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Abstract: We develop topological methods for characterizing the relationship between polymer chain
entanglement and bulk viscoelastic responses. We introduce generalized Linking Number and Writhe
characteristics that are applicable to open linear chains. We investigate the rheology of polymeric chains
entangled into weaves with varying topologies and levels of chain density. To investigate viscoelastic
responses, we perform non-equilibrium molecular simulations over a range of frequencies using sheared
Lees–Edwards boundary conditions. We show how our topological characteristics can be used to
capture key features of the polymer entanglements related to the viscoelastic responses. We find there
is a linear relation over a significant range of frequencies between the mean absolute Writhe Wr and
the Loss Tangent tan(δ). We also find an approximate inverse linear relationship between the mean
absolute Periodic Linking Number LKP and the Loss Tangent tan(δ). Our results show some of the ways
topological methods can be used to characterize chain entanglements to better understand the origins of
mechanical responses in polymeric materials.

Keywords: topology; linking number; writhe; entanglements; knots; viscoelasticity; oscillatory shear

1. Introduction

A central aim in polymeric material science is to understand the relationships between chemistry,
molecular-level interactions, and bulk material properties. We consider polymeric materials and develop
approaches for investigating the relationship between the topology of polymeric chain interactions and
the resulting bulk viscoelastic mechanical responses. The collective configurations of the chains can
result in complex entangled structures that greatly restrict chain motions and augment transmission of
mechanical stresses within the material [1–3]. Characterizing the intuitive notion of entanglement in a way
that is quantitatively precise poses many interesting challenges. For instance, entanglement in polymer
melts or gels often involves kinetics over a broad range of time-scales with collective responses that often
depend on both the frequency and duration of the mechanical perturbations. In addition, the polymer
chains often exhibit friction with respect to one another or coupling from immersion within a solvent
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fluid. This can result in significant variations in the viscoelastic responses that may depend sensitively on
frequency [1,4,5].

When investigating polymer chain entanglement, a common approach is to consider two length
and time scales. First, there is the length and time scale of the entire chain, where global entanglement
occurs as the chains get knotted and linked to each other [1,6–10]. Second, one has local entanglement
arising from the local constraints, obstacles, that a chain feels over a small length and time scale.
This entanglement length often plays a central role in models of entangled polymer dynamics and is
closely related to the tube diameter in tube model theories [3,11–14]. Understanding the relation between
these scales poses a number of challenges in practice. For instance, experimentally there are different
methods for the determination of the plateau modulus and different entanglement molecular weights
give different results [15]. Since Edwards’ tube model, several improvements of this theory have emerged,
but inconsistencies still remain [16–19]. Moreover, an even shorter length scale, that of the packing
length, has been shown to have an influence and has been incorporated in some theories of polymer
viscoelasticity [20–22].

The relation between entanglement and viscoelastic properties of materials has been studied indirectly
by varying the density or molecular weight of the chains thereby influencing the number of contacts
between neighboring chains [23–27]. A measure of polymer entanglement that has been very helpful
in such studies is the number of “kinks” per chain, which is derived from the application of a contour
reduction algorithm on a polymer melt [25–28]. However, the global entanglement complexity is more
subtle and cannot be assessed by only measuring the number of contacts. This has led to the use of tools
from knot theory to study entanglement in polymers [6,7,25,29–32]. The difficulty in using tools from knot
theory is that they are defined on simple closed curves in space (rings) while the polymers often have
other architectures, such as being open linear chains. Toward dealing with this issue, a new statistical
definition of knotting was introduced in [33]. This method can determine the principal knot type of a
fixed configuration of an open chain. However, the polymer chains move in time and this method may
have problems when applied to study entanglement in non-equilibrium conditions. Moreover, the tools
from knot theory have not yet been developed sufficiently for polymeric systems with three-dimensional
Periodic Boundary Conditions (PBC) which are often used in practice [34].

In our work, we take a complimentary approach building on mathematical ideas from topology
and geometry to quantify the complexity of the polymer entanglements. We introduce two quantities
referred to as the collective “Linking Number” and “Writhe” [35–37]. The advantage of the Gauss linking
integral is that it can be applied to both linear and ring polymers and it is a continuous function of the
chain coordinates. Moreover, in [35] it has been shown that it can be extended to systems with 1,2 or 3
PBC to provide a new continuous measure of entanglement. These measures have been applied to study
polymer entanglement in both equilibrium and non-equilibrium conditions. More precisely, it was shown
that the writhe in combination with the Z1 algorithm can provide a new estimator of the entanglement
length with several advantages over other estimators and our proposed measures have also been used to
understand the dis-entanglement of polymer chains in a melt under an elongational force [36–38]. Recently,
the Gauss linking integral has been also used to study protein folding kinetics [39]. These results indicate
the promise of such topology-based estimators in polymer theories.

