditions is applied the tendon model depicted in Fig 1B is reduced to the elastic tendon

properties and friction, as _lT ¼ €lT ¼ 0 (Fig 1C). Furthermore in this work, friction is assumed
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to be negligible Ffric� 0. As a consequence, only the elastic property of the tendon is further

discussed. Elasticity is described as a force resisting changes in length. This is modeled by a

function F(Δl). Where

Dl ¼ l � l0 ð1Þ

is the difference between the actual length l and the slack length l0. Usually, elastic properties

are expressed as force over strain where strain is defined as 2 ¼ Dl
l0

. This implies knowledge on

the slack length l0. The slack length of a tendon in in vivo conditions is not necessarily known.

Depending on the tendon in question and the experimental equipment that is available, it is

likely that the slack length l0 has to be guessed. This work presents a method for myotendinous

junction displacement estimation in vivo in which Δl is measured. Therefore, the tendon has

not to be modeled based on its resting (slack) length which is normally not available in vivo.

Nonlinear static mammalian tendon properties

Mammalian tendons, which consist of collagen structures, barely resist shortening therefore,

FTðDlTÞ ¼ 0 8 DlT � 0 ð2Þ

is assumed. The tendon resists lengthening in a non linear behavior, as demonstrated in Fig

2A. This behavior is due to the collagen structure in which the collagen strains do engage at

Fig 1. (A) Pictogram of the biceps brachii elbow flexor and its distal tendon with a mechanical model of the distal

tendon in dynamic (B) and static conditions (C). (A) Pictogram of the biceps brachii (in red) and its lower tendon (in

orange) attached to the radius. (B) A general tendon model including the tendon weightmT, non linear stiffness Fk(Δl),
non linear damping Fdð_lTÞ, and friction to surrounding tissue Ffircð_lT ; FNÞ. (C) This model is obtained by applying

static conditions to the model shown in (B).

https://doi.org/10.1371/journal.pone.0275128.g001

Fig 2. (A) Exponential elastic tendon lengthening model and its (B) stiffness as function of tendon force. In (A)

the tendon force is shown over the change in tendon length in orange. As described in Eq (10). The linear force length

relationship is extended with a dashed line. In (B) the stiffness kT of the exponential tendon model is shown over the

tendon force FRack
T . The tendon model parameters are marked in the plot. The non linear stiffness is configured by (c1

and c2). As shown in Eq (6) c1 is the change in stiffness kT over a unit change in F. the parameter c2 is the stiffness at

FRack
T ¼ 0. At the force Ftoe, the model continuously transitions into a linear stiffness function.

https://doi.org/10.1371/journal.pone.0275128.g002
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different lengths [15]. When the collagen structure is fully engaged the elastic behavior

becomes linear. The tendon length at this state is called Δltoe. The region 0� ΔlT < = Δltoe is

referred to as toe region as defined by [1]. If the tendon is at ΔlT = 0, it is at its slack length, the

length at which there is virtually no resistance to lengthening.

FTðDlTÞ > 0 8 DlT > 0 ð3Þ

For modeling the tendon force in relation to changes in length there are two major models.

The first is a polynomial tendon model as described by Buchanan et al. [19]. The second is an

exponential tendon stiffness model (see Eq (10)). The exponential tendon model describes a

linear relationship between stiffness and force within the toe region as observed by Rack and

Westbury [2]. The polynomial model as described by Buchanan does not have this property.

Therefore, the exponential model is used throughout this work.

Tendon model with exponential force length relation by Rack and Westbury. A linear

force stiffness relationship, as described by Rack and Westbury [2], can be reached by an expo-

nential force strain model. In general the stiffness of a material is defined as

@F
@l
¼ k: ð4Þ

Rack and Westbury could show, based on measurements of the cat soleus tendon, that the

stiffness of a mammalian tendon kT depends linearly on the applied force [2].

kT ¼
@FRack

T

@DlT
¼ c1 � F

Rack
T þ c2 ð5Þ

Proske and Morgan concluded that the linear stiffness behaviour of Eq (5) is only valid in

the toe region and assumed that the tendon stiffness beyond the toe region is constant [20],

thus leading to a linear force strain behaviour beyond the toe region (Fig 2A). Based on these

findings, the following differential equation models the stiffness for FRack
T � 0 during the

lengthening of the tendon (ΔlT� 0).

kT ¼
@FRack

T

@DlT
¼

c1 � FRack
T þ c2 ; 0 � FRack

T � Ftoe

c1 � Ftoe þ c2 ; Ftoe < FRack
T

8
<

:
ð6Þ

Solving the differential equation for each case leads to the following expression, if c2 6¼ 0 is

assumed.

FRack
T ðDlTÞ

¼

�
c2

c1

þ A1 � e
c1 �DlT ; 0 � DlT � Dltoe

½c1 � F
Rack
T ðDltoeÞ þ c2�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

DlT þ A2 ;Dltoe < DlT

8
>>>><

>>>>:

ð7Þ

Where Δltoe is the change in tendon length at which the toe region ends (see Fig 2A). A1 and

A2 are coordinates in the solution space of Eq (7), which also contains physically implausible

solutions. In order to gain a physically feasible solution, the condition from Eq (2) is applied
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and continuity of FRack
T for ΔlT > 0 is assumed. This results in the following, unique solution.

A1 ¼
c2

c1

ð8Þ

A2 ¼ ½1 � c1Dltoe�FRack
T ðDltoeÞ � c2Dltoe ð9Þ

The substitution of A1 and A2 in Eq (7) leads to the following model description.

FRack
T ðDlT;~r Þ ¼

c2

c1

ec1�DlT � 1
� �

; 0 � DlT � Dltoe

mð~r Þ � DlT þ A2ð~r Þ ;Dltoe < DlT

8
>><

>>:

ð10Þ

Here, the tendon parameters are included explicitly in the function definition as parameter

vector~r.

FRack
T ðDlT ;~r Þ ;where ~r ¼

c1

c2

Dltoe

2

6
6
6
4

3

7
7
7
5

ð11Þ

Eq (10) is not defined for compression (ΔlT < 0). It is widely assumed that the tendon resists

with nearly no force to compression [19, 21]. This compression behaviour, however, is not

needed in this study as the tendon will only be observed in extension. Due to the type of data

acquired in this study, the inverse of Eq (10) is needed.

DlRackT ðFT;~rÞ

¼

ln 1þ
c1

c2

� FT

� �

c1

; 0 � FT �
c2

c1

eDltoe�c1 � 1
� �

FT � A2ð~rÞ

mð~rÞ
;
c2

c1

eDltoe�c1 � 1
� �

< FT

8
>>>>>>><

>>>>>>>:

ð12Þ

Eq (12) is used for the tendon model that was used to represent the experimental data as

described in the following section.

Methods for tendon modelling based on in vivo measurements

Experiments were conducted with 5 subjects from which 3 are shown in this study. All subjects

where recruited by call for participation and gave written informed consent to the pseudo

anonymous usage of the recorded data. All subjects that responded to the call for participation

and stated that they had no related injuries where accepted for the study. The study was con-

ducted according to the ethical guidelines of the German Society for Psychology (DGPs) and

the German Psychologists Association (BdP), and approved by the Ethics Committee of the

University of Bielefeld (EUB 2017–156 02.08.2017). The experiment data is published in a

zenodo data repository [22].

The displacement of the lower biceps brachiimyotendinous junction ΔLmt was measured

over 7 elbow angles Θ and over 6 levels of desired force Fw for each subject. The force was
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measured at the subjects wrist in isometric conditions.

DLmtðY; FwÞ where

Y 2 f90 �; 75 �; 60 �; 45 �; 30 �; 15 �; 0 �g

Fw 2 f5N; 10N; 15N; 30N; 75N; 120Ng

ð13Þ

During the experiment, the right arm of a subject was positioned on a support rack, as

shown in Fig 3. The support rack was used to keep the elbow angle constant during the experi-

ment. A force sensor consisting of a load cell and strain gauges in half bridge configuration

was used to measure the force at the wrist Fraw
w , while the hand was fully supinated. A hook-

and-loop strap mechanically connected the wrist to the load cell. The lengthening of the wrist

strap was assumed to be negligible in terms of changes in Θ (linear stiffness of the wrist strap is

39:39 N
mm at a preload force of 15N). The strain gauges were processed with a bridge measure-

ment module (NI-9237, National Instruments Corp., Austin, TX, USA) and Fraw
w was logged

via LabVIEW (National Instruments Corp.) at a sampling frequency of fF = 1kHz. The mea-

sured force was offset by the wrist strap preload at the beginning of the experiment, filtered

with a moving average filter over 40 samples and fed back to the subject via a virtual gauge dis-

played on a computer screen using LabVIEW.

