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Abstract

The Generalized Method of Moments (GMM) is a statistical method for the analysis of sam-

ples from random processes. First developed for the analysis of econometric data, the

method is here formulated to extract hidden kinetic parameters from measurements of sin-

gle molecule dwell times. Our method is based on the analysis of cumulants of the mea-

sured dwell times. We develop a general form of an objective function whose minimization

can return estimates of decay parameters for any number of intermediates directly from the

data. We test the performance of our technique using both simulated and experimental

data. We also compare the performance of our method to nonlinear least-squares minimiza-

tion (NL-LSQM), a commonly-used technique for analysis of single molecule dwell times.

Our findings indicate that the GMM performs comparably to NL-LSQM over most of the

parameter range we explore. It offers some benefits compared with NL-LSQM in that it does

not require binning, exhibits slightly lower bias and variance with small sample sizes (N<20),

and is somewhat superior in identifying fast decay times with these same low count data

sets. Additionally, a comparison with the Classical Method of Moments (CMM) shows that

the CMM can fail in many cases, whereas the GMM always returns estimates. Our results

show that the GMM can be a useful tool and complements standard approaches to analysis

of single molecule dwell times.

Introduction

A fundamental challenge in analysis of single molecule data is the determination of the correct

model to explain observations. Methods that have been developed to address this fundamental

problem include Bayesian inference [1], maximum likelihood [2], as well as Hidden Markov

Models (HMM) [3]. Typically, these methods produce a list of dwell times that estimate the

time spent in individual molecular states. These dwell times must be analyzed to extract the

underlying rates, often using a nonlinear least-squares minimization (NL-LSQM) approach

[4]. In this work, we develop and characterize the use of the Generalized Method of Moments

for the analysis of dwell times. This method is a statistical estimation method originally devel-

oped in econometrics [5].

Single molecule methods generate high resolution quantitative data on biomolecular mech-

anisms. The advantages of single molecule experiments include identification of rare
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intermediates and solution of the “dephasing” problem [6]. In techniques such as single mole-

cule fluorescence, a change in signal level can indicate a state transition. Other methods, such

as particle tracking using micro-beads, can also yield data on single molecule rates [7]. The

determination of how many states are present and how long the molecule dwells in each state

can be challenging, and several methods have been developed to deal with this obstacle [8,9].

Most current methods have focused on analyzing FRET signals, however dwell times can be

produced by other methods also, such as bead loss assays [10]. The most common method of

analysis, nonlinear least-squares minimization (NL-LSQM), is known to produce biased and

non-normally-distributed estimates of the model parameters [4].

The Generalized Method of Moments (GMM) is a powerful statistical method for

analysis of samples of random processes. From its original application in the modeling of

capital asset pricing [5], its use has grown to make it one of the central methods of econo-

metric analysis [11]. In spite of its broad applicability, its use in the natural sciences has

been quite limited, although it has been applied recently to the analysis of simulated sto-

chastic chemical reaction networks [12]. In the GMM, the population moments of a ran-

dom variable, as calculated from a suitable model, are compared to the sample moments

as calculated from the measured data. Estimates of hidden parameters are determined via

minimization of an objective function which quantifies the disagreement between the

population and sample moments [11]. The GMM is a general framework that can accom-

modate a wide range of models and data types. Furthermore, in the limit of a large number

of samples, the GMM produces normally-distributed and unbiased estimates [5]. In the

method, multiple moments can be considered, each moment resulting in a constraint on

the parameters of the model. In the case of under-constrained systems (number of

moments less than number of parameters), non-unique solutions exist. When the number

of moments is equal to the number of parameters, a unique set of estimates for the param-

eters can be determined (assuming a real solution exists). This exactly-determined system

is often referred to as the Classical Method of Moments (CMM). In the case of an over-

constrained system (number of moments greater than the number of parameters), only an

approximate solution can be found in general. The GMM is a framework in which all such

cases can be handled.

In this work, we develop the application of the GMM to the analysis of single molecule

dwell times. We present a general method that can be used to create objective functions appli-

cable to any single molecule experiment that produces dwell times. We characterize the perfor-

mance of our method by testing it on simulated data. We simulate several common reaction

schemes, including single-, double-, and triple-step reactions with both irreversible as well as

reversible steps. We have characterized the bias and dispersion of the estimates generated by

our method and compared these to the most common alternative method of analysis,

NL-LSQM. Additionally, we have collected experimental data on site-specific DNA cleavage

by the restriction endonuclease NdeI and analyzed the measured dwell times using our

method. Application of the GMM indicates a multistep reaction with fast components inde-

pendent of protein concentration. The classical method (CMM) is shown to be incapable of

analyzing the same data using the multistep models.

Theory

Motivation

More detailed reviews of the GMM can be found in the literature [11]. Here, we review the

essentials necessary to understand our work. As motivation, we consider a system with two

hidden parameters, a and b, that define a probability density p(t;a,b) for a random variable t.

Single molecule GMM
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Define m1(a,b) = hti and m2(a,b) = h(t−hti)2i, where the angular brackets indicate the popula-

tion mean (also known as the expectation value). The population mean of any function f(t) is

here defined as

hf ðtÞi ¼
R
dt pðt; a; bÞf ðtÞ: ð1Þ

Note that in Eq 1, the population mean has an implicit dependence on the parameters a and b.