Here, we develop further these topological approaches for characterizing polymer entanglements
within non-equilibrium systems subject to external materials deformations, such as oscillatory shearing.
To investigate viscoelastic responses, we develop methods for non-equilibrium three-dimensional
molecular simulations with shearing Lees–Edwards periodic boundary conditions (LE-PBC) [40]. We use
our approach to study the frequency dependent viscoelastic responses and relationships to the underlying
topology of the polymer chain entanglements.
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We consider in our investigations polymeric weaves which have well-controlled topological properties
that we can vary. We consider polymeric systems that have local topologies arising from short linear
polymer chains and those with global topologies arising from long linear polymer chains. We also vary
density to consider systems ranging from weakly entangled to strongly entangled. Our topological
approaches allow us to investigate both the local and global entanglement effects. We find an approximate
linear relation over a large range of frequencies between the mean absolute Writhe Wr and the loss
tangent tan(δ). We also find an approximate inverse linear relationship between the mean absolute
Periodic Linking Number LKP and the loss tangent tan(δ). We expect our topological approaches could
be useful in gaining additional quantitative information relevant to understanding the mechanics of
polymeric materials.

We organize the paper as follows. In Section 2 we introduce approaches from knot theory to precisely
characterize the topology of the polymeric chains. In Section 3 we describe a class of polymeric materials
having a weave-like topology. In Section 4, we discuss the details of our computational methods and
simulation approaches. In Section 5, we present our results and discuss relationships revealed by our
methods between the topology of the polymer entanglements and bulk material responses.

2. Characterizing Polymer Entanglement

We measure the degree to which polymer chains interwind and attain complex configurations using
the Gauss Linking Integral [41]. We define the Gauss Linking Number as

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))
||γ1(t)− γ2(s)||3

dtds. (1)

We use this for two disjoint (closed or open) oriented curves l1 and l2 whose arc-length
parametrizations are respectively γ1(t), γ2(s). The double integral is over l1 and l2. In this notation
(γ̇1(t), γ̇2(s), γ1(t)− γ2(s)) denotes the scalar triple product of γ̇1(t), γ̇2(s) and γ1(t)− γ2(s). The Gauss
Linking Number is a topological invariant for closed chains and a continuous function of the chain
coordinates for open chains (see Figure 1 for an illustrative example).

We also define a one chain measure for the degree of intertwining of the chain around itself.
We define the Writhe of a chain as

Wr(l) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇(t), γ̇(s), γ(t)− γ(s))
||γ(t)− γ(s)||3 dtds. (2)

For a curve ` with arc-length parameterization γ(t) is the double integral over l. The Writhe is a
continuous function of the chain coordinates for both open and closed chains.

For systems employing Periodic Boundary Conditions (PBC), the linking that is imposed from one
simulated chain on another chain propagates in three dimensional space by the images of the other chain.
In other words, for a system with PBC each simulated chain gives rise to a free chain in the periodic system
which consists of an infinite number of copies of the simulated chain. We call each copy of a chain an
image of the free chain. It has been shown that a measure of entanglement that can capture the global
linking in a periodic system is the periodic linking number LKP [35]:

We define the Periodic Linking Number as

LKP(I, J) = ∑
v

L(Iu, Jv), (3)
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The I and J denote two (closed, open or infinite) free chains in a periodic system. Suppose that Iu is
an image of the free chain I in the periodic system. The sum is taken over all the images Jv of the free chain
J in the periodic system. We say that the Periodic Linking Number LKP is between two free chains I and J.

linking number increases

writhe increases

Wr=0.21Wr=1.21 Wr=0.07

Lk=1 Lk=0.95 Lk=0.35

Figure 1. The Gauss linking integral between two curves measures the degree to which they entangle, it is
a real number that varies continuously with the chain coordinates for open chains, and it is an integer
topological invariant for closed chains. Similarly, the Writhe (the Gauss linking integral over one curve)
measures the degree to which a curve entangles with itself and varies continuously with chain coordinates.

The Periodic Linking Number is a topological invariant for closed chains and a convergent series for
open chains that changes continuously with the chain coordinates. For its computation, we use a cutoff,
the local Periodic Linking Number [35,38].

3. Polymeric Materials with Weave-like Entanglements

We study the role of entanglement topology in the mechanical responses of polymeric materials.
We consider both the case when the global topology is fixed and when the topology can change over time
for a few different weave entanglements, see Figures 2 and 3. We investigate how mechanical responses
depend on the topology, chain density, or whether the polymers are to be considered open chains or closed
(infinite) chains.