The myotendinous junction was observed using an ultrasonic device in B-mode. The ultra-

sonic transducer was handled by an experienced operator. As indicated in Fig 3, the tendon

displacement together with the wrist force was measured in three steps.

1. In the unloaded muscle state (no wrist force) a video capture of the ultrasonic B-mode

image was started. (t0 = 0s)

2. The subject was instructed to flex the right arm such that the desired force level could be

measured at the wrist (feedback via computer screen). (t1 = 2s)

3. The B-mode video capture was stopped and then the subject was instructed to relax again.

(t2 = 8.5s)

medial view

Fig 3. A medial view on the experimental setup. The distance lw(Θ) between the elbow and the wrist strap, which

mechanically connects wrist and load cell, is marked with gray lines. The distance lw depends on the elbow angle Θ,

which is shown in black. A change in joint angle is constrained by the depicted construction of aluminium profiles. If

the screw in the hinge joint of the profile structure is loosened, the joint angle can be adjusted.

https://doi.org/10.1371/journal.pone.0275128.g003
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4. At least 20 seconds of rest.

These steps were initiated by beeping sounds at the given times t and repeated for each

desired force level Fw at each elbow angle Θ. For each subject the experiment started at an

elbow angle of Θ = 90�. First, the maximal voluntary contraction force was measured without

ultrasonography imaging. Then each desired force level was measured three times in ascend-

ing order before the elbow angle was reduced by 15� (note Eq (13)).

Later, the movement of the myotendinous junction was extracted from the B-mode video

captures.

Additionally, distances between anatomic landmarks of the arm were measured with a tai-

lor tape measure (S1 Table). These distances were used as the basis of a skeletal arm model

(cmp. Eq (37)). With this model, the tendon properties were determined by means of a fitting

approach. Here, it was assumed, that any observed movement of the myotendinous junction

parallel to the humerus is attributed to the lengthening of the lower tendon of the biceps brachii
muscle during contraction. Using force and shortening information, a local tendon stiffness

for a given elbow angle Θ can be estimated or a global characteristic curve which is valid for

several elbow angles can be constructed. The latter was the goal of this work.

In vivo measurement of the tendon displacement

In order to quantify the displacement of the lower biceps brachiimyotendinous junction, ultra-

sonic video images of the anatomical structure were recorded with an E1 ultrasound device

equipped with the 50 mm linear ultrasonic array transducer L741 (SonoScape Medical Corp.

Shen Zhen, P.R. China) in B-mode at a frequency spectrum of 9.5MHz to 12.2MHz. The linear

array was chosen as its field of view allows safe observations of the myotendinous junction dur-

ing the complete shortening process up to the maximal voluntary contraction. The intensity in

a B-mode image corresponds to the amplitude of reflected acoustic waves. Reflections occur at

tissue changes due to varying material properties. A homogeneous tissue section would appear

in black, in contrary to inhomogeneous tissue sections or junctions between two homogeneous

sections. Fig 4A shows the lateral view of the measurement setup as an anatomical sketch with

an orientation of the linear array (SP) that corresponds to the imaging orientation in Fig 4B

(left, marked I). In Fig 4B the actual two ultrasonic images of the myotendinous junction in

two imaging orientations I (Fig 4B, left) and II (Fig 4B, middle) are given. To further illustrate

the position and orientation (imaging plane I or II) of the linear ultrasonic array, an anatomi-

cal sketch of the biceps brachii and brachialis from an anterior perspective is given on the right

side of Fig 4B. Imaging plane I (left side of Fig 4B) represents the parasagittal plane crossing

the humerus (Hum) and the aponeurosis (BicAP). The aponeurosis connects the tendon (BicT)

to the muscle (cmp. Fig 4A). Here, each muscle fiber’s terminal Z disk is connected to the ten-

don collagen structure [23]. Due to the change in material properties, the aponeurosis appears

as a distinct feature in the ultrasonic image. As the muscle fibers gradually terminate, the mus-

cle belly flattens out. A distinct region is identified where the aponeurosis emerges from the

main tendon structure (furcation of BicT ranging into the biceps Bic). This point is referred to

as~pmt, and is marked by a white cross in Figs 4B and 5. Contraction of the muscle leads to

movement of that point. Due to the anisotropic structure of skeletal muscle, the biceps brachii
can be discriminated from the brachialismuscle group (Bra). The cross-sectional view in imag-

ing plane II allows a clear distinction of the individual muscles, as the the muscle structure in

the abaxial plane is mostly homogeneous as opposed to the tissue transitions.

During the experiment the ultrasonography operator focused on maintaining the imaging

plane I (cmp. Fig 4B). Hence, the operator had to constantly compensate changes of the probe
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orientation, induced by skin surface changes during contraction. The operator focused on

maintaining the same reference points marked by brachialis insertion into the humerus, as

well as the myotendionous junction within the frame. If this was not possible, the operator

instructed a repetition of the measurement.

Fig 4. In (A) the lateral view of the experimental setup in form of an anatomical sketch is shown. An ultrasonic probe (SP) is used to image a cross-section of the

distal part of the upper arm. The cross-section contains the distal tendon of the biceps brachii (BicT). Simultaneously, the force generated by the arm is measured with a

force sensor (FS) near the wrist (cmp. Fig 3). The biceps brachii (Bic), its long head (BicLH), its short head (BicSH), brachialis (Bra) and humerus (Hum) are also labeled.

In (B) the ultrasonic images of two orthogonal cross-sections are depicted. The orientation of both imaging planes are marked in a sketch on the right side, which

shows the anterior perspective on the Bic and Bra. Orientation I was the only imaging plane used during the presented study (cmp. (A)). The structures of the Bic are

marked in red. The junction of Bic and BicT was observable in this view (white cross) as well as part of the aponeurosis (BicAP). Imaging plane II is orthogonal to imaging

plane I. The furcation (wing-like structure) of the aponeurosis was observable (marked in orange) as well as different parts of the Bra muscle group—the brachialis deep
head (BraDH) in green and the brachialis superficial head (BraSH) in blue.

https://doi.org/10.1371/journal.pone.0275128.g004

Fig 5. Ultrasonic images of the myotendinous junction (white cross) in the parasagittal plane for the (A) unloaded

and (B) loaded case (cmp. Fig 4A, orientation I) are shown. (A) shows the unloaded state nu (Fw = 0) and (B) the

loaded state nl. Reference points ~~pb on the humerus and ~~pmt on the myotendinous junction are marked in the frame of

each state. The reference points were used to calculate the position of the myotendinous junction ~~pb;mt relative to the

bone local coordinate system (brown). To calculate the bone surface orientation within the frame, a second marker ~~po
was placed arbitrarily on the bone surface. That is ~~poðnuÞ for the unloaded state and ~~poðnlÞ for the loaded state. The

bone line was set such that it included both bone points ~~po and ~~pb. The bone line is drawn in turquoise for each frame.

https://doi.org/10.1371/journal.pone.0275128.g005
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Manual extraction of the myotendinous junction displacement. In Fig 5 two B-mode

frames in the parasagittal plane are shown (for reference compare with orientation of imaging

plane I in Fig 4A). These frames were selected by an experienced ultrasonography operator

who decided, based on the movement of the anatomical structures, when the steady states of

the myotendinous junction movements were reached. The first steady state was the unloaded

state whereas the second state was reached when the subject applied the instructed force level.

Due to deformation of the tissue during contraction, the two frames show slightly different

viewpoints. During the experiment, the ultrasonography operator chose a fixed reference

point and made sure that it stayed within the frame. As reference points, insertion points of

brachialis fibres at the humerus were chosen as these are fixed within the coordinate system of

the humerus. These points served as reference coordinate system. Fig 5 depicts the bone coor-

dinate frame at that reference point in brown for the unloaded Fig 5A and loaded state Fig 5B.

