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Abstract 
Efficient computing techniques allow the estimation of variance components for virtually any traditional dataset. When genomic information is 
available, variance components can be estimated using genomic REML (GREML). If only a portion of the animals have genotypes, single-step 
GREML (ssGREML) is the method of choice. The genomic relationship matrix (G) used in both cases is dense, limiting computations depending 
on the number of genotyped animals. The algorithm for proven and young (APY) can be used to create a sparse inverse of G (G -1

APY) with close 
to linear memory and computing requirements. In ssGREML, the inverse of the realized relationship matrix (H−1) also includes the inverse 
of the pedigree relationship matrix, which can be dense with a long pedigree, but sparser with short. The main purpose of this study was to 
investigate whether costs of ssGREML can be reduced using APY with truncated pedigree and phenotypes. We also investigated the impact 
of truncation on variance components estimation when different numbers of core animals are used in APY. Simulations included 150K animals 
from 10 generations, with selection. Phenotypes (h2 = 0.3) were available for all animals in generations 1–9. A total of 30K animals in generations 
8 and 9, and 15K validation animals in generation 10 were genotyped for 52,890 SNP. Average information REML and ssGREML with G−1 and 
G -1

APY using 1K, 5K, 9K, and 14K core animals were compared. Variance components are impacted when the core group in APY represents the 
number of eigenvalues explaining a small fraction of the total variation in G. The most time-consuming operation was the inversion of G, with 
more than 50% of the total time. Next, numerical factorization consumed nearly 30% of the total computing time. On average, a 7% decrease 
in the computing time for ordering was observed by removing each generation of data. APY can be successfully applied to create the inverse of 
the genomic relationship matrix used in ssGREML for estimating variance components. To ensure reliable variance component estimation, it is 
important to use a core size that corresponds to the number of largest eigenvalues explaining around 98% of total variation in G. When APY is 
used, pedigrees can be truncated to increase the sparsity of H and slightly reduce computing time for ordering and symbolic factorization, with 
no impact on the estimates.

Lay Summary 
The estimation of variance components is computationally expensive under large-scale genetic evaluations due to several inversions of the 
coefficient matrix. Variance components are used as parameters for estimating breeding values in mixed model equations (MME). However, 
resulting breeding values are not Best Linear Unbiased Predictions (BLUP) unless the variance components approach the true parameters. The 
increasing availability of genomic data requires the development of new methods for improving the efficiency of variance component estima-
tions. Therefore, this study aimed to reduce the costs of single-step genomic REML (ssGREML) with the Algorithm for Proven and Young (APY) 
for estimating variance components with truncated pedigree and phenotypes using simulated data. In addition, we investigated the influence of 
truncation on variance components and genetic parameter estimates. Under APY, the size of the core group influences the similarity of breeding 
values and their reliability compared to the full genomic matrix. In this study, we found that to ensure reliable variance component estimation, 
it is required to consider a core size that corresponds to the number of largest eigenvalues explaining around 98% of the total variation in G to 
avoid biased parameters. In terms of costs, the use of APY slightly decreased the time for ordering and symbolic factorization with no impact 
on estimations.
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Introduction
Restricted maximum likelihood (REML), described by 
Patterson and Thompson (1971), is a popular method for 
parameter estimation. Because it uses the mixed model equa-
tions (Henderson, 1975), it is resistant to selection bias, and 
efficient implementations are currently available. With the 
Average Information (AI) algorithm, convergence is often 
achieved in a few rounds. With traces obtained by sparse 
matrix factorization and inversion (Meyer, 1997), computing 
variance components is feasible even with large models.