These two functions m1(a,b) and m2(a,b) are simply the population mean and variance of

the random variable t. Now, let t be a T-dimensional vector whose elements are samples of the

random variable t. In this paper, variables in italics represent real numbers and variables in

bold represent vectors. The moment functions

g1 a; b; t;Tð Þ ¼ m1 a; bð Þ �
1

T
PT

i¼1
ti ð2Þ

and

g2 a; b; t;Tð Þ ¼ m2 a; bð Þ �
1

T � 1

PT
i¼1

ti �
1

T
PT

i¼1
ti

� �2

ð3Þ

both express the difference between a population moment (first term on the right-hand

side) and a sample moment (second term on the right-hand side). Notice that the unbi-

ased estimator is used for the variance (Eq 3). If sample moments give good estimates,

then we expect the values on the right-hand sides of Eqs 2 and 3 to be very small for the

true values of a and b. A reasonable method would be to set the right-hand side equal to

zero and solve for a and b. This method of generating M moment equations for M parame-

ters (in this case M = 2) is the Classical Method of Moments (CMM). The CMM has limi-

tations in that there may not be real solutions to the non-linear equations. Additionally,

there may be multiple conditions, i.e., moment equations that should be satisfied. In this

case, the number of equations may exceed the number of parameters (the over-con-

strained case), producing an over-constrained system of equations that may have no

solution.

General formulation of the GMM

The GMM is a general framework for solving the problems identified in the previous section.

In the following derivation, we assume a single random variable. This case generalizes in a

straightforward manner to include multi-variate random processes. In our derivation, we

assume a probability density for the random variable. It is not strictly necessary that the func-

tional form of the probability density is known. As we will show, our application can be used

to determine the moments of the distribution without knowing the density. In practice, to

relate the moments to questions such as “how many steps are needed to explain this data?” one

needs a functional form of the density. Therefore, a single application of this method cannot

by itself answer the question “which is the best model to describe this system?” However, com-

parison of analyses using different models can help with this important problem, as we will

show later in this work.

To start, we assume the probability density is a function of the random variable t as well as

of n parameters λ and will be written as p(t; λ). Note that λ has dimension n. We will also need

the joint probability density for multiple independent samples. If we assume there are T sam-

ples, this is

Pðt; λ;TÞ ¼
QT

i¼1
pðti; λÞ: ð4Þ

Single molecule GMM
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We also need the expectation value of a function of t. This is defined (analogously to Eq 1) as

hf ðλ; t;TÞi ¼
R
dtPðt; λ;TÞf ðλ; t;TÞ: ð5Þ

In Eq 5, the possible dependence on λ and T has been explicitly included.

In order to determine a GMM estimate of the parameters from a given sample, we start

with a set of functions, termed generalized moments, such that the expectation value of these

functions is zero. That is, we need a set of M functions gm(λ,t,T) such that hgm(λ,t,T)i = 0.

In practice, it is these functions we must assume, not the probability density. However, if

we know the probability density, it is straightforward to determine the generalized moments.

The index m can assume any value from 1 up to M (the maximum number of moments con-

sidered). In general, we may have more moment conditions than parameters (M> n), and

therefore we can only look for approximate solutions. To do this, the following objective func-

tion is minimized with respect to the variables λ,

Qðλ; t;TÞ ¼
PM

m¼1

PM
m0¼1

Wm;m0 ðλ; t;TÞgmðλ; t;TÞgm0 ðλ; t;TÞ: ð6Þ

The matrix Wm,m’ is a positive definite weight matrix which in general can depend on the

parameters λ as well as on t and T. We can understand the form of this objective function by

realizing that (1) the function Q is non-negative (due to the positive definite weight matrix),

and (2) for large sample size and the true values of λ, each term gm(λ,t,T) will be very close to

zero. It is then reasonable to expect that minimizing this function overλ, using some suitable

weighting scheme, will produce a good estimate of the true parameter values. The final GMM

estimates of the parameters can then be written as

λðt;TÞ ¼ argminl0 Qðλ
0; t;TÞ: ð7Þ

Note that the value of the estimate depends not only on the samples t and sample size T, but

also on the choice of weight matrix Wm,m’.

When the number of moment conditions M is less than the number of parameters n, this

problem is underspecified, and the function Q does not have a unique minimum. If the num-

ber of moment conditions is equal to the number of parameters, the system is “just specified,”

and, in general, the GMM will give identical estimates as the CMM. This latter point follows

since Wm,m’ is positive definite and therefore Q� 0. Since the CMM estimates make gm = 0 for

all m, we have Q = 0 identically and therefore it must be a minimum at that point. It is impor-

tant to remember that this theorem holds only when the CMM estimate exists (i.e., there are

real solutions). Note that it also follows that the just-specified case will be independent of the

weight matrix Wm,m’, as the CMM does not use that matrix. In general, for the over-specified

case, the GMM estimate does depend on choice of weight matrix, a problem to which we now

turn.

In the limit of a large number of samples, the distribution of moments (for fixed parame-

ters), is expected to be Gaussian as a consequence of the Central Limit Theorem. In this case,

choosing a weight matrix equal to the inverse of the covariance matrix of the moment func-

tions will lead (in the limit of a large number of samples) to an unbiased estimate of parameters

with minimal variance [13]. One should remember that, in general, for finite numbers of sam-

ples, the estimate will be biased and not normally-distributed.