We refer to chains as closed when they are very large relative to the length-scale of the entanglements.
In practice, we can think of these as effectively infinitely long chains. These chains have the important
property that in computations no end-points occur within the simulation box. These chains are treated as
extending periodically to create a toopology corresponding to an infinite weave.
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Figure 2. We consider polymeric chains entangled with weave-like topologies. The weave0 (w0) denotes
case with aligned chains, weaveI (wI) the case with smaller density of orthogonal and non-interlaced chains,
weaveII (wII) the case with larger density of orthogonal and non-interlaced chains, and weaveIII (wIII) the
case with alternating interlaced chains.

over-crossings

under-crossings

Entanglement of the Polymer Chains

Figure 3. We show the entaglements of the polymer chains of wIII. The weave wIII has a topology with
alternating interlaced chains. We see the chains in the x direction which alternatingly go over and under
chains in the perpendicular y direction. We show one chain in the x-direction (orange curve) that can be
seen locally to meet with three chains in the perpendicular y direction.

We refer to chains as open when they are finite in length. These chains are open in the sense they
always have end-points within the simulation box. These chains can still cross the periodic boundary
where they interact with the periodic image points generated by the unit cell. In this case, the topology of
the material simulated can change over time in response to the deformations and stresses of the material.
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We consider in our studies the specific weave topologies referred to as (w0) for aligned, (wI, wII)
for orthogonal non-interlaced at different densities and (wIII) alternating interlacing. We show the
base-line chain density and lengths in Table 1. We show example configurations of each of these weaves
in Figures 2 and 3.

We start with the weave w0 which has a relatively simple global topology. The polymers are simply
arranged parallel to one another without any entanglement, providing a good reference case for topology
and responses. We then consider the weaves wI and wII that arrange polymers in a regular criss-cross
patterm. Both wI and wII have the same global topology, but we take these to have different densities.
We take weave wIII to be an inter-woven topology alternating in-out entanglements. We take wIII to have
the same density as wII. The weave wIII has a non-trivial global topology. As a result of the polymer
sterics preventing the crossing of chains, the global topology of the infinite systems cannot change without
breakage of the bonds. It should be noted that the local configurations of the chain interactions can lead to
local entanglements that change over time under the global constraints of the topology.

We create open chain systems for w0, wI, wII, wIII by deleting the same bond from each chain
in the simulation box. Given the periodicity this creates a standard procedure for obtaining an initial
open-chain configuration. As a result of the polymer sterics preventing the crossing of chains, the global
topology of the infinite systems cannot change without breakage of the bonds. In contrast to the infinite
chain systems, the global topology of the open chain system can change over time by slippage of the chains
past the entanglements. This creates the possibility in response to mechanical deformations for topology
rearrangements over time.

We investigate the mechanical responses of the material by subjecting the polymeric chains to
an oscillatory shear through deformation of the simulation box in the style of Lees–Edwards [40].
This provides us with shear stresses for the material which we can correlate with simultaneous
measurements of the chain density and topology of the materials. We remark that similat to our
polymeric weave configurations, there have also been studies using weaves for investigating metal
organic frameworks and crystals [42,43].

Table 1. Densities associated with the polymeric weaves shown in Figure 2.

Weave Topology Density MW (open)

W0 parallel, non-interlaced 0.0625 (15 amu/nm3) 20 m0
WI orthogonal (non interl.) 0.1875 (45 amu/nm3) 20 m0
WII orthogonal (non interl.) 0.33 (80 amu/nm3) 15 m0
WIII alternating interlaced 0.35 (84 amu/nm3) 21–17 m0

4. Simulation of the Polymers

We investigate entangled polymeric chains using three-dimensional molecular simulations.
The polymers are treated as elastic macromolecules modeled with harmonic bond potential of energy
E = Kb(r− r0)

2, Kb = 250, r denotes the length of extension of the polymer bonds and r0 = 1 denotes
the rest length of the bond. The polymer bending stiffness is controlled with a harmonic angle potential
with energy E = Kθ(1− cos(θ − θ0)), with Kθ = 8, where θ is the angle between two consecutive bonds.
The rest angle is θ0 = π. The length of the simulation box is approximately 20σ. Each polymer chain
has approximately 20 monomers inside the simulation box for the densities and parameters given in
Tables 1 and 2. With this choice of Kθ , the chains have persistence length of approximately 1/5 of the
length of the simulation box. With these potentials, there is no maximum permitted length or bond angle
constraints, but there is a high energy penalty for large deviations from the rest length. This does not
exclude the possibility of chains crossing through each other, especially for large deformations. Our results
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however, show that chain crossings are rare enough so as to not influence the qualitative effects of
entanglement observed here (see Section 5). The beads of our polymers interact through the Lennard–Jones
(LJ) potential with energy

ELJ = 4ε

((σ

r

)12
−
(σ

r

)6
)

(4)

We use a cutoff of 2.5σ. We simulate the finite temperature and kinetics of the polymer chain dynamics
using the Langevin Thermostat

m
dV
dt

= −ΥV −∇Φ(X) +
√

2kBTγ
dBt

dt
. (5)

The X denotes the position of the atoms, V = dX/dt is the velocity, −∇Φ(X) denotes the interaction
forces, Υ denotes the friction coefficient, and

√
2kBTγdBt/dt denotes the random force accounting for

thermal fluctuations [44]. We perform all simulations using the LAMMPS molecular dynamics package
and our custom extension packages [45,46].