When genomic information is available, two versions of 
REML may be applicable. When only genotyped animals have 
phenotypes, genomic REML (GREML) can be applied with a 
genomic relationship matrix (G). In general, such a matrix is 
dense, and the cost of dense matrix operations would limit 
computations depending on the models. When only a frac-
tion of animals are genotyped, a single-step genomic REML 
is applicable (ssGREML). In the latter, the realized relation-
ship matrix (H) has dense blocks due to the genomic infor-
mation, limiting the efficiency of sparse matrix operations. 
Lately, Masuda et al. (2015) developed a sparse matrix pack-
age YAMS that identifies dense blocks and computes them 
efficiently. For ssGREML, with genomic computation, such 
a package resulted in up to 100 times speedup, allowing four 
trait models with 20,000 genotyped animals (Masuda et al., 
2015).

In general, it is of interest to include many genotyped ani-
mals in parameter estimation and evaluations to account for 
genomic selection or pre-selection (Patry and Ducrocq, 2011). 
For instance, the greatest reliability in a single-step genomic 
BLUP was obtained using 50% of the heritability computed 
with a non-genomic REML (Misztal et al., 2017). The number 
of genotyped animals is increasing fast for some species. As 
an example, almost 3 million Holsteins have been genotyped 
in the United States (https://queries.uscdcb.com/Genotype/
cur_freq.html). However, the cost of dense matrix operations 
with G in REML using YAMS is quadratic for memory and 
cubic for operations, which limits computations to around 
50,000 animals.

The genomic information has a limited dimensionality due 
to the limited effective population size (Stam, 1980; VanRaden, 
2008; Misztal, 2016). Such dimensionality varied from 4,000 
in pigs and chickens to 15,000 in Holsteins (Pocrnic et al., 
2016c). Assuming limited dimensionality, the inverse of G 
(G-1)—as needed by REML—can be sparsely constructed 
using the APY algorithm, with close to linear memory and 
computing requirements. Subsequently, the inverses for over 
2 million animals can be computed and stored (Tsuruta et al., 
2021). However, the inverse of H also includes the inverse of 
a pedigree-based relationship matrix for genotyped animals 
(Aguilar et al., 2010). Such a matrix can be dense with a long 
pedigree, but it is sparser with a shorter pedigree. Thus, it 
could not be efficiently stored in large populations but had 
to be accommodated indirectly (Strandén and Mäntysaari, 
2014; Masuda et al., 2017).

The first purpose of this study was to find whether the 
costs of ssGREML can be reduced using the APY algorithm 
with truncated pedigree and phenotypes. We hypothesize the 
truncation could help us to preserve the system’s sparsity, 
given that APY G-1 is sparser than the inverse of the pedigree 
relationship matrices for deep pedigrees. The second purpose 
was to investigate to what extent such truncation influences 

variance components and heritability estimates when differ-
ent numbers of core animals are used in APY.

Material and Methods
Animal care and use committee approval was not needed 
because data were simulated.

Data simulation
To evaluate the computational effectiveness of the pro-
posed approach for estimating variance components using 
genomic information, we simulated data using the QMSim 
software (Sargolzaei et al., 2011). The simulator generated 
a historical population undergoing drift and mutation and a 
recent population undergoing selection. The historical pop-
ulation consisted of 1,000 generations with a constant size 
of 50,000 individuals. Then, 800 more generations were 
simulated where the number of individuals was reduced to 
20,000, mimicking a bottleneck event. The recent population 
consisted of 20 males and 15,000 females randomly sampled 
from the last historical generation based on high phenotypic 
values. A total of 15,000 individuals were available for each 
non-overlapping generation. Parents were selected based on 
higher phenotypes and randomly mated along ten generations 
producing a litter size of 1 with an equal probability of being 
male or female. Moreover, we considered a sire replacement 
rate of 0.50 and a dam replacement rate of 0.20. Genomic 
information was available for 45,000 animals from genera-
tions 8 through 10 (three youngest generations).

A total of 29 chromosomes of different lengths (ranging 
from 40 to 146 cM) were simulated. Biallelic markers (n = 
52,890) were evenly spaced along the chromosomes with 
equal frequency in the first generation of the historical pop-
ulation. Potentially, a total of 1,242 quantitative trait loci 
(QTL) affected the trait were randomly sampled within chro-
mosomes and explained all the additive genetic variation. The 
QTL allele effects were sampled from a Gamma distribution 
with a shape parameter of 0.4. The mutation rate for markers 
(recurrent mutation) and QTL was assumed to be equal to 
2.5 × 10−5 per locus per generation (Solberg et al., 2008).