It is oriented such that the abscissa is congruent with the bone surface. The bone surface in the

B-mode image is abstracted as a line (Fig 5, drawn in turquoise). The bone line was parame-

trized by means of of the orientation angle ~gb (see Fig 6) and the bone reference point ~~pb
(where the tilde symbol indicates that the respective quantity is linked to the manual data

extraction). The orientation angle ~gb was derived from the bone reference point ~~pb and a sec-

ond marker ~~po. These parameters were manually marked for the unloaded state nu and loaded

state nl.
The point of the myotendinous junction ~~pmt was chosen where the aponeurosis crosses with

an imaginary extension of the fascia in both states. The junction point was transformed into

the reference coordinate system for each frame.

~~pb;mt ðnkÞ ¼ R� 1ð~gbðnkÞÞ � ð~~pmt ðnkÞ �
~~pbðnkÞÞ with k 2 fu; lg ð14Þ

Where ~gbðnkÞ is the bone line orientation angle relative to the abscissa of the bone local coordi-

nate system. And R(•) is the rotation matrix for the bone local coordinate system. The bone

local coordinate system is a left handed coordinate system. Rð�Þ �~n rotates~n in the clock wise

direction for positive angles. Consequently R−1(•) and ~gbðnkÞ are described as follows.

R� 1ð�Þ ¼
cosð�Þ sinð�Þ

� sinð�Þ cosð�Þ

" #

ð15Þ

Fig 6. Bone line angle calculation in case of (A) the manual and (B) the automatic data extraction. A sketch which

demonstrates how the bone line angle was calculated during manual data extraction (~gb) and automatic data extraction

(ĝb). (A) demonstrates the case of manual bone line labeling in which ~gb was derived from the vector ~~pb;o as described

in Eq (16). Analog (B) demonstrates how ĝb was derived from a bone line expressed inHough-line parameters (cmp.

Fig 9) as formulated in Eq (24).

https://doi.org/10.1371/journal.pone.0275128.g006
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~gbðnkÞ ¼ arctan
½~~pb;oðnkÞ�y
½~~pb;oðnkÞ�x

 !

ð16Þ

Where ~~pb;o ¼ ~~po � ~~pb is the vector pointing from the bone reference point to the bone orienta-

tion marker as shown in Fig 6A. The operator [•]x returns the x coordinate and [•]y the y coor-

dinate of a vector.

Calculation of myotendinous junction movement. After the myotendinous junction

~~pb;mtðnkÞ was described in the bone local coordinate system, the tendon lengthening could be

calculated for each frame. If the absolute position of the bone reference point in a skeleton

model and the path of the tendon were known, the lengthening of the tendon could be calcu-

lated accurately. In this work, the lengthening of the tendon was assumed as the movement of

the myotendinous junction from unloaded to the loaded state parallel to the bone line.

D~~pb;mt ðY; FwÞ ¼
~~pb;mtðnl;Y; FwÞ � ~~pb;mtðnu;Y; FwÞ ð17Þ

D~LmtðY; FwÞ ¼ ½D~~pb;mtðY; FwÞ�x ð18Þ

Data for D~Lmt of subject 0 is presented as an example in Fig 7A. Later the quality of the

extracted data is discussed and compared with a (semi-) automatic approach.

Computer aided extraction of the myotendinous junction displacement. In addition to

the manual procedure for extracting the myotendinous displacement (see Eqs (17) and (18)) a

computer-aided procedure was employed. The computer-assisted method allows a) to mini-

mize any inaccuracies due to the experimenter’s subjective judgment during manual extrac-

tion of reference points, b) to ensure reproducibility of results, and c) to achieve higher

throughput when processing large data sets.

In order to calculate the junction movement DL̂mt, the computer-aided method extracts the

myotendinous junction ~̂pmt, the relative orientation of the bone ĝ and the bone reference point

~̂pb from B-mode ultrasound frames based on different algorithmic methods as depicted in

Fig 7. Tendon displacement over wrist force for all elbow angles is shwon in case of (A) manual and (B) (semi-) automatic data extraction, with (C) a

comparison of both methods. The length of the junction movement parallel to the bone of subject 0 is shown for the manually extracted data D~Lmt as depicted in

(A) and for the automatically extracted data DL̂mt in (B). In both cases the mytendinous junction movement parallel to the bone is shown over the wrist force Fw for

all elbow angles Θ (cmp. Eq (13)). The bone line angle as well as the evaluated frames are adopted from the manual evaluation as described in Eq (31). In (C) the

difference between the automatically extracted data DL̂mt and the manually extracted data D~Lmt of subject 0 is shown.

https://doi.org/10.1371/journal.pone.0275128.g007
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Fig 8 and described in the following paragraphs. The hat symbol is used as annotation of mea-

surement quantities related to the computer-aided feature extraction.

Detection of myotendinous junction using deep neural networks. In order to detect the

myotendinous junction ~̂pmt from the data set of B-mode ultrasound frames, a deep learning

approach using transfer learning was used (see Fig 8). Automated tracking of the myotendi-

nous junction using convolutional neural networks has recently been shown to provide accu-

rate results comparable to manual tracking methods [24, 25] and to be less error-prone than

semi- and fully-automated myotendinous junction tracking approaches based on optic flow

[26, 27] or block-matching algorithms [28, 29].

To generate and train a convolutional neural network capable of detecting the myotendi-

nous junction ~̂pmt of the biceps brachii from ultrasound images, the markerless pose-estimation

framework DeepLabCut [30] was used. The architecture of the underlying convolutional net-

work is based onMobileNetV2 [31] and was pretrained on the ImageNet data set by [32]. A

training data set was generated via random selection of 203 video sequences from the data set

of B-mode ultrasound images. From each individual video sequence 10 images were extracted

in a randomly and temporally uniformly distributed manner resulting in a total of (n =) 2030

frames. In each of the extracted image frames, the myotendinous junction of the biceps brachii
was labeled by hand, hence, serving as a ground truth. The labeled images were subsequently

split into two data sets for use in training (nt = 2185 frames) and evaluation (ne = 115 frames).

Training of the neural network was performed using the training data set with a batch size of

20 for 200000 iterations and DeepLabCut’s standard parameters. The performance of the neu-

ral network was subsequently evaluated via computation of the the mean average error (MAE)

of the Euclidean distance between the predicted and the ground truth location of the myoten-

dinous junction in the evaluation data set. This resulted in an MAE of 4.32 pixels correspond-

ing to 0.50mm. After training, the neural network was used to automatically infer the location

of the myotendinous junction ~̂pmtðnÞ from the individual video sequences of B-mode ultra-

sound images (hat symbol indicates computer-aided feature extraction).

Computation of the bone orientation. The bone orientation ~gb relative to the x-axis was

previously calculated from two manually selected points on the bone surface ð~~pb; ~~poÞ. Due to

the lack of explicitly definable features on the bone surface for these points in the B-mode

frames, feature tracking analog to the myotendinous junction was not an option. The bone

surface appears as a continuous feature in the B-mode image as depicted in Fig 5. However,

Fig 8. Block diagram for each computational method of feature extraction is shown. The computed features are from left to right: the mytendinous

junction, bone line and bone reference point. The mytendinous junction is tracked with a neural network based on theMobileNetV2 algorithm. The

bone line is tracked viaHough-Line-Transformation. The bone reference point is tracked by a method based on the Lucas-Kanade algorithm.

https://doi.org/10.1371/journal.pone.0275128.g008
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the bone surface has a high contrast as compared to the surrounding muscle tissue. The transi-

tion from muscle tissue to bone can be abstracted as a line. Therefore, the B-mode image was

filtered for edges and a line detection algorithm was applied. As the fibers in the muscle tissue

also have a line characteristic, the B-mode image was cropped such that the risk of a line fea-

ture in the muscle tissue being detected as bone line was minimized. A block diagram of this

process is shown in the middle section of Fig 8. In order to confine the algorithm to an image

region relevant for the detection of the visual line separating muscle from bone tissue, each

ultrasound image frame was cropped using the FFMPEG library [33] resulting in a size of

(wc =) 600 by (hc =) 414 pixels of the cropped frame. (xc = 320, yc = 350) is the horizontal and

vertical pixel position of the top left corner of the cropped region within the original frame

(see Fig 9A). After cropping, the Canny edge detection algorithm ([34], as implemented in

OpenCV [35]), was applied to each frame. This algorithm contains a four-stage process in

which 2 of the 4 stages need to be parameterized. First, a noise reduction with a 5x5 Gaussian
filter is applied. Second, the intensity gradient is computed. This process is parameterized by

the aperture size (as = 3) and the norm used in gradient computation. Here, the computation-

ally efficient L1 norm was used. Third, after gradient computation, a non-maximum suppres-

sion is applied. The result is an image in which the value of each pixel describes the gradient of

an edge. Finally, in the fourth step, these edges are filtered by hysteresis thresholding. In this

work, pixel with a gradient value above gradmax = 220 were accepted as edges. Pixel with a gra-

dient value above gradmin = 50 were considered edges if they were connected to edges above

gradmax. All other pixel/edges were filtered out. The used parameters are shown in S2 Table.