To see how this is applied, define the following covariance matrix

Vm;m0 ðλ;TÞ ¼ hgmðλ; t;TÞgm0 ðλ; t;TÞi: ð8Þ

Here, as before, the angular brackets indicate the population mean. Note that since we inte-

grate over the random variables, this covariance matrix is not a function of t. However, it may

Single molecule GMM
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depend on sample size, T. The weight matrix is then the inverse of this matrix:

Wm;m0 ¼ ðV
� 1Þm;m0: ð9Þ

One problem with this approach is that the weight matrix is a function of the parameters λ.

This complicates the minimization of the objective function, since the values of these parame-

ters are unknown. Various practical methods of handling this include (1) using the identity

matrix for Wm,m’ (a simple method for getting an initial solution), (2) using various estimates

of the covariance matrix calculated from the data itself, (3) using multi-step methods where a

simple weighting is used first (often the identity) and then the resulting GMM estimate for the

parameters is used to recalculate the weights for a second pass, or (4) continuously updating

the weight matrix as the objective function is minimized. With the exception of the continu-

ously updated weight matrix, we will evaluate all of these methods in this work.

Application to single molecule dwell times

The reactions considered will be assumed to be of the type shown in Fig 1. In this figure, states

of the system are represented by letters, and the corresponding mean residence times in each

state are given by τA, τB, etc. For the reversible reaction, transition rates are given as k1, k2 and

k3. The observed dwell time is defined as the time it takes the system to enter the final state

given that it starts out in state A. For the derivation that follows, we will assume all reactions

steps are irreversible. Since the probability density of the total dwell time for a two-step revers-

ible reaction has the same functional form as that of an irreversible scheme, our derivation is

applicable to both cases. We will show at the end of this section how to apply our analysis to

the reversible two-step reaction. For more than two steps, the functional form of the probabil-

ity density for reversible schemes is more difficult to relate to our method. We choose to limit

ourselves to the irreversible case for more than two steps for two main reasons. First, the theo-

retical form of the cumulants can be expressed generally and simply, thus allowing a simple

and general formulation of a solution. Second, testing n-step irreversible reaction schemes

against data is an established method for estimating the number of steps present in experimen-

tal data [14,15], thus allowing for application of the cumulant based GMM method to address

this question.

The residence time tA in state A in Fig 1 is drawn from a continuous, single-exponential dis-

tribution,

pA tA; tAð Þ ¼ exp �
tA
tA

� �

; ð10Þ

where τA is the mean dwell time in state A. A similar function can be defined for state B, C,

etc. The mean observed dwell time for the system is therefore

hti ¼ tA þ tB þ � � � þ tE: ð11Þ

Since each step is independent and exponentially-distributed, the population variance is given

by an analogous formula,

ht2i � hti2 ¼ tA
2 þ tB

2 þ � � � þ tE
2: ð12Þ

In order to formulate a general method for these systems, we would like a formula analogous

to Eq 12 for higher order moments. We can find such a generalization with cumulants. For

any random process which is a sum of independent random processes, the mth order cumulant

is merely the sum of the mth order cumulants of the individual processes. In this case, if we

Single molecule GMM
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represent the cumulant of the total dwell time with κ(m), then we have

kðmÞ ¼ kA
ðmÞ þ kB

ðmÞ þ � � � þ kE
ðmÞ: ð13Þ

In this equation, κA
(m) is the mth order cumulant of step A, etc. The mth order cumulant for an

exponential distribution is

kA
ðmÞ ¼ ðm � 1Þ!tA

m; ð14Þ

which allows us to write the general formula for the cumulants for an n-step irreversible reac-

tion scheme.

kðmÞ ¼ ðm � 1Þ!ðtmA þ t
m
B þ � � � þ t

m
E Þ: ð15Þ

Eq 15 gives the population cumulants of the reaction scheme shown in Fig 1. In order to

Fig 1. Reaction schemes. Each state is represented by a letter and the mean residence time in that state is τA, τB, etc. (A) The n-step irreversible reaction scheme. (B) The

two-step reversible scheme. The transition rates in the reversible reaction are given by k1, k2, and k3.

https://doi.org/10.1371/journal.pone.0197726.g001
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complete the moment function, we need to calculate unbiased estimates of the cumulants

from the measured samples. Formulas for unbiased sample cumulants exist and are referred to

as k-statistics [16]. In order to define the k-statistics for this problem, let us first define the lth

order central moments.

m1 �
1

T
PT

i¼1
ti; ð16Þ

ml �
1

T
PT

i¼1
ðti � m1Þ

l
; l > 1: ð17Þ

The k-statistics up to order 4 are then

kð1Þðt;TÞ ¼ m1; ð18Þ

kð2Þ t;Tð Þ ¼
T

T � 1
m2; ð19Þ

kð3Þ t;Tð Þ ¼
T2

ðT � 1ÞðT � 2Þ
m3; ð20Þ

kð4Þ t;Tð Þ ¼
T2

ðT � 1ÞðT � 2ÞðT � 3Þ
ðT þ 1Þm4 � 3ðT � 1Þm2

2

� �
: ð21Þ

Note that the first and second order expressions are the usual definitions of the sample mean

and sample variance in the random variable t.
We can now state our mth order generalized moment function for the n-step reaction.

gmðtA; tB; . . . ; t;TÞ ¼ kðmÞðtA; tB; . . . ; tEÞ � kðmÞðt;TÞ ð22Þ

In this expression, the population cumulant κ(m) is given by Eq 15 above, and the term k(m) is

to be an unbiased estimate of the cumulant as calculated from Eqs 18–21.