The simulated trait had phenotypic variance and mean of 1.0, 
heritability and QTL heritability of 0.30, and residual variance 
of 0.70. The simulated phenotypes were composed of

y = µ+ u+ e,

where y is the vector of phenotypes, µ is the vector of overall 
mean, u is the vector of weighted sum of QTL effects (i.e., 
additive genetic effect or animal effect), and e is the vector 
of residuals. The standard error of estimates was small using 
5 replicates during preliminary investigations of this study. 
Because of that, the results are based on one replicate.

Genomic quality control
A quality control procedure was implemented in the genomic 
data before the estimation of variance components. The 
adopted quality control criteria for SNP exclusion were the 
minor allele frequency (MAF) (<5%), genotype call rate 
(<90%), and monomorphic markers. The criteria to reject 
samples were call rate (<90%). After quality control, a total of 
45,000 genotyped samples and 50,000 markers were retained 
for further analysis.

https://queries.uscdcb.com/Genotype/cur_freq.html
https://queries.uscdcb.com/Genotype/cur_freq.html
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Variance components
Variance components were estimated using the average 
information (AI) REML algorithm as implemented in the 
AIREMLF90 software (Misztal et al., 2002), which was 
modified to incorporate the YAMS package (Masuda et al., 
2014; Masuda et al., 2015). The incorporation of YAMS was 
essential for this kind of task when using genomic informa-
tion. The package applies the supernodal method using multi-
core optimized libraries (i.e., parallel computing). The most 
computationally expensive part of the variance component 
estimation is obtaining the inverse of the coefficient matrix 
used in traces. To that, efficient algorithms are used to invert 
large and sparse matrices, which are based on three steps: 1) 
ordering, 2) factorization (i.e., symbolic and numerical), and 
3) sparse inversion. Ordering is not mandatory, but it saves a 
large amount of memory and time in the factorization step as 
it reduces the fill-in effect (zero elements in the original matrix 

could become nonzero elements in the factorized matrix). 
This effect can be minimized by ordering using appropriate 
techniques. In the next step, the coefficient matrix (LHS of 
the mixed model equations) is factorized into two triangu-
lar matrices by LU decomposition—L matrix. Finally, the 
Takahashi algorithm can be used for inversion. The super-
nodal method is expected to provide faster inversions because 
they find and process dense blocks in sparse matrices. Note 
that LHS inversion is only required to estimate variance com-
ponents or compute prediction error variance (PEV, obtained 
from diagonal elements of an inverted LHS). If the objective 
is to solve the system of equations to obtain breeding values, 
iterative methods as the preconditioned conjugate gradient 
(Lidauer et al., 1999; Tsuruta et al., 2001) can be efficiently 
applied.

The model used to estimate variance components was based 
on the single-step method, in which the inverse of the realized 

Figure 1. Heritability calculated from one replicate of simulation considering a different number of generations with pedigree and phenotypic data and a 
different number of core individuals in the Algorithm for Proven and Young (APY). Two scenarios were considered, where zeros were stored (Full) or not 
(Reduced). Error bars represent the standard error of prediction under restricted maximum likelihood (REML). Scenarios testing the allocation of 1K, 5K, 
9K, and 14K individuals in the core group to explain 72.03% (eigen70), 91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98) of the variation in 
the genomic matrix (G), respectively.
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relationship matrix (H−1) is used in the mixed model equa-
tions instead of A−1. Single-step genomic BLUP (ssGBLUP) 
is used for breeding value estimation, whereas ssGREML is 
used for variance components estimation. The inversion of H 
is computed as follows (Aguilar et al., 2010):