Fig 9. (A) Bone lines detected in a B-mode frame and (B) shown in parameter space. (A) is a frame of the cropped

section of a B-mode video. The detected lines have the same color coding as in the scatter plot of the bone line

parameter space. (B) The corresponding scatter plot of detectedHough-Lines in their parameter space. The biggest

detected cluster is shown in yellow and its mean is shown in red. All other data points are black.

https://doi.org/10.1371/journal.pone.0275128.g009
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The remaining edges were used during theHough-transformation for line detection. The

Hough-lines are defined by a vector~r in cylindrical coordinates (r, φ). The vector has to be

understood as a point on the described line~r ¼~lbðh ¼ 0Þ. Where~lbðhÞ is the parameter form

of the bone line, which is defined as follows.

~lbðhÞ ¼ ~mb � hþ~b ð19Þ

Furthermore, it is assumed that~r is oriented orthogonal to that line (~r ? ~mb). Because of

these two definitions, the bone line lb(h) is fully defined by the tuple (r, φ) where r is in pixel

and φ in radiant. These parameters span a constrained parameter space of possible lines.

� 1 < r <1 0 � φ � p ð20Þ

This Hough-line parameter space was transformed into a constrained and discretized

Hough-line search space which is described by

r 2 frk j rk ¼ xl þ Dr � k; rk � xh; k 2 N0g

with : xl � � ðwc þ hcÞ

xh � � xl

ð21Þ

and

φ 2 fφk j φk ¼ Dφ � k; rk � p; k 2 N0g ð22Þ

where Δr = 1 and Dφ ¼ p

180
are the search resolution parameters.

For each edge pixel in a frame all lines containing this pixel in the discretized parameter

space were considered and the counter of the corresponding parameter tuple was increased.

After all edge points had been processed, those parameter tuples with counter values larger

than a threshold (ThresholdHough = 40) were considered to be bone line candidates. These can-

didates were sorted by their counter values. The candidates with the 10 highest counter values

were selected for further processing (see Fig 9A). The parameters used for the OpenCV Hou-
gLines function were shown in S3 Table in the S3 Table. If a function parameter is not listed,

the default value was chosen. The selectedHough-lines were used to calculate a mean bone

line. As some structures in the muscle tissue also resulted in detected lines, a clustering algo-

rithm (DBSCAN from SciPy [36]) was applied to filter for bone lines, as shown in Fig 9B. By

means of majority voting, the biggest cluster was chosen and its mean parameter vector was

used to describe the bone line. In subsequent steps, only the orientation of the bone line was

used. Before clustering, theHough-line parameters were normalized on the expected range for

a bone line.

�rhðn;mÞ ¼
rhðn;mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
c þ h2

c

p �φhðn;mÞ ¼
φðn;mÞ � 2

p
ð23Þ

This way distances between parameters in �rh and �φh can be treated equally, which is benefi-

cial for clustering. The function parameterm 2 {0, 1, . . ., 9} is the index of a bone line parame-

ter set in frame n. After this normalization, DBSCAN is applied which is a density based

clustering algorithm defined by [37]. There are 3 types of data points. 1. a core point, which has

at least nmin,s − 1 samples within the distance �core. 2. a border point, which is within the dis-

tance �core of a core point. 3. noise points / outlier. The latter are not reachable from any point.

A point is called reachable, if there is a chain of core points within the distance �core. Points,

which reach each other, are part of the same cluster. For bone line clustering, the amount of
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core points was set to nmin,s = 2 and �core = 0.02 was chosen. As distance function, the Euclid-
ean-distance L2(•) = k•k2 was used. In S4 Table the parameters are listed with their names as

given in the SciPy module [36]. Default values were used for those function parameters that

are not listed. The bone line was then calculated as the mean of the biggest cluster (rb(n),

φb(n)) where n is the index of the corresponding frame. Based on this findings, the bone line

orientation angle relative to the abscissa was calculated as follows.

φb nð Þ � ĝb nð Þ ¼
p

2
, ĝb nð Þ ¼ φb nð Þ �

p

2
ð24Þ

A derivation of this relationship is shown in Fig 6B. In the used coordinate system, a clock

wise rotation is positive. This description of ĝb can be used instead of the manual labeled bone

orientation ~gb.

Tracking of the bone reference point via Lucas-Kanade optic flow estimation. As com-

pared to the myotendinous junction, the visual texture of bones in B-mode ultrasound images

does not provide distinct visual features consistent for all subjects (Fig 4). Hence, the auto-

mated inference of reference points using a deep neural network approach based on transfer

learning—such as described in the section Detection of myotendinous junction using deep neu-
ral networks—is not feasible, as such an approach would require supervised training based

on individual features of the bone surface for corresponding subsets of ultrasound images.

Instead, for the automated tracking of the bone reference point ~̂pb on the humerus from

sequences of ultrasound images, an optic flow based approach was used. Lucas-Kanade optic

flow estimation [38] is based on the assumption that the distribution of apparent velocities

induced by motion is constant in a local neighbourhood of an image pixel under consider-

ation. This allows for the temporal tracking of visual features in a sequence of images which do

not share distinct textural properties across a set of image sequences. Recent studies have used

the Lucas-Kanade based estimation of optic flow to temporally track visual features in ultra-

sound images [26, 27].

To obtain the bone reference point ~̂pb from the data set of B-mode ultrasound images, a

region of interest (ROI) representing the bone structure of the humerus was computed for

each frame of the data set of ultrasound images. The ROI was defined as the area below the

visual line separating muscle from bone tissue within the cropped image frames (see paragraph

above; Fig 9A). Within the ROI, visual features were selected for the first frame of each ultra-

sound image sequence using Shi-Tomasi corner detection [39]; implemented using OpenCV
[35]. The maximum number of corners returned via the corner detector was set to Nc,max =

1000 while corners with a quality level of Qc< 0.25 and a Euclidean distance of dc,max < 3

image pixels were rejected. The size of an average block for computing a derivative covariance

matrix over each pixel neighborhood was set to sb = 3. This resulted in a mean of �Nc ¼ 17:34

corners (standard deviation σc = 24.48) detected per analyzed image frame. Subsequently, the

detected visual features (or corners, respectively) in the first frame of an image sequence were

iteratively tracked in the remaining frames of the corresponding image sequence using a pyra-

midal implementation of the Lucas-Kanade feature tracking algorithm [40]; implemented

using OpenCV [35]. The maximum number of pyramidal levels taken into account was set to

Np,max = 4 and the size of the search window at each pyramid level to~sw ¼ ½20; 20�
T
. The termi-

nation criteria of the iterative search algorithm were set to �p = 0.03 for the desired change in

parameters at which the algorithm stops and ip,max = 30 for the maximum number of iterations

to compute. The bone reference point ~̂pb was subsequently obtained for each frame n in each

sequence of ultrasound images via computation of the centroid (i.e. the mean) of the visual
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features with coordinates [fx, fy]T tracked via Lucas-Kanade optic flow estimation according to

~̂pb ðnÞ ¼ ½
�fxðnÞ; �fyðnÞ�

T
ð25Þ

whereas features leaving the ROI during tracking within an image sequence due to movement

of the bone in relation to the ultrasound sensor were discarded.