The GMM is not completely defined until the weight matrix is specified. We evaluate sev-

eral options in this paper. These include the identity matrix, the inverse of a jackknife estimate

of the covariance matrix, and the inverse of a covariance matrix calculated using a Monte-

Carlo method. We leave the description of these methods to the Materials and Methods section

of this paper. Eqs 15–21 completely define the moment functions used in this study. They,

along with the weight matrix, define the GMM for this problem.

The case of a reversible two-step reaction

For a two-step reaction, such as those shown in Fig 1, the total dwell time can be shown to

obey a probability density of the following form [14],

p t; tA; tBð Þ ¼

expð� t=tAÞ � expð� t=tBÞ
tA � tB

tA 6¼ tB

t
t2
expð� t=tÞ t ¼ tA ¼ tB

: ð23Þ

8
>><

>>:

In the case of a reversible first step, the decay constants will be equal to

1

tB=A
¼

1

2
k1 þ k2 þ k3ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðk1 þ k2 þ k3Þ

2
� k1k3

r

: ð24Þ
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In this equation, the plus sign applies to τB and the minus sign to τA. The GMM described in

this work will determine estimates for the parameters τA and τB, which can be related to the

underlying rate constants in the reversible reaction model by Eq 24.

Materials and methods

Simulations and GMM calculations

Dwell times were simulated for multistep stochastic reactions by adding samples individually

drawn from exponentially-distributed random processes. The sets of decay parameters used

were as follows. For the single-step, all trials used a decay time of 10 s. For the two-step reac-

tion, decay parameters pairs used were (10 s, 10 s), (10 s, 20 s), (10 s, 50 s) and (10 s, 100 s). For

the three-step reaction, decay parameters sets were (10 s, 10 s, 10 s), (10 s, 10 s, 50 s), and (10 s,

30 s, 100 s). For all decay parameter sets, sample sizes used were 5, 10, 20, 50, 100, 200, 500 and

1000. For each set of parameters and sample size, 1000 trials were simulated. For each trial,

unbiased estimates of cumulants were calculated using k-statistics up to 4th order.

Four different weight matrices were evaluated. These were (1) the identity matrix, (2) a

diagonal matrix with elements equal to the inverse of a jackknife estimate of the variance of

the cumulants, (3) the matrix inverse of a jackknife estimate of the covariance matrix of the

cumulants, and (4) the inverse of an interpolated covariance matrix. All jackknife estimates

were determined from a single trial in the following manner. First, N subtrials were created by

sequentially removing each sample from the trial (resulting in N subtrials of N-1 samples

each). Then, these N subtrials were used to calculate N distinct estimates of the cumulants.

Finally, the variance or covariance was calculated from these estimated cumulants and the

result was scaled by (N-1)/N. The interpolated covariance was calculated by linear interpola-

tion from a set of previously-calculated covariance matrices. These previously-determined

matrices were calculated using a Monte Carlo (MC) method for a wide range of values of N

(sample size) and decay parameters (τA, τB, etc.). For the MC calculations, 105 trials were cal-

culated, and the covariance was calculated directly from the cumulants of these trials.

The objective function (Eq 6) was minimized using the Broyden-Fletcher-Goldfarb-Shanno

algorithm with an explicit gradient. Global minima were found by using a logarithmically-

spaced grid of initial trial points. The parameter space region searched was an ‘n-cube,’ where

n is the number of parameters (the number of steps in the reaction). The grid spacing was a

factor of ten. For example, for a two-step reaction, the two-dimensional region [1, 1000] × [1,

1000] was searched. This included starting points an order of magnitude less and more than

the minimum and maximum decay parameters simulated. Note that since the GMM objective

functions examined here are multi-polynomials of the decay parameters, the minimization is

robust, as the surface is not rough (i.e. it does not exhibit a large number of minima). In the

two-pass GMM, the estimates for the decay parameters from a first-pass minimization were

used as the starting search point for a second pass which used the interpolated weight matrix

calculated from the first pass parameter estimates.

All scripts and routines for performing the calculations reported in this manuscript, as well

as sample data sets, can be downloaded from https://sourceforge.net/projects/genmm. These

scripts are not intended to be end user software, but are made available to encourage transpar-

ency, reproducibility and to encourage others to build on our work.

Nonlinear least-squares minimization

To perform the NL-LSQM of the simulated data, each simulated data set was binned into a

number of bins equal to the square root of the number of samples (rounding up to the nearest

Single molecule GMM
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whole number). The bins were fit to a bi-exponential distribution with two free decay parame-

ters using the Levenberg-Marquardt algorithm. A finite bin-width correction was used.

Experimental data collection and processing

Experimental dwell times were measured for DNA cleavage by the restriction endonuclease

NdeI. The method of data collection is explained in detail elsewhere [10]. Briefly, 1000 bp

DNAs with a single centrally-located NdeI restriction site were used to tether 1 μm magnetic

beads in a microflow channel. The DNA-tethered beads were observed under low magnifica-

tion and dark field imaging. A low flow rate and magnet were used to apply a small force

(<100 fN) to the beads, which are pulled out of focus as the DNA is cleaved. Varying concen-

trations of NdeI (from 25 to 350 pM) were introduced in reaction buffer (20 mM Tris-HCl,

100 mM NaCl, 3 mg/mL BSA, 1 mg/mL Pluronic F-127, 1 mM MgCl2). Dwell time between

initial introduction of the enzyme and the final cleavage of the DNA is measured by noting the

time at which the bead is removed. The software package ImageJ was used to locate bead posi-

tions in the initial image, and then all images were analyzed by custom software which inte-

grates the intensity around the bead position. A large drop in intensity identifies the cleavage

event, and the dwell time is recorded as the frame number. A frame rate of either 0.5 or 1 fps

was used. Individual data sets produced 200 to 700 dwell times (cleavage events). See Section

12 of S1 Supporting Information for histograms of experimental data. This data is available for

download from https://sourceforge.net/projects/genmm. Mean dwell times varied from 150 s

to 300 s, and data were analyzed using the GMM. One up to six step reaction models were

tested using the “just-specified” objective function for each scheme. A single pass GMM was

used.