H−1 = A−1 +

ñ
0 0
0 G−1

APY − A−1
22

ô
,

where A−1 is the inverse of the pedigree relationship matrix 
and A−1

22  is the inverse of the pedigree relationship matrix for 
genotyped animals, computed by the algorithm described in 
Colleau (2002). The genomic relationship matrix (G) was 
computed as follows:

G =
ZZ′

2
∑

pj(1− pj)
,

where Z is the matrix of gene content centered by the allele 
frequencies of genotyped individuals, and pj is the allele fre-
quency of SNP j. Inbreeding coefficients were considered when 
constructing the three relationship matrices. This provides a bet-
ter equivalence between genomic and pedigree-based relation-
ship matrices, leading to a more similar genetic base (Aguilar 
et al., 2020). The G−1

APY is the inverse of the genomic relation-
ship matrix obtained using the algorithm for proven and young 
(APY) (Misztal et al., 2014; Misztal, 2016). This algorithm con-
siders that genotyped individuals are arbitrarily divided into 
core (c) and noncore (n). Breeding values for noncore (un) can 
be described as a linear function of breeding values of core (uc):

un = Pnuc +ϕn,

where Pn = Zn(Z′
cZc + Iα)−1Z′

c is a matrix that relates breed-
ing values of noncore and core, and ϕn = εn + Znεa is the 
Mendelian sampling term with non-diagonal variance, which 

Figure 2. Residual variance calculated from one replicate of simulation considering a different number of generations with pedigree and phenotypic 
data and a different number of core individuals in the Algorithm for Proven and Young (APY). Two scenarios were considered, where zeros were stored 
(Full) or not (Reduced). Error bars represent the standard error of prediction under restricted maximum likelihood (REML). Scenarios testing the 
allocation of 1K, 5K, 9K, and 14K individuals in core group to explain 72.03% (eigen70), 91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98) of 
the variation in the genomic matrix (G), respectively.
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can be approximated to diagonal if the number of core individu-
als is greater or equal to the number of SNPs (εn ≈ 0). The term 
εn represents the fraction of breeding values not explained by 
SNPs with var (ε) = Iσ2

ε. In cases where the number of core is 
large enough, breeding values of noncore depend only on breed-
ing values of core [see Misztal (2016) for additional details]. The 
inverse of GAPY is constructed as follows:

G−1
APY =

ñ
I− P′cc −Pcn

0 I

ô ñ
M−1

cc 0
0 M−1

nn

ô ñ
I− Pcc 0
−Pnc I

ô
.

If G−1
cc = (I− P′cc)M−1

cc (I− Pcc) is known, the complete 
inverse can be simplified to

G−1
APY =

ñ
G−1

cc 0
0 0

ô
+

ñ
−Pcn
I

ô
M−1

nn

î
−PncI

ó
,

where Pcc = GccG−1
cc , Mcc(nn) = diag

¶
gi,i − pi,1:i−1g

′
i,1:i−1

©
 

for individual i in the core (noncore) group. Because G−1
APY is 

conditioned only on the genotypic information of core ani-
mals, the matrix is sparser than the full G−1 regularly used in 
ssGBLUP (Misztal, 2016). Note that the covariance between 
two noncore individuals is null, but variances are stored in 
the matrix.

The construction of the genomic matrix using APY in 
BLUPF90 software can be done in two possible imple-
mentations. The first construction builds a single matrix 
for all core and noncore. The second construction builds 
the genomic matrix in blocks and it aims to save com-
puting memory as it require less operations than single 
matrix (Masuda et al., 2016). Currently, the single matrix 
construction is implemented for variance component 
estimation.

Figure 3. Additive variance calculated from one replicate of simulation considering a different number of generations with pedigree and phenotypic data 
and a different number of core individuals in the Algorithm for Proven and Young (APY). Two scenarios were considered, where zeros were stored (Full) 
or not (Reduced). Error bars represent the standard error of prediction under restricted maximum likelihood (REML). Scenarios testing the allocation of 
1K, 5K, 9K, and 14K individuals in core group to explain 72.03% (eigen70), 91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98) of the variation 
in the genomic matrix (G), respectively.
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Scenarios
The scenarios below were built to evaluate the impact of the 
1) size of the core group in APY, the 2) influence of skipping 
zero elements from the LHS under different amounts of ped-
igree and phenotypic data used in variance components esti-
mation, and the 3) influence of zero elements in the Mixed 
Model Equations (MME).