To study the bulk mechanics of the polymeric system, we perform rheological studies using oscillatory
shearing motions based on Lees–Edwards boundary conditions [40]. In Lees–Edwards conditions, periodic
boundary conditions are used with shifted image interactions (see Figure 4). We use a sinusoidal
oscillation of the displacement L(t) = L0 + A sin(2πt/Tp) with amplitude A and time periodicity Tp.
This corresponds to a cosine oscillation of the strain with rate γ̇ = γ̇0 cos(ωt) where ω = 2π/Tp and
γ̇0 = Aω.

L(t)

Figure 4. In Lees–Edwards boundary conditions, a monomer that exits the cell in a direction perpendicular
to the shear direction will re-enter from the opposite face at position shifted by ±L(t) mod L0.

As a measure of material response, we consider the dynamic complex modulus G(ω) = G1(ω) + iG2(ω).
The components are defined from measurements of the stress as the least-squares fit of the periodic
stress component σxy by the function g(t) = G1(ω)γ0 sin(ωt) + G2(ω)γ0 cos(ωt). This offers a
characterization of the response of the material to oscillating applied shear stresses and strains as the
frequency ω is varied. The G1 is referred as the Elastic Storage Modulus and G2 is described as the Viscous
Loss Modulus. These dynamic moduli are motivated by considering the linear response of the stress
components σxy to applied stresses and strains. At low frequency the polymer stresses appear to have
sufficient time to equilibrate to the applied shear stresses. At high frequencies, the polymer stresses do not
appear to have sufficient time to equilibrate to the applied shear stresses. This is manifested in σxy(t)
which is seen to track the applied stress very closely. A phase lag 0 is representative of solids and π/2 is
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representative of liquids. This delay is caused by propagating the stress through the domain via the chain
topology. The increase of G2 indicates that the mechanics arises effectively from chains’ resistance to more
rapid motions, such as sliding, while the increase of G1 indicates in the mechanics a resistance to direct
deformation represented by increases in the elastic bond lengths or from the bending stiffness of chains.

To estimate the dynamic complex modulus in practice, the least-squares fit is performed for σxy(t)
over the entire stochastic trajectory of the simulation after some transient period of approximately 10T
(see Table 4), which is of the order of the diffusion time of the open chains under study. In our simulations,
the maximum strain over each period was chosen to be half the periodic unit cell in the x-direction,
corresponding to a strain amplitude γ0 = 1

2 . A description of the parameters and specific values used
in the simulations can be found in Tables 2 and 3. We notice that the applied strain is large and would
imply a nonlinear regime for polymer melts. However, the systems considered in this study are polymer
solutions of very low molecular weight and our results indicate a linear regime so we can neglect higher
harmonic contributions to stress [47].

The effective stress tensor associated with the polymers at a given time is estimated using the
Irving-Kirkwood method [1,48]

σl,k =
1
V ∑

n

n−1

∑
j=1

〈
f (l)j · (x(k)qn − x(k)qj )

〉
(6)

where V is the volume of the periodic box, x(k)qv is the k-th coordinate of the qv-th atom (the minimum

image convention is used for the difference) and f (l)j is the l-th coordinate of the pairwise interaction
between the two atoms.

Table 2. Parameterization for the polymer weave models. These parametrizations (and Table 3), are chosen
for relatively stiff polymers exhibiting worm-like chain responses for polymeric solutions and melts.

Parameter Description Value

σ monomer radius 1.0 nm
ε energy scale 2.5 amu·nm2/ps2

m0 reference mass 1 amu
wc energy potential width 2.5σ
m monomer mass 240 m0
τ LJ-time-scale σ

√
m0/ε = 0.6 ps

kBT thermal energy 1.0 ε
ρ solvent mass density 39 m0/σ3

µ solvent viscosity 25 m0/τσ
Υ drag coefficient 476 m0/τ

Table 3. Parameterization for the stiffness and connectivity of the polymer chains.

Parameter Description Value

Eb harmonic bonds potential constant 619.5 amu/ps2

b harmonic bonds rest length 1.0 nm
Eθ harmonic angle potential constant 19.8 amu·nm2/ps2

θ0 harmonic angles’ rest length 180◦
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Table 4 shows how the simulation time and oscillation period range compare to characteristic times
in our systems (computed using the parameters used in our simulations, shown in the previous tables).
The advection time is computed as τA = m/Υ. The Rouse time, τR, is computed for an ideal chain of
length 20. The critical time τ0, refers to the characteristic time where cross-overs are observed in our
simulations, shown in Section 5. Notice that we do not report an entanglement time because our chains
are short (with number of discrete local topological constraints Z < 2 in many cases) and the notion of
entanglement length does not apply to them.