Results

Performance of GMM with simulated data

By minimizing an objective function composed of moment functions, the GMM provides esti-

mates of parameters which approximately satisfy the condition that all the moment functions

have the value zero. The performance of the GMM is known to depend on the order of the

method (the number of moment conditions included), as well as on the nature of the weight-

ing matrix used to weight the various terms. In addition, various methods of weighting have

been developed. These include “two-pass” methods, in which an initial trail matrix is used to

find a first pass estimate. The second pass uses a more effective weight matrix calculated from

the results of the first pass.

In general, we found a diagonal weight matrix based on jackknife estimates of the variances

in the cumulants (the D-matrix) to produce estimates with the lowest bias for all orders. Fig 2

shows the results of analyzing simulated data for a single-step reaction. Most methods of analy-

sis do well with a single-step mechanism. We include the analysis here for completeness and

because it displays trends which also hold for the more complicated mechanisms. The results

are shown for methods of all orders up to fourth. The dispersion in the results is shown by rep-

resenting the mean deviation with error bars. The identity matrix (I-matrix) as well as a non-

diagonal matrix based on a jackknife estimate of the full covariance matrix of the cumulants

(C-matrix) gave poorer results.

As seen in Fig 2, the bias and dispersion reduce with increasing number of samples for all

orders (except for first order where the bias is zero). Additionally, the bias tends to increase as

the order of the method is increased for all sample sizes. Note that the first order method is

equivalent to the Classical Method of Moments, in which the estimate is simply the mean of

the sample dwell times. It is easily shown that this estimate is unbiased for all sample sizes. We
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found that the dispersion, as measured by the mean deviation, shows a complex dependence

on the order of method for the I-matrix. However, for the D- and C-matrices, the dispersion is

relatively independent of order.

We now turn to the performance of the GMM for the two-step reaction (a single intermedi-

ate). In all that follows, we hold the first decay parameter fixed (τA = 10 s) and vary the second

(τB = 10, 20, 50, or 100 s). We examined second, third, and fourth order methods. Note that in

this case, the first order method is under-constrained, does not result in a unique estimate, and

is therefore excluded. We also examined the effect of using the I-, D-, and C-matrices (defined

above), as well as the benefit of a two-pass GMM, in which a first pass estimate is used to recal-

culate the weight matrix.

For the two-step reaction model, the GMM returns two estimated decay parameters which

can be sorted into a smaller value and a larger value. We can clarify the relation between these

two returned parameters and the hidden parameters τA and τB by considering the form of Eqs

14, 15 and 22. The first order moment function only depends on the sum of the two decay

parameters. By a reparameterization, we can make the first moment function dependent on a

Fig 2. Results for 1 step reaction. Mean for 1000 trials for orders 1 (circles), 2 (squares), 3 (diamonds), and 4 (triangles) are plotted versus sample size (N). The

simulated decay constant is 10 s. Error bars represent mean deviations.

https://doi.org/10.1371/journal.pone.0197726.g002
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single parameter which is equal to the sum of all decay parameters. In the case of the just-speci-

fied system, we can always find parameters to make each moment term zero, and hence any

solution will have the sum of the two estimates equal to an unbiased estimate of the mean total

dwell time. For the over-constrained case, the sum will not be unbiased. For the reversible

reaction, one can see by Eq (24) that the sum of the returned estimates will be the inverse of

the sum of all the reaction rates.

In Fig 3, we plot the mean values of the two estimates, along with the mean deviations as

error bars, for two sets of model parameters, (τA, τB) = (10 s, 10 s) and (τA, τB) = (10 s, 50 s).

The results shown were calculated using the D-matrix, which gave the best results for these tri-

als (see Sections 1–6 in S1 Supporting Information for complete results). The bias and disper-

sion decrease with increasing sample size, consistent with the expected large sample size

behavior [5]. For the case of τB = 50 s (Fig 3C and 3D), we see that for both estimates, bias

increases with order, similar to the pattern for the one-step reaction. However, the sign of the

bias is different for the two estimates, such that the lower estimate is too high, and the higher

estimate is too low. Dependence of the dispersion on the order is either weak or shows a slight

increase as order goes up. Results for decay parameters τB = 100 s are similar to those for τB =

50 s (see Sections 1–6 of S1 Supporting Information).

For the case when both model parameters are equal (τA = τB = 10s), the bias is either inde-

pendent of order (Fig 3A) or shows a non-trivial dependence on order and sample size (Fig

3B). Results for decay parameters (τA, τB) = (10s, 20s) are intermediate between those for τB =

10s and τB = 50s (see Sections 1–6 of S1 Supporting Information). The above results indicate

that a second-order method using the D-matrix is the optimum method of those explored

using the parameters we tested.