Core group of different sizes
Pocrnic et al. (2016a) evaluated the prediction accuracy using 
APY in simulation tests. The authors suggested that the great-
est accuracy was found by selecting the number of core indi-
viduals equal to the number of largest eigenvalues explaining 
98% of G (a number from now on referred to as eigen98). 
This study tested core groups of different sizes to evaluate the 
impact on variance components and heritability estimates. 
A total of four scenarios were tested by allocating 1K (one 
thousand), 5K, 9K, and 14K randomly sampled out of 45,000 
genotyped individuals. For each of those scenarios, the largest 
variation explained was 72.03% (eigen70), 91.09% (eigen90), 
95.70% (eigen95), and 98.07% (eigen98), respectively. For 
computational reasons, the singular value decomposition of Z 
was calculated instead of the eigenvalue decomposition of G.

Evaluating the influence of pedigrees and 
phenotypes
Using G−1

APY helps us to reduce computing time for genomic 
predictions because of its sparsity (Fragomeni et al., 2015; 
Masuda et al., 2016); however, in the single-step approach, 
the H−1 also contains A−1 and A−1

22 , which are relatively 
dense. The APY method was earlier applied to the construc-
tion of A−1

22  without success (Breno Fragomeni, personal 
communication). Although the sparsity of A−1

22  may not be a 
requirement for genomic predictions, it becomes essential for 
reducing computing time for variance components estimation 
to follow the sparsity of G−1

APY. A reduction in the number 
of generations was attempted to increase the sparsity in A−1 
and A−1

22 . A total of seven different scenarios were designed, 
differing on the number of pedigree generations used for vari-
ance components estimation. Reduction in the generations 
of phenotypes was also used to follow pedigree incomplete-
ness and avoid bias. The scenarios were designed to mimic a 
real situation where the actual founder population is usually 
unknown. Only three genotyped generations (45,000 most 
recent animals) were kept in the genomic file for further anal-
yses. Subsequent scenarios were constructed by removing one 
generation of phenotypes and pedigree at a time, from the 
oldest to the youngest animals.

The influence of zero elements in the MME
Lastly, a scenario aimed to evaluate the impact of discard-
ing zero elements from the LHS of MME on computing 
performance and variance components estimation. For 
that, the OPTION skip_zero_in_dense_matrix was used in 
AIREMLF90 (Misztal et al., 2014) to store only non-zero 
elements of G−1

APY − A−1
22 . When this option was used, the sce-

nario was termed “Reduced,” and otherwise “Full.”

RESULTS AND DISCUSSION
Previous studies have investigated the properties of APY, includ-
ing its implementation for large-scale genomic evaluations 

(Fragomeni et al., 2015; Lourenco et al., 2015; Masuda et 
al., 2016) and its efficiency in real and simulated populations 
with different effective population sizes (Pocrnic et al., 2016b; 
Pocrnic et al., 2016c). Bradford et al. (2017) studied the impact 
of different core definitions, and Misztal et al. (2020) evaluated 
the GEBV fluctuation when changing the core group in APY. 
Additionally, Vandenplas et al. (2018) investigated the impact 
of using APY on GEBV estimation in crossbreeding schemes; 
Hidalgo et al. (2021) compared the GEBV variation due to 
the inclusion of new data and changing the APY core animals. 
Finally, Lourenco et al. (2018) studied the impact of using G−1

APY 
instead of G−1 on the estimation of SNP effects. Our study 
evaluated the feasibility of using APY for variance components 
estimation, the impact of removing generations of pedigree and 
phenotypic data on computing time, and the influence of using 
a different number of core animals to construct the genomic 
matrix. Variance components were estimated using AIREML 
modified to incorporate the YAMS package for sparse matrix 
calculations (Masuda et al., 2014).