Table 4. Characteristic time scales

Parameter Description value

τA advection time propagation in fluid 0.0013 ps
τD diffusion time monomer moves a dist. σ 302 ps
τR Rouse time ideal chain N = 20 6937 ps
τ0 critical time cross-over reference time 598 ps
T period of oscillation 6 ps < T < 3600 ps
t simulation time longest simulation time 150 ps < t < 90,000 ps

5. Bulk Mechanical Responses

5.1. Complex Modulus

We show the log-log plot of the Elastic Storage Modulus G1 and Viscous Loss Modulus G2 for all
the infinite and open weave polymeric materials as the shear response frequency is varied in Figure 5.
The frequency of oscillation is normalized by ω0 = 2π/τ0 where τ0 = 943τ = 598ps = 1.98τD is a
time-scale on the order of the diffusion time τD (see Table 4).

0.5 0.0 0.5 1.0 1.5 2.0
log( / 0)

1.0

0.5

0.0

0.5

1.0

1.5
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g(

G
1(

/
0)

) a
nd

 lo
g(

G
2(

/
0)

)

1/2

1/4

Elastic Storage and Viscous Loss Modulus 
 infinite weaves

G1 w0
G1 wI
G1 wII
G1 wIII
G2 w0
G2 wI
G2 wII
G2 wIII

0.5 0.0 0.5 1.0 1.5 2.0
log( / 0)

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

G
1(

/
0)

) a
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 lo
g(

G
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/
0)

)

3/2

3/4

Elastic Storage and Viscous Loss Modulus 
 open weaves

G1 w0
G1 wI
G1 wII
G1 wIII
G2 w0
G2 wI
G2 wII
G2 wIII

Figure 5. Polymer Weave Frequency Response: Dynamic Moduli. The Elastic Storage and Viscous Loss
Moduli of the infinite chain weaves are shown left and those of the open chain weaves right. The infinite
weaves behave like crosslinked polymers with a primarily elastic behavior throughout the range of
frequencies simulated. The exponents 1/2 and 1/4 are similar to those in the Rouse model [49]. The open
weaves transition from an elastic to a viscous behavior as frequency is varied. The exponents 3/4 and
3/2 indicate the predicted scaling for semi-dilute solutions of semi-flexible chains and for the BEL model
respectively [50]. The slope increases with decreasing topological complexity.
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Comparing G1, G2 for the infinite weaves we see that, in the range of frequencies studied, we have
G1 > G2 for all the simple weaves. The crossover of G1 and G2 is absent for those systems within this
range of frequencies, which indicates no behavioral transition in the samples which exhibit solid properties.
When G1 is larger than G2 the elastic response is dominant indicating there is relatively few polymer
rearrangements (reptation) within the network structure. This indicates that energy is mainly stored
elastically in the stretching and bending of bridging polymeric chains. This can be verified by our Writhe
quantity for the chains as it reaches a minimum at the extrema of the oscillatory strain period within this
regime (see Section 5.2). The systems with large G1 behave like stiff materials having strong entanglements
similar to imperfect networks having transient covalent crosslinking [51–57]. This indicates that polymer
solutions of long linear semiflexible chains can behave like crosslinked networks, even in the absence of
explicit crosslinks. A similar observation was reported in [58].

Initially, G1 and G2 are independent of the frequency of oscillation and we see a crossover at frequency
ω0 that corresponds to period τ0. At frequencies higher than ω0 (period times shorter than τ0) there is a
significant dependence of moduli on the frequency which increases with increasing topological complexity.
This is in agreement with predictions for polymeric networks [49]. The line segments shown in the figure
indicate a scaling between ∼ω1/4 and ∼ω1/2, respectively, to be compared with that of Rouse chains.

The alternate interlacing weave, wIII, is the only infinite weave for which G1, G2 intersect and for
which G1 and G2 both seem to scale as ω1/2 in the intermediate frequencies. Moreover, for wIII, G1 ≈ G2,
with G1 < G2 for low frequencies. We find that the original configuration of wIII is not favorable to the
stiffness of the chains and the chains need to stretch resulting in a larger G1. This causes extra collisions
with other chains which results in larger values of G2 as well. At high frequencies, we notice a shift
from filament bending to stretching which results in higher values of G1. Such transitions have also been
observed in networks of actin filaments [59,60].