We next tested the two-pass GMM on the simulated data. Two-pass GMM methods

attempt to generate a more accurate weight matrix by executing a first pass using a best guess

for the weight matrix, and then using the resulting first pass estimates to calculate a more accu-

rate weight matrix for the second pass. In our case, we chose our best single-pass GMM result

(the second order, D-matrix method) as our first pass. We then used the estimates from this

pass to calculate the theoretical covariance in the sample cumulants and from the inverse of

this, the weight matrix. For efficiency, the theoretical covariance was calculated by interpola-

tion from a set of covariance matrices that were calculated using a Monte Carlo method (see

Materials and Methods for details). Since the second order GMM is “just-specified” in the case

of two model parameters, and hence independent of weight matrix, we investigated the effect

of adding a second pass using up to third or fourth order moments.

The results from the two-pass GMM are shown in the Fig 4. As can be seen from the figure,

an additional pass does not greatly affect the bias nor the dispersion under any of the parame-

ter sets used in this study. The small reduction in bias seen at low sample numbers in Fig 4A

and 4D is offset by the small increase in bias shown in Fig 4B and 4C. Fig 4 only shows the

results from the D-matrix weighting scheme. See Section 7 of S1 Supporting Information for

complete results.

We additionally applied the GMM to a three-step reaction model. Third and fourth order

single-pass GMM methods were applied to three sets of decay parameters. These sets were (τA,

τB, τC) = (10 s, 10 s, 10 s), (10 s, 10 s, 50 s) and (10 s, 30 s, 100 s). GMM estimates were sorted

into smallest to largest returned value, and the means and mean deviations are shown in Fig 5.

The performance of the GMM estimation is quite varied when faced with this more challeng-

ing problem. Bias tends to decrease with increasing sample number for most estimates, except

for the lowest estimate for the case of parameters (10s, 10s, 50s). This increase in bias with sam-

ple number is surprising, and therefore for the (10s, 10s, 50s) simulated data, we extended the

analysis up to 104 samples. The results (see Section 9 of S1 Supporting Information) show that
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the bias in the lowest returned parameter eventually begins to reduce for large enough samples

(~500 samples for 3rd order, ~1000 for 4th order).

Comparison with NL-LSQM

In order to compare the GMM to alternative methods, we used a non-linear least squares min-

imization (NL-LSQM) method based on fitting histograms of our simulated two-step reaction

data to the theoretical bi-exponential distribution. We used the same simulated data that was

used to calculate the GMM estimates shown in Fig 3 and performed global nonlinear least-

squares minimizations as described in the Materials and Methods. Fig 6 shows a comparison

of the second order GMM method using the D-matrix to the NL-LSQM method for a two-step

Fig 3. Single pass GMM results for 2 step reaction. Means for 1000 trials for orders 2 (circles), 3 (squares), and 4 (diamonds) are plotted versus sample size (N). Error

bars represent mean deviations. Left panels (A and C) show lower estimate and right panels (B and D) show higher estimate. The two top panels (A and B) are for the

decay constant pair (10 s, 10 s) and the two bottom panels (C and D) for (10 s, 50 s).

https://doi.org/10.1371/journal.pone.0197726.g003
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reaction. Note that for sample sizes of 5 and 10, the NL-LSQM method showed very large bias

for the smaller decay parameter (in some cases, returning negative decay parameters) which is

not plotted. For large samples (N> 100) the two methods are comparable in bias and disper-

sion, except for the case where the two model parameters are equal, in which case the GMM

has slightly smaller bias. At low sample size (N< 20), the GMM shows less bias and dispersion

and is able to return reasonable estimates even for sample sizes as small as N = 5. Results for

the decay parameter pairs (10s, 20s) and (10s, 100s) are shown in Section 8 in S1 Supporting

Information.

Fig 4. Two pass GMM results for 2 step reaction. Mean for 1000 trials for one-pass 2nd order (circles), two-pass 3rd order (squares), and two-pass 4th order (diamonds)

is plotted. Error bars represent mean deviations. Left panels (A and C) show lower estimate and right panels (B and D) show higher estimate. The two top panels (A and

B) are for the decay constant pair (10 s, 10 s) and the two bottom panels (C and D) for (10 s, 50 s).

https://doi.org/10.1371/journal.pone.0197726.g004
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Application to experimental data

To gain experience using the GMM with experimental data, we collected single molecule data

of double stranded DNA cleavage using a bead loss assay we have previously described [10].

Single molecule dwell times of DNA cleavage have been shown to be useful for the study of

restriction endonuclease mechanism [17]. Our technique uses tethered beads to measure the

dwell time until cleavage for several hundred DNAs in a single experiment. The total dwell

time consists of several steps, including the DNA target search as well as the cleavage of each

strand of the DNA.

We have previously shown that the mean dwell time under the conditions of 2 mM Mg2+ is

highly dependent on protein concentration, consistent with a diffusion-controlled process. In

this work, we collected data at 1 mM Mg2+ for a range of concentrations from 25 pM to 350

pM (see Section 12 of S1 Supporting Information for histograms of data) and analyzed the

Fig 5. Single pass GMM results for 3 step reaction. Mean for 1000 trials for orders 3 (circles) and 4 (squares) versus sample size (N). Error bars represent mean

deviations. The three GMM estimates are sorted into smallest to largest and arranged left to right in each row. Top panels (A, B, & C) are for the decay constants (10s,

10s, 10s), middle panels (D, E, & F) for (10s, 10s, 50s,) and bottom panels (G, H, & I) for (10s, 30s, 100s).

https://doi.org/10.1371/journal.pone.0197726.g005
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resulting dwell times using the GMM. Since we did not know a priori the number of steps in

the reaction, we chose to test models with one up to six steps, each using the “just-specified”

order (i.e., first order for one-step, second order for two-step, etc.) and using a diagonal jack-

knife weight matrix (D-matrix).