Heritability estimates and computing performance
Heritability, residual variance, and additive variance esti-
mated using a different number of generations in the pedi-
gree and cores sizes in APY are shown in Figures 1–3. The 
standard deviation of variance components and heritability 
across generations is shown in Table 1. Because the sim-
ulation involved a certain level of selection, the expected 
heritability should slightly deviate from the simulated 
value of 0.3. Therefore, the scenario with 10 generations of 
data (i.e., full pedigree and full phenotypes) was used as a 
benchmark.

In general, the variance components and heritability esti-
mates approached the simulated values as the number of 
core approached eigen98. The scenario using 1K individuals 
(i.e., eigen70) in the core was the most sensitive to removing 

Table 1. Standard deviation of variance components and heritability 
calculated across generations using complete (Full) mixed model 
equations (MME) and reduced MME after skipping zero elements 
(Reduced)

Parameter1 Core2 Scenario

Full Reduced 

σ2
a eigen70 0.037 0.037

eigen90 0.011 0.013

eigen95 0.008 0.008

eigen98 0.005 0.005

σ2
e eigen70 0.028 0.028

eigen90 0.007 0.007

eigen95 0.005 0.005

eigen98 0.000 0.004

h2 eigen70 0.032 0.032

eigen90 0.011 0.011

eigen95 0.005 0.005

eigen98 0.005 0.005

1σ2
a, additive variance; σ2

e , residual variance; h2, heritability.
2Scenarios testing the allocation of 1K, 5K, 9K, and 14K individuals in 
core group to explain 72.03% (eigen70), 91.09% (eigen90), 95.70% 
(eigen95), and 98.07% (eigen98) of the variation in the genomic matrix 
(G), respectively, using the Algorithm of Proven and Young (APY).



Junqueira et al. 7

generations, suggesting that variance components are highly 
impacted when the core group in APY represents the number 
of eigenvalues explaining a smaller fraction of the total vari-
ation in G. From a prediction accuracy standpoint, a similar 
behavior was also observed in other studies (Pocrnic et al., 
2016a; Pocrnic et al., 2016c); however, the impact on vari-
ance components had not been investigated before. Although 
pedigrees were more limited after removing a few generations 
of data, the combination of pedigree and genomic informa-
tion and the use of a core size equal to eigen98 controlled 
the bias in variance components and heritability estimation. 
Small fluctuations on variance components were observed 
when retaining only 4 to 6 generations of pedigree and phe-
notypes with a core size equal to eigen98. In these scenarios, 
the difference in heritability was almost nonexistent; this was 
also true when comparing Full and Reduced models.

The ratio σ2
e /σ

2
a  is important when predicting breeding val-

ues using the mixed model equations as it is the shrinkage 
factor for additive effects. The variability of the ratio under 
different core sizes is shown in Figure 4. As the core size 
approached eigen98, the ratio became closer to the simulated 
value of 2.33. Additionally, the ratio became less influenced 
by the number of generations used to estimate the variance 

components as the core size approached eigen98. Reliable 
variance component estimates (or at least their ratio and heri-
tability) are of great importance to ensure the accurate predic-
tion of breeding values. The resulting breeding values are not 
BLUP unless the true variances are known or are approaching 
the true parameters (Kennedy, 1981).