Comparison of manual and automatic feature extraction. The automatic feature extrac-

tion was compared to the manually extracted data per feature.

When evaluating the tracking of the myotendinous junction, the absolute movement

between states (unloaded, loaded) was compared,

k D~̂pmt k2 � k D
~~pmt k2 ð26Þ

as the investigator in the manual method and the automatic method did not necessarily track

the same feature of the myotendinous junction. Tracking of the bone line was evaluated sepa-

rately for the loaded and unloaded state as the angle of the bone line was comparable on a

frame basis.

ĝbðnuÞ � ~gbðnuÞ; ĝbðnlÞ � ~gbðnlÞ ð27Þ

In case of the bone reference point the absolute movement of a manually chosen feature on

the bone (see Fig 5) and the absolute movement of an automatically chosen feature by Lucas-
Kanade was compared. The comparison of the absolute distance between steady states

k D~̂pb k2 � k D
~~pb k2 ð28Þ

The results of these comparisons are shown in Fig 11. For each comparison a mean absolute

error (MAE) and the Pearson correlation coefficient (R) is calculated.

Calculation of myotendinous junction displacement. The myotendinous junction dis-

placement parallel to the bone needed to be calculated analog to the manual data extraction.

For that, Eqs (14) and (17) still held true. For each manually extracted feature (~~pmt,
~~pb, ~gb)

there is an automatically extracted counterpart (~̂pmt, ~̂pb, ĝb). These features are compared in

Fig 11. It appears that the error between manually and automatically labeled absolute bone ref-

erence point movement (see Eq (8)) correlates with the wrist force Fw (R = −0.58). This finding

is later discussed. Therefore, for further steps the bone reference point was used from the man-

ually labeled data set ~~pbðnÞ instead. Consequently, the myotendinous junction displacement

vector is defined as follows.

~̂pb;mt ðnkÞ ¼ R� 1ðĝbðnkÞÞ � ð~̂pmt ðnkÞ �
~~pbðnkÞÞ with k 2 fu; lg ð29Þ

D~̂pb;mt ðY; FwÞ ¼ ~̂pb;mtðnl;Y; FwÞ � ~̂pb;mtðnu;Y; FwÞ ð30Þ

Then the displacement parallel to the bone is defined as:

DL̂mtðY; FwÞ ¼ ½D~̂pb;mtðY; FwÞ�x ð31Þ

For the steady states nu and nl, the same frames were picked as for the manual data extrac-

tion. Data for DL̂mt is shown in Fig 7B for subject 0, as example.
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Measurement of elbow joint torque

For the prediction of the myotendinous junction movement, the tendon force needs to be cal-

culated. During the experiment, the wrist force Fw was measured. From this force, the net

elbow torque was calculated for the unloaded and loaded state. Later in this work, this data

was used to estimate the torque which is generated by the biceps brachii from which the tendon

force can be estimated.

Wrist force extraction. The unfiltered wrist force Fraw
w and data from B-mode ultrasound

frames were not synchronized. However, steady states can be identified in Fraww . Since it was

unknown at which time during the steady state the frames were captured, the mean of the

wrist force in each steady state was calculated. The force contributing to a moment at the

elbow joint during the unloaded state was assumed to be zero. A measured force during this

time window therefore had to be attributed to the preloading of the wrist strap. The measured

mean force during the loaded state was therefore offset by the mean force during the unloaded

state in order to obtain the actual elbow moment generating force Fw.

Fw ¼
Pnl1

i¼nl0
Fraw
w ðiÞ

nl1 � nl0
�

Pnu1
i¼nu0

Fraw
w ðiÞ

nu1 � nu0
ð32Þ

Where nl0 is the first sample of the loaded state and nl1 is the last sample of the loaded state.

The same principle applies to the unloaded state (nu0 first sample—nu1 last sample).

Torque at the elbow joint. The moment arm lw(Θ) changes over the elbow angle due to

the construction of the support rack (Fig 3). For this reason, the distance between the elbow

joint and the wrist strap was measured for each elbow angle Θ. With this measurement, the

corresponding elbow joint torque τe was calculated.

teðY; FwÞ ¼ lwðYÞ � Fw ð33Þ

This elbow torque was later used to estimate the torque which was generated by the biceps
brachii.

Modeling the tendon and parameter fitting

As described in the sectionMammalian tendon modeling, there are two major tendon models.

In this work, the model FRack
T ðlT � l0;T;~rÞ was used. It is derived from elastic properties as

found in experiments measuring the stiffness of a mammalian tendon in vitro. As the experi-

ment in this work was conducted in vivo, the variables l0,T,lT,~r, FT were not known a priory.

The absolute tendon length lT and the resting tendon length l0,T remained unknown,

whereas the tendon force FT and the stiffness parameter vector~r have been estimated. The ten-

don force was estimated by means of a two dimensional tendon path model. The stiffness

parameter vector was estimated by fitting the tendon model on the measurements of the myo-

tendinous junction displacement. Instead of the absolute tendon length, the change in length

from rest to the current state was used ΔlT = lT − l0,T. It was estimated based on the myotendi-

nous displacement parallel to the bone (as observed in the B-mode videos) and by the assump-

tion:

DlT � DLmt ð34Þ

In this study, only the distal biceps brachii tendon was observed with ultrasonography. The

force exerted on the distal tendon FT1
was estimated based on the measured elbow joint torque

τe as given in Eq (33) and a model of the abstracted tendon path (cmp. Fig 10A). The tendon

path model was parameterized by measurements of anatomic landmarks as given in Eq (37).
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The parameter vector~r was estimated with a fit on the collected subjects’ data. As a target

function for the fit, the myotendinous displacement ΔLmt(Fw) as a function of the wrist force

was used. This is because the wrist forces Fw were voluntarily adjusted by the subjects during

the experiments and have only a small variance per force interval (see Fig 7). For the myoten-

dinous displacement ΔLmt(Fw), the formulation for DlRackT ðFT;~rÞ from Eq (12) was used.

Estimation of the tendon force. In this work, tendon displacement was predicted based

on the measured wrist force Fw and an abstraction of the skeletal geometry as shown in Fig

10A. The model results in an effective lever leff. From this, the tendon force could be calcu-

lated by

FT1ðFwÞ ¼
tbicðteÞ

leff
ð35Þ

since the elbow joint was assumed to be a revolute joint. The torque τbic is generated by the

biceps brachii. It was estimated based on the elbow joint torque, as it was not directly mea-

sured.

tbicðteÞ ¼ te � tr ð36Þ

In this equation, τr is the torque generated from other sources (i.e. friction, other muscle

groups, surrounding tissue). The forearm, which contains two bones (ulna and radius) as

mechanical base structure, was abstracted as a single lever. The distal biceps brachii tendon T1

inserts into this lever at~pi with the same distance li. As distance li the distance between the

elbow and the insertion into the radius was used. The fascial insertion of the distal biceps bra-
chii aponeurosis was ignored.

Fig 10. (A) Sketch of the implemented elbow moment arm model with (B) example data of subject 0. (A)

Schematic depiction of the applied biomechanical model of muscle and tendon in the elbow joint. kT1 and kT2 are non

linear spring elements representing the lower and upper biceps brachii tendons. The shoulder and lower arm insertions

are also marked (~ps and~pi). These points were determined based on anatomic landmarks as formulated in Eq (37). The

elbow joint was abstracted as revolute joint. It was located at~pe. The effective lever length of subject 0 is shown in (B)

over the elbow joint angle Θ. The maximal effective lever length is marked at (Θ = 93.3�, leff = 5.2cm).

https://doi.org/10.1371/journal.pone.0275128.g010
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The two headed biceps brachii was abstracted to a single head inserting at~ps into the shoul-

der. With the coordinate systems origin placed within the elbow revolute joint, the points

~pi ¼ R Yð Þ

0

� liðluÞ

0

2

6
6
6
4

3

7
7
7
5

~ps ¼

lcphp

la;e

0

2

6
6
6
4

3

7
7
7
5
~pe ¼

0

0

0

2

6
6
6
4

3

7
7
7
5

ð37Þ

were defined (see Fig 10A). Here, the distance from the distal tendon insertion point to the

elbow joint li was assumed to be proportional to the length of the ulna (li/ lu).

li � 0:186 � lu ð38Þ

The conversion factor was set based on the proportions depicted in figure. 334 of [41]. The

effective lever length can be calculated as follows.