Comparing G1, G2 for the open systems we find that both G1 and G2 are initially constant up to
ω ≈ ω0 and then increase and intersect at ω ≈ 10ω0. We have G2 < G1 for ω < 10ω0 and G1 < G2 for
ω > 10ω0. This suggests two critical times in the polymer chain dynamics. The first is τe = τ0/10 and the
second is τ0 at which we find have a trend of slightly increasing with decreasing density of the systems as
predicted in [61]. We find that with increasing frequency the response tends to become dissipative.

At low frequencies G1∼ω1/2 we find the trends follow the Rouse model. For larger frequencies we
find that G1∼ω3/2, G2∼ω3/4 and then G1, G2 tend to a plateau value. Similar scalings were reported
in [62] and in [47] for polymer solutions of linear FENE chains of similar molecular weight, which further
shows that the use of harmonic bonds does not significantly influence our findings. We find a decreasing
slope of G1 for increasing entanglement which suggests a slower relaxation mechanism.

We show the loss tangent as a function of the frequency of oscillation in Figure 6. We remark
that tan δ can be interpreted as reflecting the strength of what is sometimes called “colloidal forces”.
In other words, if tan δ < 1 then the particles are highly associated and sedimentation could occur.
If tan δ > 1, the particles are highly unassociated. The loss tangent is almost constant, close to 0, for all the
simple infinite weaves (w0,wI,wII). The values of the open weaves are greater than one and then decrease
to the values of the corresponding infinite weaves. The asymptotic ordering of the phase lag of the systems
is w0 < wI < wII < wII I.

We find that, our data at larger frequencies that all the materials behave like elastic solids, as is often
seen in large frequency responses. The inset graph shows the corresponding log-log plot only for the
open systems. It reveals a cross-over at approximately ω0, which corresponds to times on the order τ0.
This time-scale could be related to the entanglement time as in [49,63]. This characteristic time-scale,
seems to decrease with the topological complexity of the weave. The large frequency tail of tan δ decreases
more slowly with increasing topological complexity and density indicating a substantial dissipation effect
related to entanglement.
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Figure 6. Polymer Weave Frequency Response: Loss Tangent. The infinite systems behave like crosslinked
polymers with a loss tangent less than 1 at all frequencies. The open chains transition from a liquid-like
behavior to that of a solid-like behavior as the frequency increases. The inset plot shows the log-log plot
for open chains. These results show that the crossover frequency increases with decreasing topological
complexity. Similarly, the slope of decrease increases with decreasing topological complexity.

5.2. Conformational Analysis

We show configurations of the polymer weaves at different times during deformation in Figure 7.
For the small oscillation frequencies, the infinite chains follow the deformation of the defining box,
attaining an s-shape conformation. The open chains, significantly rearrange in time and tend to avoid
the boundary by aligning with the orientation of the deformation. This process happens more slowly for
wI and even more slowly for wII and wIII systems due to topological obstacles. We note that the chains
tend to form bundles of chains, giving an inhomogeneous material, suggesting that the inhomogeneity
decreases with increasing density and entanglement complexity. Similar phase separation of polymer
solutions in oscillatory shear has been observed experimentally in [64].

We find the transition from bundle-dominated structures to entanglement dominated structures is
related to the entanglement of the chains as has been also reported in [65]. A possibility for the bundle
formation is finite-size effects. To examine that, we performed similar simulations in equilibrium in the
NVE and in the NPT ensemble for the w0 infinite system. In both cases, bundle formation occured rapidly
in the simulation. This indicates that the bundle formation is not a finite size effect.

We propose that the chains bundle together in order to decrease their deformation which occurs
due to thermal fluctuations and due to the deformation of the cell. As the chains bundle, they form tubes of
chains. A larger diameter tube resists the deformation stronger than the individual chains. This larger
tube structure is apparent in the w0 infinite system. The same happens in two and three directions
respectively for wI, wII and wIII. This also happens transiently at initial times for the open systems.
At first the open chains form these bundles then they keep rearranging and entangling further until finally
forming globules.
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Figure 7. Polymer configurations subject to oscillatory shear. Configurations at the end of simulations
for the closed chain and open chain systems. In both cases, the chains tend to form bundles. By forming
tubes of larger radius the chains decrease their individual deformation. For weave0, the open chains
can significantly rearrange their conformations to those of random coils and the system becomes
inhomogeneous, disconnected accross the periodic boundary. As the entanglement complexity and
density increases, the open chains cannot fully escape their original conformations, forming tubular
connected domains (weaveI), lamellar structures (weaveI) and even retain entanglement percolation in
three dimensions (weaveIII).
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Our topological methods can be used to more precisely characterize the conformational features of
the chains. We do this by measuring the Writhe and the Periodic Linking Number topological quantities
that we introduced in Section 2. We remark that the chains in our system are loosely entangled relative
to highly knotted systems yielding, as a consequence, Periodic Linking Numbers and Writhe that are
less than one. While the quantities appear small relative to those of highly knotted systems, they still
provide a useful characterization of the collective configurations of the polymeric chains of the material
and their rearrangements. As our results indicate these are useful in understanding the connection
between topology and mechanical responses even in systems of low molecular weight (below that of the
entanglement length).