The adoption of a core group that explains less than 
eigen98 affected the ability to represent all the independent 
chromosome segments segregating in the population, trace-
back gene frequencies, and consequently, accurately establish 
covariances between genotypic values. In this study, we might 
have three different sources of changes for genetic variances. 
The first source is related to the lack of relationships because 
generations were sequentially removed in different scenarios. 
Unknown relationships (i.e., incorrect base population defi-
nition) affect the estimation of Mendelian sampling variance 
in different intensities depending on the number of known 
parents. If both parents are unknown, Mendelian sampling 
is equal to 0.5σ2

a, and if only one parent is known, it equals 
[0.75 − 0.25× fp]σ2

a, where fp is the inbreeding coefficient of 
a parent (Henderson, 1976). Under mixed models, offspring 
breeding values are estimated as a function of parent breed-
ing values and Mendelian sampling. Thus, all individuals with 

Figure 4. Distribution of the variance ratio (σe
2/σa

2) across a different number of generations (i.e., 10, 9, 8, 7, 6, 5, and 4) with pedigree and phenotypic 
data using different sizes for the core group in the Algorithm for Proven and Young (APY). Two scenarios were considered, where zeros were stored 
(Full) or not (Reduced). Error bars extend from the hinge to the largest (smallest) no further than 1.5 times the distance between the first and third 
quartiles. Ratios were estimated under restricted maximum likelihood (REML). Scenarios testing the allocation of 1K, 5K, 9K, and 14K individuals in core 
group to explain 72.03% (eigen70), 91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98) of the variation in the genomic matrix (G), respectively.
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unknown relationships are treated as samples from the base 
population with average breeding value of 0 and common 
variance σ2

a.
The second source of change in genetic variance is the 

presence of selection over generations, which affects the dis-
tribution of sire and dam breeding values. Unfortunately, it 
is impossible to identify the contribution of each factor sep-
arately because this study was not designed for that purpose. 
The third source of genetic variation, which is the aim of 
this study, is the intentional use of a sparse representation 
of G−1, i.e., G−1

APY. In APY, it is intrinsically assumed that the 
complete genome is divided into many independent chro-
mosome segments (ICS) containing non-redundant genomic 
information. The number of ICS is a statistical concept that 
depends on the effective population size and the genome 
length (Stam, 1980). The consequence of this assumption is 
that a small error in variance components estimation can be 
observed by building the core group considering the dimen-
sionality of G as a function of the number of eigenvalues 
explaining a certain proportion of variance. For example, 
if G−1

APY is built based on the number of core animals equal 
to that of eigenvalues explaining 98% of the variance in G,  
the assumed error is 2% (Misztal et al., 2020). Results 
from the current study add a new dimension to the factors 
driving the estimation of reliable variance components in 
the genomic era. Thus, if the definition of the core group 
considers the genetic architecture of the population, G 

might contain all the genetic information necessary to esti-
mate reliable variance components (Junqueira et al., 2017; 
Junqueira et al., 2020). In addition to the factors evaluated 
in this study, Cesarani et al. (2019) have found that the 
selection design and genotyping structure can influence bias 
in estimating variance components.

Computing resources
Nowadays, much effort has been placed on developing 
faster and computationally feasible methods for a virtually 
unlimited number of genotyped individuals. Using large-
scale datasets becomes more problematic when the objective 
is to estimate variance components. This is because most 
algorithms require several rounds of inversion of the LHS 
of MME before the convergence is reached. During compu-
tations, factorization and inversion are the most demanding 
steps in the REML estimation. The possibility to combine 
APY to compute a sparse representation of G−1, data reduc-
tion, and YAMS (i.e., dense blocks operation) (Masuda et al., 
2014; Masuda et al., 2015) seems computationally beneficial. 
In this study, we evaluated the factors impacting the timing 
required for computational operations. Figure 5 shows the 
average computing time, relative to total (i.e., in percentage), 
required for ordering, factorization (symbolic and numeri-
cal), and sparse inversion with data reduction (pedigree and 
phenotypes). The most time-consuming operation was the 
inversion, which took more than 50% of the total time. This 

Figure 5. Average timing in percentage (ratio between total timing) relative to each operation used in the process of matrix inversion. The average 
timing and error bars (standard deviation) were calculated across scenarios using a different number of generations in the pedigree and phenotypic 
and core sizes. The x-axis represents the steps required to invert matrices: finding the ordering, symbolic factorization (Symbolic Fact., setting up the 
data structure), numerical factorization (Numerical Fact.), and sparse inversion. Two scenarios were considered, where zeros were stored (Full) or not 
(Reduced).
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was expected because matrix inversion has a cubic comput-
ing cost. Next, numerical factorization consumed nearly 30% 
of the total computing time, whereas ordering and symbolic 
factorization took approximately 9% and 7.5%, respectively. 
Skipping zero elements in the MME did not improve the com-
puting time of any of the inverse operations.