0

0

leff

2

6
6
6
4

3

7
7
7
5
¼ ½~piðYÞ � ~pe� �~eð~ps;~piðYÞÞ ð39Þ

Where~e ~x;~yð Þ ¼
~x � ~y
k~x � ~yk2

is a unit vector in the direction of~x � ~y. The course of the effective

lever length leff over the elbow angle for subject 0 is shown exemplarily in Fig 10B.

With Eqs (35) and (39) the estimation of tendon force is complete. It was used for fitting

the tendon model DlT1
onto the extracted myotendinous junction movement D~Lmt and the

wrist force Fw.

Fitting the tendon model to data. Due to the small amount of data per elbow angle and

its high variance in the myotendinous displacement ΔLmt, it was preferable to fit the model

onto all angles in one process instead of breaking it down into several sub-processes—one for

each angle. The material properties of the tendon were assumed invariant, also in terms of

changes of the elbow angle. However, if the predicted biceps torque is less than the elbow tor-

que (τr> 0, see Eq (36)) the tendon parameters are effected. This means that, when τr depends

on the elbow angle, it seems as if the tendon parameters are changing depending on the angle.

The same holds true for the effective moment arm leff. These effects are further analyzed in the

results and evaluation section. Therefore, it was assumed that only a subset (or sub-range) of

the measured elbow angles can be explained by the current model. Within this sub-range, τr�
0 was assumed. Additionally, leff was assumed to predict the effective lever length for that sub-

range. As the valid elbow angle range was not known a priori, it was narrowed down in an

optimization process. In this optimization process, fits of the model for decreasing ranges of Θ
were performed. Later, the elbow angle range was used as a fit result whose mean cost per sub-

range is stable as compared to all angle ranges (cmp. Figs 12A and 13A, example data from

three subjects). For each such elbow angle range fit, the error function

gð~r;Ylb; mð�ÞÞ

¼
X

k2SYlb

mðDLmtðY½k�; FT1ðFw½k�Þ;~rÞ � D~Lmt½k�Þ
2 ð40Þ

was minimized. The error function g calculates a sum of differences between the predicted and

measured tendon displacement. The function μ(•) was used to distort the error function to

cope with variance in the data. In this case, μ(•) = ln(•+ 1) was chosen. The functions Θ[k],
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Fw[k] and D~Lmt½k� are discrete functions returning the respective values of a data point indexed

by k. The set SYlb
(lb for lower bound) contains all indices of data points where Θlb�Θ. There-

fore, it is possible to calculate fits over subsets of elbow angles.

min
~r

Fð~rÞ ¼ 0:5 � gð~r;Ylb; lnð� þ 1ÞÞ

with ~r lb � ~r � ~rub

ð41Þ

This minimization was done by performing fits with

Ylb 2 SYlb
� f0 �; 15 �; 30 �; 45 �; 60 �; 75 �g ð42Þ

as lower boundaries for the elbow angle subsets which resulted in parameter sets~rYlb
for each

value of Θlb. The mean cost per subset was calculated as follows.

�ðYlbÞ ¼
gðrYlb

;YlbÞ

jnYlb
j

ð43Þ

Where nYlb
is the amount of data-points of the corresponding angle subset defined by Θlb. As

an optimization algorithm, the non linear function optimizer trust region reflective from the

Python SciPy package [36] was used. For the optimization process

~r0 ¼

0:1

0:1

0:002

2

6
6
6
4

3

7
7
7
5

ð44Þ

was used as the initial parameter vector. As lower and upper boundaries

~r lb ¼

eps64

eps
64

eps
64

2

6
6
6
4

3

7
7
7
5
;~rub ¼

1e6

1e6

0:035

2

6
6
6
4

3

7
7
7
5

ð45Þ

were used. Here, eps64 is the machine epsilon of the 64 bit float datatype. Results of the fitting

process are depicted in Figs 12 and 13 and evaluated in the following section.

Results

In this work, a manual and a (semi-) automatic method of extracting data (myotendinous

junction displacement in a bone local coordinate system) from B-mode ultrasound images

were used. Both methods where evaluated based on the displacement of the distal biceps bra-
chii tendon during the generation of different wrist forces at different elbow angles. Subse-

quently, tendon models were fitted to the manual and (semi-) automatically extracted data

from three subjects (cmp. Figs 12 and 13). Special emphasis was placed on fitting the models

not only to one elbow angle but to subsets from the entire range of elbow angles.

Comparison of manual and (semi-) automatically extracted data from B-

mode ultrasound videos

The myotendinous displacement parallel to the bone was either extracted manually or auto-

matically from frames of B-mode ultrasound videos. The two methods are compared for sub-

ject 0 in Figs 7 and 11. During automatic feature extraction, for each feature (myotendinous
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junction, bone line and bone reference point) a distinct algorithm was applied (Fig 8: left, middle

and right, respectively). Thus, each of the three algorithms needed to be evaluated separately.

For each feature tracking the result was compared with the manual tracking as ground truth.

The difference from manual to automatic evaluation is shown over the wrist force in Figs 7C

and 11.

Tracking of the myotendinous junction. The comparison of the absolute myotendi-

nous junction displacement between manual and automatic data extraction resulted in a

mean absolute error (MAE) of 0.67 mm¼
:

9:0 pixel. The differences were distributed approx-

imately symmetrical around zero, with two outliers. As for the outliers, the neural network

extracted a larger movement than the manual evaluation. The difference of absolute move-

ments correlates with the wrist force by R = −0.07 (see Fig 11, left), where R is the Pearson
correlation coefficient.

Tracking of the bone line. Tracking of the bone line was evaluated separately for the

loaded and unloaded state. In both states, the computation of the mean absolute error resulted

in MAE < 1� (see Fig 11, middle), which was below the resolution of theHough-line transfor-

mation. Apart from outliers, the mean absolute errors for both states were distributed around

zero. This is due to image cropping, which mostly affected the unloaded state due to a smaller

distance between bone and ultrasonic probe. Using a higher cropping window would have led

to false bone line detection within muscle tissue. In either, the loaded and the unloaded state,

the bone line angle γ correlated with the wrist force Fw by R = −0.08 (Pearson correlation

coefficient).

Tracking of the bone reference point. The comparison of the absolute distance between

steady states correlated with Fw by R = −0.58 (Pearson correlation coefficient). This resulted in

an error distribution around an offset value unequal to zero.

Fig 11. Comparison for each feature between manual and automatic data extraction. The green check mark in the upper right corner indicates that

the corresponding method was used for evaluation in this work. The red cross indicates that the manually labeled data was preferred over the

automatically extracted data.

https://doi.org/10.1371/journal.pone.0275128.g011
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Comparing the (semi-) automatic data extraction with the manual data extraction for sub-

ject 0 led to a MAE of 1.15mm (see Fig 7C). Therefore, with a mean absolute error difference

close to one millimeter, the results of both methods were assumed to be equivalent.

Results of the tendon model fitting process

As described in theModeling the tendon and parameter fitting section, elbow angle sub-ranges

of the manually and (semi-) automatically extracted data were used to fit the tendon model for

three subjects as examples. The fitting results of the manual and (semi-) automatically

extracted data are shown in Figs 12 and 13, respectively.

In case of the manually extracted data, the fits over elbow angle sub-ranges showed that

there are sub-ranges with nearly identical mean cost � (cmp. Fig 12B). For smaller Θlb (larger

angle sub-range), the mean costs increased for all three subjects.

In case of automatically extracted data, this trend only held for subject 0 (cmp. Fig 13B).

For subject 0 and 1 the optimal elbow angle sub-range was identical for DL̂mt (manual) and

D~Lmt (automatic). For subject 2 the optimal subset deviated between manual (Θlb = 75) and

(semi-) automatically extracted data (Θlb = 30).

It was common for all fits that with decreasing angle, a higher tendon displacement was

predicted. In contrast, the measured tendon displacement generally decreased for each elbow

torque if the elbow angle became smaller. Thus, the model had a tendency to overestimate the

myotendinous junction movement for decreasing elbow angles.