Our results for the one- and two-step analysis are shown in Fig 7. The single-step result is

equal to the sum of the two decay times from the two-step analysis, which must be the case.

The results for the three- and four- step method are listed in Table 1. Examination of the graph

and table shows that the slowest time step remains relatively constant for the different models

Fig 6. Results for comparison of GMM to non-linear least squares. Estimates from GMM are shown in blue circles, and those of NL-LSQM are green squares and are

plotted versus sample size (N). Error bars represent mean deviations. Left panels (A and C) show lower estimate and right panels (B and D) show higher estimate. The

two top panels (A and B) are for the decay constant pair (10s,10s) and the two bottom panels (C and D) for (10s, 50s).

https://doi.org/10.1371/journal.pone.0197726.g006
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as we increase the number of steps in the model past two. For example, at 22 pM, the slowest

step in the two-step model is 242 s, which changes to 259 s in the three-step model, and then

265 s in the four-step model. But the faster steps show a different pattern. For this same data,

the two-step model yields a faster step of 72.0 s, which turns into two steps of 27.5 s in the

three-step reaction, and finally three steps of 16.4 s in the four-step. Note that in each model,

the sum of the faster steps is relatively constant. This pattern continues for the five- and six-

step models also.

The fact that the higher order GMM yields sets of identical parameters suggests that the

CMM might not give real solutions for these data sets (see Section 11 of S1 Supporting Infor-

mation). We tested this by applying the CMM method to our experimental data. In this

Fig 7. Application of GMM to DNA cleavage by NdeI. All results are for single-pass GMM. The results for one-step reaction, first order GMM are shown with red

diamonds. Results for a two-step reaction, second order GMM are shown in green squares and blue circles. Error bars are estimates of statistical uncertainty taken from

dispersion shown in Fig 3.

https://doi.org/10.1371/journal.pone.0197726.g007
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method, the moment conditions (defined by Eq 2) are set identically to zero up to the nth

order, where n is the number of steps in the reaction model. These equations were solved

numerically using Mathematica. At first order, the CMM gives identical results to the GMM,

as expected. At second order, the CMM gives identical results for all data sets except for the

350 pM data set, for which the GMM returns two identical time steps. For the 350 pM data set,

the CMM returns two complex solutions. This is also expected, as the GMM returns a double

root when the CMM does not yield real solutions (see Section 11 of S1 Supporting Informa-

tion). For all higher orders, the CMM failed to return a complete set of real solutions. In all

cases, the CMM returned at most two real values, with some of these negative. The real CMM

estimates did not in general show any relation to the GMM results. Clearly, the CMM is not

able to provide useful parameters for this experimental data.

We also considered the possibility that the data might contain time steps that were signifi-

cantly different and that the GMM might have trouble analyzing such data. To test this, we

simulated three-step data with times steps of (1s, 10s, 100s) as well as (1s, 20s, 400s). The results

of such numerical experiments are shown in Section 10 of S1 Supporting Information. The

performance of the GMM is similar to what we saw for the previously considered case of (10s,

30s, 100s) and does not show behavior similar to the experimental case.

To further test how the GMM would handle data that contained multiple steps, we gener-

ated two simulated test datasets, one of a two-step reaction with time steps (50s, 150s), and one

of a six-step reaction with time steps (10s, 10s, 10s, 10s, 10s, 150s). We then applied the just-

specified GMM (single pass) using different numbers of steps (one up to six) in the model. For

the two-step data, we found that as we increase the number of steps in the model, the method

returned negative time constants when asked for more than two steps. The greatest returned

decay times were relatively constant and close to (50s, 150s), indicating that even when we

choose to analyze the data with the incorrect model, the method was correctly identifying the

steps present in the data and then returning insignificant durations for the fictitious steps. For

the six-step simulated data, the largest time constant remained relatively constant and close to

the expected value of 150s. The faster decay constants were all much smaller but varied quite a

bit, and the algorithm began to return negative time constants when more than four steps were

assumed in the model. This shows that the method could not correctly identify the number of

fast steps but did seem to suggest that there were at least four. This is similar to what we

observed in the analysis of our data, and suggests that in our experimental system, there are

several fast steps and one slower one. This slow step is shown by the green curve in Fig 7 and

the faster decays are represented by the blue curve in Fig 7, whose value is the sum of the faster

decays.

Table 1. Results of three and four step GMM analysis of experimental data.

[NdeI] THREE STEP RESULTS FOUR STEP RESULTS

(pM) τ1 (s) τ2 (s) τ3 (s) τ1 (s) τ2 (s) τ3 (s) τ4 (s)

22 27.5 27.5 259 16.4 16.4 16.4 265

44 11.1 11.1 199 5.05 5.05 5.05 206

88 21.4 21.4 145 12.4 12.4 12.4 151

175 11.8 11.8 159 5.96 5.96 5.96 164

350 36.3 36.3 91.9 21.6 21.6 21.6 99.7

Protein concentration is listed in left hand column. The decay times for the GMM results are listed in order of increasing time. The time for the slowest step is in the

rightmost column under each model result.

https://doi.org/10.1371/journal.pone.0197726.t001
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Discussion

We have developed an application of the Generalized Method of Moments (GMM) to the anal-

ysis of single molecule dwell times. Originally developed for the analysis of econometric data,

the GMM is a statistical framework for the analysis of samples drawn from random processes.