A detailed description of the computing time required 
by each step after data removal is shown in Figure 6. The 
descriptive statistics of computing time savings across gen-
erations is shown in Table 2. Ordering showed the most 
prominent timing decrease due to data removal, followed by 
symbolic factorization among the four steps. On average, a 

7% decrease in the computing time for ordering was observed 
by removing each generation of data. During MME compu-
tations, ordering and symbolic factorization are not man-
datory. These operations are mainly implemented to reduce 
computing time for numerical factorization and inversion. 
As more genotypes and/or pedigree records are included in 
the model, the time required for numerical factorization and 
sparse inversion increases. Using a simulated dataset with 
G−1

APY and YAMS, we observed an opposite behavior where 
a shorter pedigree sometimes caused an increase in comput-
ing time for the numerical factorization and sparse inver-
sion operations. In these operations, there were no gains 

Figure 6. Timing (in seconds) relative to each operation to invert matrices using a different number of generations in the pedigree and phenotypes and 
a different number of core animals in the computation of G-1 with the Algorithm for Proven and Young (APY). Matrix inversion steps: finding the ordering 
(Ordering), symbolic factorization (Symbolic Fact.), numerical factorization (Numerical Fact.), and sparse inversion. Two scenarios were considered, 
where zeros were stored (Full) or not (Reduced). Scenarios testing the allocation of 1K, 5K, 9K, and 14K individuals in core group to explain 72.03% 
(eigen70), 91.09% (eigen90), 95.70% (eigen95), and 98.07% (eigen98) of the variation in the genomic matrix (G), respectively.
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in computing performance due to data removal, as shown 
by the regression slope, which was close to0 (Table 2). The 
greatest savings were around 10% when using six gener-
ations of pedigree and phenotypic data. It is known that 
numerical factorization and sparse inversion are the most 
demanding operations in REML computations. The fact that 
the required time for these operations was not reduced can 
be explained by the creation of nonzero elements not present 
in the coefficient matrix before the numerical factorization 
is done. Those elements are known as “fill-in elements.”

Consequently, extra calculations are needed, obviously 
increasing the amount of time to complete the sparse inver-
sion. There are several efforts in developing faster algorithms 
focused on typical nonzero structures in sparse matrices. The 
sparse matrix algorithm in YAMS uses supernodal techniques 
(i.e., common nonzero pattern between adjacent columns) 
to speed-up computations. Computing time might be signifi-
cantly improved compared to other sparse matrix packages 
(e.g., FSPAK) because the memory hierarchy is more effectively 
exploited in dense operations, and multiple columns within a 
submatrix are simultaneously updated (Masuda et al., 2014).

Conclusions
The algorithm for proven and young (APY) can be success-
fully applied to create the inverse of the genomic relation-
ship matrix used in single-step genomic restricted maximum 
likelihood for estimating variance components. To ensure 
reliable variance component estimation, it is important to 
use a core size that corresponds to the number of largest 
eigenvalues explaining around 98% of total variation in G. 
When APY is used, pedigrees can be truncated to increase 

the sparsity of H and slightly reduce computing time for 
ordering and symbolic factorization, with no impact on the 
estimates. A reduction in computing time for numerical fac-
torization and sparse inversion is unlike because of the fill-in 
elements effect. The savings in computing time for estimating 
variance components is far less than the expected efficiency 
that APY has shown compared to the use of regular G−1 for 
breeding values estimation. This inefficiency is because the 
block implementation of APY is still not possible for variance 
components estimation.
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