In order to compare these fitting results with the findings in [9] a linear stiffness was calcu-

lated for each fit on the angle subranges Θ� 30 (see Table 1). The linear stiffness was com-

puted analog to [9] with the tendon lengthening at 20%Â max(FT1) to 80% max(FT1). An

example linear stiffness is shown in Fig 14B in comparison to the nonlinear tendon stiffness

function.

Discussion

In the work described here the displacement of the biceps brachiimyotendinous junction par-

allel to the humerus was extracted from B-mode ultrasound images as part of an experimental
setup that also allowed determination of applied loading forces and elbow joint angles. A man-

ual and an automaticmethod to extract the relative motion of the myotendinous junction based

on visual features from ultrasound images were developed. The performance of both methods

was compared. Using experimental data from three subjects, a tendon model was fitted to the

data of both methods used for extracting the myotendinous junction displacement. In both

cases a reliable fit was achieved.

Experimental setup

In the experiment, the myotendinous junction was observed with a linear ultrasonic probe

array, while the wrist force was measured asynchronously with respect to the ultrasonic mea-

surement (cmp. Fig 3). As a consequence, the collected data and the resulting fits could only

be used for the examination of steady states of the tendon behaviour. Any dynamic processes

such as creepage were not taken into account.

The myotendinous junction was observed in a saggital plane with a linear ultrasonic probe

array (cmp. view I in Fig 4B). The moytendinous junction, and also the course of the aponeuro-
sis, has a three-dimensional shape and was not oriented in a particularly aligned way in the sag-

gital plane (cmp. Fig 4B). Therefore, during muscle contraction, the motion of the

PLOS ONE Model of the biceps brachii distal tendon based on ultrasonic imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0275128 October 6, 2022 21 / 31

https://doi.org/10.1371/journal.pone.0275128


Fig 12. Manually extracted data and corresponding fits for three subjects in column-wise arrangement. (A) Myotendinous junction displacement

D~Lmt as manually extracted from B-Mode videos plotted over the wrist force Fw. (B) Normalized costs of each angular subset fit (see Eq (43)). (C) Fits of

the angular subsetsΘlb = 30�, Θlb = 45�,Θlb = 60�,Θlb = 75�. (Same color coding as in Fig 7).

https://doi.org/10.1371/journal.pone.0275128.g012
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Fig 13. Fits on (semi-) automatically extracted data for three subjects in column-wise arrangement. (A)Myotendinous junction displacement DL̂mt
which is (semi-) automatically extracted from B-Mode videos plotted over the wrist force Fw. (B) Normalized cost of each angular subset fit (see Eq (43)).

(C) Fits of the angular subsetsΘlb = 30�, Θlb = 45�,Θlb = 60�,Θlb = 75�. (Same color coding as in Fig 7).

https://doi.org/10.1371/journal.pone.0275128.g013
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myotendinous junction had components within the saggital imaging plane as well as outside

the plane, e.g. perpendicular to it. The latter were not detected in the presented setup.

Additionally, the bicepsmuscle bulges during contraction, changing the outer contour of

the arm, which also changed the relative orientation of the sensor probe to the myotendinous

junction. As the ultrasonic sensor probe was handheld, the operator attempted to compensate

tilting during the execution of the experiment. If the sensor probe tilted too much the bone ref-

erence point moved out of the imaging plane and therefore could not be tracked. These cases

were excluded from the data set.

A future extension of the setup could include a two-dimensional ultrasonic sensor array,

which would support the investigation of a three-dimensional measurement volume. This

would allow consistent tracking of the junction and the bone reference point independent of

tissue deformation and sensor tilting during contraction. Note the extent of dispersion of the

myotendinous junction displacement with the current measurement setup (Figs 12A, 13A).

Table 1. For a selection of elbow angle sub-ranges, the linear stiffness constant between tendon lengthening at

20% max(FT1) to 80% max(FT1) is shown for (semi-) automatically extracted data (auto) and the manually

extracted data (man.). In addition, the optimal angle sub-range is highlighted in gray for manually and automatically

extracted tendon displacement (cmp. Figs 12B and 13B).

experiment clin,20−80 in N
mm

subj. data Θ� 30 Θ� 45 Θ� 60 Θ� 75

0 auto 444 318 312 362

man. 462 166 318 338

1 auto 209 170 127 103

man. 178 151 122 117

2 auto 211 185 145 113

man. 342 284 248 59

https://doi.org/10.1371/journal.pone.0275128.t001

Fig 14. (A) Validation of the maximal effective lever length. The maximal effective lever length leff over the radius length is

shown as black dots, as presented in the cadaver study by Murray et al. [42]. The linear fit of Murray’s data is shown as black line.

The blue stars are the maximal effective lever lengths of the subjects in this study. A complete course of the effective lever length is

shown in Fig 10B for subject 0. (B) Non linear and linear prediction of myotendinous junction movement. The non linear

prediction of the myotendinous junction movement over tendon force is shown in orange. The prediction is based on Eq (10). As

parameter set, the resulting fit on (semi-) automatically extracted data from all angels Θ� 75� of subject 0 was used. In addition, a

linear model is shown in black. This linear model was parameterized such that the linear function includes the predicted values for

20% and 80% of the maximal tendon force generated during voluntary contraction ðmaxðFT1
Þ ¼ 1270NÞ. The stiffness of the

depicted linear model was clin,20-80 = 362N/mm.

https://doi.org/10.1371/journal.pone.0275128.g014
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The use of volume data could decrease the error in myotendinous junction displacement

measurement.

Extraction of the myotendinous junction displacement parallel to the

humerus
From the ultrasonic measurements, three features where extracted manually and with a (semi-)

automatic approach. These features were the tracked movements of, first, the myotendinous

junction, second, the humerus bone surface (bone line), and third, a reference point on the bone

surface. The combination of these features allowed a calculation of the myotendinous junction

movement in a bone local coordinate system, unlike other works in which the myotendinous

junction was tracked in a skin local coordinate system (e.g. [9, 10] used ultrasonic reflective

markers on the skin as reference points).

Of these three features, the automatic tracking methods for myotendinous junction and

bone orientation via bone line tracking both proved to be feasible. It should be noted, that dur-

ing preprocessing of the ultrasonic images a Gaussian filter was used, which could potentially

contribute to some amount of error in the detection of the bone line and bone reference point.

However, the automatic extraction of the bone reference point (represented by “some kind of

texture” of the bone surface) based on the Lucas-Kanade was not used due to the correlation of

the difference between manual and Lucas-Kanade tracking with the wrist force (R = −0.58). As

the investigator selected distinct reference points (e.g. where brachialis fibers connect with the

bone), the manual labeling was assumed to be the ground truth. This assumption led to the

conclusion that there was a systematic error proportional to the wrist force Fw in case of Lucas-
Kanade tracking of the bone reference point.

As a consequence, the tracking of the bone reference point, as part of the procedure to esti-

mate DL̂mt, was performed manually according to Eq (31). Due to this one manual step, the

former automatic method was regarded as (semi-) automatic.

In this study the myotendionous junction is observed at the point where the aponeurosis

forks into the muscle (here described as myotendionous junction). The movement of the myo-

tendionous junction is than solely attributed to changes in tendon length during model build-

ing. Further work could include more complex model configurations of the myotendinous

junction such as the aponeurosis and fascia.

As mentioned before, the usage of a handheld linear ultrasonic probe limited the perfor-

mance of data extraction for the myotendinous junction. It seems plausible, that this limitation

also affected the tracking of the bone reference point. The bone was the structure with the

greatest distance to the ultrasonic sensor. Therefore, tilting of the sensor probe had a larger

effect on bone imaging as compared to the myotendinous junction. Also here, the usage of a

two-dimensional ultrasonic sensor array to get volumetric data could be beneficial in future.

The fitting of volumetric models of anatomical features could lead to a reliable feature tracking

for all three anatomic features (bone orientation, bone reference point and myotendinous

junction).