Our method is based on the analysis of cumulants of the data, and we have shown that it can

be used successfully to analyze single molecule biophysical data. Using simulated as well as

experimental data, we have shown that the GMM can extract useful model parameters directly

from sets of experimentally-measured dwell times. We also provide guidelines on the best use

of the GMM to analyze real data.

Many of our findings agree with the growing literature assessing the utility of the GMM.

Our simulated data shows that for applications to single molecule dwell times, the lowest order

method that can completely determine a solution (the “just-specified” case) demonstrates

lower bias than higher order methods. For orders higher than this minimum, the bias generally

depends on the nature of the weight matrix. In the two-step reaction, we investigated the effect

of three different weight matrices for these higher order GMMs. These were (1) the identity

matrix, (2) a diagonal weight matrix with terms equal to the inverses of estimated variances of

the cumulants, and (3) a matrix equal to the inverse of an estimated covariance matrix. We

find that, although estimating the variances of the cumulants from the data can reduce bias,

adding more complicated weight matrices (including off-diagonal terms due to cross-vari-

ances) can actually increase bias. These results indicate a “less-is-more” approach. Adding

higher orders or off-diagonal elements to the weight matrix does not necessarily help the esti-

mate. We also found that adding a second pass does not significantly improve performance.

Even under “just-specified” constraints, i.e., when the number of moment conditions equals

the number of free parameters, our results for the two-step reaction shows dependence on

weight matrix, albeit small (See Section 4 of S1 Supporting Information). Although it is true

that the just-specified GMM method generally gives the same results as the Classical Method

of Moments (CMM), this only follows if the CMM returns a real-valued result. In the case of

the two-step reaction, it is straightforward to show that the CMM fails to return real-valued

estimates in many cases. In these cases, the GMM will return real values that depend on the

weight matrix. Furthermore, it can be shown that in the cases in which the CMM does not

return real-valued estimates, the second order GMM must return a double root, that is, it

returns two identical estimates (see Section 11 of S1 Supporting Information for proof of this

statement). Since these estimates tend to be midway between the higher and lower decay con-

stants, they have the effect of causing the higher estimate to have negative bias and the lower

estimate to have positive bias, a trend which is seen in our simulated data (Figs 3 and 4). It is

worth noting that other methods of dwell time analysis, including Bayesian methods and Hid-

den Markov Models, have been shown to systematically underestimate decay constants, simi-

lar to what we find for the GMM [8,9].

Comparison of the GMM to NL-LSQM shows that these two methods provide estimates

with comparable bias and dispersion for larger sample sizes (N> 20). However, the GMM

shows a moderate advantage in terms of bias at very low sample numbers and does better at

estimating the smaller of two decay parameters (Fig 6A and 6C) in these cases. The NL-LSQM

method often fails to pick out these faster decays when there are very few samples. A partial

explanation can be found in the fact that the NL-LSQM method relies on binning, which can

be particularly challenging at low counts.

In our test of the GMM on experimental data out to six steps, we found that as we added

more steps to the reaction model, the method continued to produce estimates of faster multi-

ple steps. This is not what we found for similar analyses of simulated two-step data, and
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suggests that in the experimental system, there are a number of faster steps but that the GMM

is not able to determine the exact number of steps nor the rate of each one. The CMM in this

case is unable to return real solutions for multiple steps. Fig 7 shows that the slow step is

dependent on the protein concentration and that this dwell time decreases as the protein con-

centration increases. However, the faster steps show little dependence on protein concentra-

tion. This could be explained by a mechanism in which the rate limiting step is the site-specific

association of the protein with the binding site, followed by a series of faster steps leading to

cleavage of one or both DNA strands.

It is important to understand how the GMM compares to current methods of data analysis

in molecular biophysics. The majority of these methods have been devised to analyze data

from single molecule FRET experiments. In methods such as HMM, assumptions about how

the hidden states are connected to the measured signal are made, which allow the time trace of

the signal to be interpreted as transitions between molecular states. These methods take as

input the experimentally-measured time traces. These detailed data can provide more infor-

mation on hidden states than exists in a dwell time distribution. For example, multiple FRET

efficiencies can aid in the identification of multiple hidden states [3]. Furthermore, recent

work has shown that in the case of identical FRET efficiencies of hidden states, methods such

as SMACKS [18] and Empirical Bayes [8] can outperform dwell time analysis.

GMM may underperform these methods in the case of analysis of smFRET traces. How-

ever, GMM does offer some advantages. As a method of dwell time analysis, it is more broadly

applicable, as is shown in our experimental application to a bead loss assay. In addition, it has

the ability to be modified to include non-exponential dwell time distributions by modifying

the moment functions accordingly. Exponential dwell time distributions are inherent in

HMM and related methods. And finally, the GMM is simple to implement, with just a few

adjustable parameters. It also is flexible and can be reformulated, requiring only a redefinition

of the moment functions. The only requirement is that a sufficient number of moment func-

tions of the measured values and system parameters can be formulated whose expectation val-

ues are zero. The number of such moment functions must be at least the number of free

parameters in the model.
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