We find a very different behavior of the Writhe for the weave of type w0 between the open and infinite
systems (the situation is similar for wI and wII). In the case of the infinite periodic systems, the mean
absolute Writhe of the chains shows a sinusoidal behavior. This is seen most clearly when the frequency of
oscillation is small. During the shearing cycle of the unit cell in our simulations, the Writhe is maximum
when the shear deformation is the least and the Writhe reaches a minimum when the shear deformation
is at its greatest. This behavior is indicative of the chains stretching at the maximum deformation and
relaxing to a more entangled state when the shear deformation is relaxed.

In the case of open systems, the mean absolute Writhe of the chains also follows a sinusoidal behavior,
but it changes significantly in time. This happens because the chains are free to attain any possible
configuration and tend to disentangle and relax to configurations similar to those of random coils. Indeed,
the final values are similar to those of a semiflexible random coil of comperable length as reported in [36].
This behavior becomes less pronounced as we increase the density and complexity of the weave because
the disentanglement time increases and the chains do not have sufficient time to rearrange.

5.3. Topology and Mechanical Responses

We investigate both closed and open chain systems. The closed chain systems were found to be less
interesting since the values of the Writhe and the Periodic Linking Number did not change significantly as
a function of the frequency of oscillation. This is as expected, since without breakage of bonds the topology
must remain close to that of the original configuration. Similarly, the loss tangent of the infinite systems
does not change significantly throughout the experiment.

Here, we focus on the open chains systems where there is the potential for significant
rearrangements of polymer chain configurations and topology. We show the mean absolute Writhe
of open chains as a function of the loss tangent for small frequencies of oscillation in Figure 8.

We find a decay of the mean absolute Writhe with the loss tangent and a clustering of the data for each
system. It is notable that the proposed Writhe measure groups together the systems of similar material
response. The clustering observed for these systems indicates that the global entanglement of the chains
imposed by the original conformation affects the response of the material significantly. The responses at
small frequencies are clustered and ordered with their Writhe decreasing as w0 > wI > wII > wII I.

We remark that as the frequency increases we found the Writhe of the open systems tended to meet the
values of their corresponding closed (infinite) chain versions. This occurs since the chains cannot escape
their original configuration as readily at large oscillation frequencies. For the wII I case, approximately the
same values for open and closed chains were found throughout.

Previous studies have shown that there is an almost linear relationship between the number of
kinks per chain and the mean absolute Writhe of a chain in the case of a melt of linear FENE chains [36].
The relationship emerges as a function of the molecular weight in equilibrium conditions.
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Figure 8. Writhe and Loss Tangent of open chains for small frequencies of oscillation (frequencies
corresponding to periods T > 6τD). We find a linear behavior of the Writhe as a function of the Loss Tangent.
The data points corresponding to the different weaves form clusters. As the topological complexity of the
weave decreases both the Writhe and Loss Tangent increase.

In non-equilibrium conditions, the relation becomes more complex [37]. The viscosity can be obtained
as the limit η = limω→0 G2(ω)/ω. Because the frequencies studied here are relatively large, however,
we can examine how the ratio G2/ω depends on topology as a reference. Our results for the smallest
frequencies indicate that the Writhe of the open chains decreases with G2/ω, suggesting a decrease of the
Writhe with viscosity, see Figure 9. The number of kinks has been shown to increase with viscosity [9,10].
A similar inverse behavior between the Writhe of the chains and the number of kinks was observed in the
initial time of an elongation of the chains [37].

We show the mean absolute Periodic Linking Number of the open systems at small frequencies as
a function of the loss tangent in Figure 10. We find that the mean absolute Periodic Linking Number
decreases with the loss tangent for tan δ > 1. We find significant clustering of the data corresponding to the
different systems. The clustering of the responses indicates that the imposed global topology of the initial
configuration significantly affects the response of the material. We remark that with increasing frequency
we found the open systems tended to the values of the corresponding infinite systems. This occurs because,
at large frequencies, the open chains cannot escape their original configurations.