Tendon model and its fitting

During model building, three major assumptions were made that strongly influenced the

observed model behaviour. First, there is no preloading of the tendon. Second, the effective

lever length leff is calculated based on a two-dimensional tendon path model as depicted in Fig

10. Third, the resulting elbow torque is solely generated by the biceps brachii (τr = 0).

The effect of leff miscalculation. If the effective lever length of the biceps brachii was mis-

calculated this would lead to an elbow angle dependent over- or underestimation of the tendon
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force FT1. A quantitative analysis was not applicable as leff could not be obtained from the par-

ticipants in the presented measurement setup (see Fig 3). Direct in vitromeasurements of the

effective lever length of the lower biceps brachii tendon exist. Murray et al. presented data of

the peak effective moment arm of the distal biceps brachii tendon over the length of the radius
[42]. This data is depicted in Fig 14A. In addition, the peak effective moment arm of subject 0

to 2 over their radius length lr was entered into the graph. The data of subject 0 to 2 lay within

the trend of [42]. Therefore, it was assumed that the maximal moment arm (between 60� and

100�, according to [42]) and effective moment arms for angles near the maximum were pre-

dicted reasonably well by the presented model.

The effect of τr on the measurement. During model building, τr (as defined in Eq (36))

was assumed to be zero as the participant had been advised to flex the elbow joint with no co-

contraction. But during the experiment it turned out that subjects had the tendency to co-con-

tract to reach the desired force levels. If co-contraction was noticed during the experiment, it

was pointed out to the subject with the request to stop co-contracting even if the requested

force level could not be reached exactly. If other than the assumed muscles for co-contraction

were dominant, the actual residual torque would be negative (tactualr < 0).

tbic � t
actual
bic ¼ t

actual
r ð46Þ

Due to Eq (46), co-contraction would lead to an underestimate of the torque generated by

the biceps brachii (tbic < tactualbic ) and therefore also an underestimate of Δlmt. Analog an over-

estimate of the torque generated by the biceps brachii (tbic > tactualbic ) is possible, if additional

flexor muscles were engaged during contraction τr > 0. Whenever ΔLmt was overestimated

this seemed to be the dominant error source. During the fit process shrinking sub-ranges of

Θ were fitted and led to increasing optimal fit results (in case of manual data extraction).

Shrinking sub-ranges mean that lower angles were excluded from the fit. Considering that

the biceps brachii has its approximate optimal working point at Θ� 115� [43], it seemed to

be plausible that the biceps brachii was not the mainly engaged muscle for small elbow angles

(arm extended).

The effect of tendon preloading on elbow torque estimation based on wrist force mea-

surement. The preloading of the tendon is not directly measurable in vivo. A deceptive way

to estimate preloading would be to observe the force at the wrist during the unloaded state.

However, even if the only physiological torque source was the biceps brachii the preloading

would not be distinguishable from preloading of the wrist strap (cmp. Fig 3). If additional tor-

que sources were assumed, the lower tendon of the biceps brachii could be preloaded even if

the resulting torque sum at the elbow joint would be zero.

Therefor, tendon pre-loading remains to be unknown. If tendon pre-loading occurs, it

would lead to a gradual shift towards the linear region (see Fig 2).

Discussion of the tendon force estimation. However, during model building it was

assumed that the biceps brachii was the only active muscle. This assumption might have led to

an overestimation of the tendon force and, as a consequence, to an overestimation of the ten-

don stiffness. Shukla et al. [4] investigated the properties of the biceps brachii tendon in vitro.

They found a mean failure load force of the tendon-radius insertion at 90� elbow flexion of

360N (SE 120N). In this study, a mean tendon force during maximal voluntary contraction at

90� elbow flexion of FT1
¼ 1388N (SE 84N) was found. This force seems to be too high consid-

ering the failure load found by Shukla et al. [4]. However, the comparison with Shukla et al. is

difficult because the tearing of the tendon from the bone was measured in vitro. In vivo, the

distal biceps brachii tendon not only inserts into the bone but also into the forearm fasciae,

which leads to a presumably higher failure force. In addition, other flexor muscles, such as
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brachialis and radio brachialis, may also contribute to an overestimation of the tendon force.

However, the actual force generated by the biceps brachii could be estimated by using the ratio

of the maximal cross sectional area of the biceps brachii and the combined maximal area of all

elbow flexor muscles. This is based on the assumption that the cross sectional area of a muscle

is directly proportional to the force generated during maximal voluntary contraction. Accord-

ing to Erskine et al. [44], the biceps brachiimakes up 41.8% (SE 1.2%) of the overall maximal

cross sectional areas of all flexor muscles. Following this line of thoughts, the biceps brachiii
would exert a force of 580N (SE 50N). If it is assumed that this force was distributed to the

bone and fascial insertions, a reasonable maximal voluntary force is reached which is compara-

ble to the findings of Shukla et al.. Without such an estimation of the force generated by the

biceps brachii, the tendon force is overestimated. An overestimate of the tendon force leads to

an overestimate of the tendon stiffness.

In the captured ultrasonic videos it was noticeable that the brachialismuscle group changes

its diameter. This, however, speaks in favour of an increasingly negative τr for smaller elbow

angles. Therefore, the parameterized tendon model was not used to determine tendon stiffness

(change in tendon force per change in tendon length). Rather, the presented model allowed

the tendon length change to be determined based on the elbow torque. Further work should

focus on the contribution of the remaining flexor muscles on the resulting elbow torque to pre-

dict τr more accurately.

Smart et al. have conducted a comparable study. In that study, the measured elbow torque

was also attributed only to the contraction of the biceps brachii [9]. Their results should there-

fore be comparable to those in this work. They defined the tendon stiffness as the slope of a

linear displacement over force function. This function was defined to include the tendon dis-

placement at 20% and 80% of maximum voluntary contraction. For comparison, the same lin-

ear stiffness was calculated for the fit results of this study as demonstrated in Fig 14B and listed

in 1. Smart et al. found a stiffness of clin; 20 � 80young ¼ 170:1� 132:9 N
mm for 9 young partici-

pants [9]. In the present study, for the optimal fit of each subject’s elbow angle subset (Table 1)

a mean stiffness of ĉ lin; 20 � 80 ¼ 233:3 N
mm (SE 56:1 N

mm) (in case of the automatic data extrac-

tion) and ~c lin; 20 � 80 ¼ 173:0 N
mm (SE 69:0 N

mm) (for the manually extracted data) was found.

These linear stiffness results are considered not to be significantly different (two-sided T-test)

as compared to the findings of Smart et al. [9] (p̂ ¼ 0:47 for the automatically extracted data,

and ~p ¼ 0:97 for the manually extracted data). A general drawback of the linear stiffness even

as medical parameter is, that small variances in 20% of maxðFT1
Þ can lead to large variances in

clin,20-80 due to the non-linearity in the toe region (cmp. Fig 14B).

Conclusion

In the design of biomechanical models of a myotendinous apparatus for the prediction of joint

angles during limb movements, an exact separation between muscle and tendon length is nec-

essary. If the tendon length (i.e. tendon displacement from resting length) was estimated by

means of a tendon model, the muscle length could be calculated. It is important that the ten-

don model includes a non linear toe region for small forces. Existing work used biomechanical

data of tendon stiffness from anatomical cadaver or in vitro studies [1, 19, 21], whose transfer

ability to living systems can be discussed in general. The present work proposed an experimen-

tal setup in which the biceps brachii distal myotendinous junction displacement is observed for

different elbow angles at varying wrist forces (muscle contraction) in vivo. The myotendinous

junction displacement in a bone local coordinate system was extracted from ultrasonic B-

mode videos using the proposed manual and (semi-) automatic method. This myotendinous

junction displacement was then used together with the wrist force and a two dimensional
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tendon path model to fit a non linear stiffness model motivated by the experiments of [2]. The

two dimensional tendon path model showed good agreement with aspects of in vitromeasure-

ments (see Fig 14A). Due to the assumption, that the biceps brachii is the only active muscle,

discussed in the previous section, the existing tendon model can not be used to extract the stiff-

ness of the tendon. It is however suitable, for the prediction of biceps brachii tendon displace-

ment at a given elbow torque for a given elbow angle sub-range. The fitted tendon model

conformed with linear stiffness measurements by [10], who applied the same assumptions as

in this work. Compared to [10], the presented tendon model is more suitable for the prediction

of myotendinous junction displacement at small elbow torques than those models that only

use a linear stiffness curve defined by two points (20% and 80% of the maximum voluntary

force, [10]).
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ject.

(PDF)
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