The increase of the linking number implies the presence of persistent entanglements. Persistent
entanglements are tight contacts between chains that significantly restrict their motion [66]. Such contacts
are likely to cause significant bond stretching under deformation that is followed by a decrease of the
Loss Tangent. These results indicate that interactions underlying mechanical responses can be effectively
captured by the Periodic Linking Number.
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wI

w0
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wIII
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Figure 9. (Left) Writhe and G2/ω for open weaves at small frequencies (log-log plot). The viscosity can be
obtained as the limit η = limω→0 G2(ω)/ω. We find an indication that the Writhe decreases with viscosity,
while Z shows the opposite relation to viscosity [10]. (Right) Periodic Linking Number as a function of G1

for open chains for small frequencies (log-log plot). The equilibrium modulus can be obtained as the limit
Geq = limω→0 G1(ω). We find an indication that Geq increases with increasing linking, similar to what was
reported for rings in [32].
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Figure 10. Periodic Linking Number and Loss Tangent of open systems for small frequencies of oscillation
(corresponding to periods T > 6τD). We find that the responses corresponding to the different weaves form
clusters. The Periodic Linking Number increases with weave complexity and decreases with loss tangent.

From our results we obtain information about the equilibrium modulus. The equilibrium modulus
is defined as the limit Geq = limω→0 G1(ω). We show the storage modulus for the smallest frequencies
in Figure 9. Our results suggest that the equilibrium modulus increases with the linking of the chains.
Interestingly, a similar linear relation between the entanglement density as obtained from the Gauss linking
integral and the shear modulus for ring polymers was reported in [32].
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Our results on the Writhe and Periodic Linking Number show a competing relation between these
two with respect to the Loss Tangent. We provide a brief explanation for this effect. If the Writhe is large
and the Periodic Linking Number is small, this can be interpreted as meaning the chains attain random
conformations with no significant topological constraints. This would result in a behavior that is primarily
dissipative. This suggests that inter-chain contributions to stress dominate through collisions of molecules
induced by the Brownian motion.

In contrast when the Writhe is small and the Periodic Linking Number is large, we expect that the
chains get stretched by the presence of persistent entanglements. In this case, intra-chain contributions to
stress would dominate. As the ratio 〈|LKP|〉/〈|Wr|〉 increases, the persistence of entanglements increases.
This implies that the bond stretching increases, which decreases the Loss Tangent. Therefore, we expect
the loss tangent to increase with the decreasing ratio of Periodic Linking Number versus Writhe. In fact,
this is confirmed in our results as seen in Figure 11.

Our results show, for the open systems at small frequencies, such a trend of the ratio of the Periodic
Linking Number over the Writhe as a function of the Loss Tangent. This indicates that one can control the
viscoelastic properties of a material by controlling the ratio of the Writhe and Periodic Linking Numbers of
the constituent chains. This also suggests that 〈|LKP|〉/〈|Wr|〉 is a measure of the inter-chain contribution
versus the intra-chain contribution to the stress. This finding may contribute to our understanding of the
interplay between these two contributions [22].

w0wI

wII

wIII

Figure 11. The ratio of the Periodic Linking Number over the Writhe as a function of the loss tangent for
open systems at low frequencies. We see that the ratio 〈|LKP|〉/〈|Wr|〉 decreases with the loss tangent.

6. Conclusions

We have introduced topological measures for polymeric materials allowing for quantifying the
relationship between polymer chain entanglement and viscoelastic responses. We demonstrated how our
topological approaches can be utilized in practice by performing non-equilibrium molecular dynamics
simulations of a few polymeric systems. We found that our topological approaches provide a measure of
the molecular-level polymer chain entanglements that contributes to aggregate mechanical responses in
the storage modulus and loss modulus. Our results indicate some of the ways topological tools can be
used for characterization of the interplay between entanglement and mechanics.
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In particular, in this study, we have introduced new rigorous mathematical measures of topological
complexity of open or closed curves in space that: (a) can be computed for linear and ring polymer chains
in any setting (3-space or systems employing PBC), (b) are continuous functions of the chain coordinates
and (c) correlate to the viscoelastic properties of polymeric materials. Our measures provide an effectively
new “definition” of entanglement complexity of polymers. We showed our measures can be relevant to
the rheological characteristics of polymers without relying too strongly on a particular polymer theory.
For example, our methods did not require the definition of a tube or a primitive path for its application.

Basing our measures on well-defined mathematical principles allows for computing our measures for
systems which are unentangled in the sense of tube model theories and can be used to understand the
transition from entangled to unentangled states. Our measures also have the advantage of being computed
directly by the chain coordinates and do not require any chain deformation (such as contour reducing
algorithms, PPA or end-to-end or other type of closure of the open chains). We want to point out that our
measures do not contradict the successful tube model theories, but we hope serve to compliment them by
providing a mathematically rigorous basis from which to extend and improve further these theories.

We expect our methods also to be particularly helpful in the case of polymer melts or polydisperse
systems with solutions of mixtures of different topological structures, such as rings and linear chains,
and even for polymers of different architectures, like bottlebrush polymers [67–69]. Our methods could
be particularly useful in handling in a common way the heterogeneity of such systems. Overall, we
expect our methods to be broadly applicable in the further characterization and study of the responses of
polymeric materials.
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