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Background and Aims. Treatment options for radiation-induced intestinal injury (RIII) are limited. Crocetin has been
demonstrated to exert antioxidant, antiapoptotic, and anti-inflammatory effects on various diseases. Here, we investigate the
effects of crocetin on RIII in vitro. Materials and Method. IEC-6 cells exposed to 10Gy of radiation were treated with different
doses of crocetin (0, 0.1, 1, 10, and 100 μM), and cell viability was assessed by CCK-8. The levels of superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ) in culture supernatants were measured using colorimetric
and ELISA kits, respectively. Cellular apoptosis was evaluated by Annexin V/PI double staining. Results. Crocetin dose-
dependently improved the survival of irradiated IEC-6 cells with the optimal dose of 10 μM, as indicated by the reduction of
cellular apoptosis, decreased levels of MDA, MPO, and proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ), and increased
activities of antioxidative enzymes (SOD, CAT, and GPx). Conclusion. Our findings demonstrated that crocetin alleviated
radiation-induced injury in intestinal epithelial cells, offering a promising agent for radioprotection.

1. Introduction

Radiation-induced intestinal injury (RIII) is a common
complication of radiation therapy in patients with abdominal
or pelvic malignancies, which seriously affects the quality of
life and even leads to substantial mortality [1, 2]. Exposure
of the small intestine to radiation may produce a large amount
of free radicals and epithelial cell apoptosis, which cause
impaired barrier function, followed by inflammatory response
and even septicemia [3, 4]. Although RIII seriously affects the
efficacy of abdominopelvic radiotherapy, there are no thera-

peutic agents available to attenuate the intestinal toxicity of
radiation [5].

Radioprotectors targeting oxidative damage and inflam-
matory reaction have been studied for decades with limited
success, because of either the limited protective effect or inev-
itable toxicity [6]. In addition, previous studies have showed
that some radioprotective agents had the risk of tumorigene-
sis, hampering their clinical application [6, 7].

Crocetin, an active constituent of saffron (Crocus sativus L)
stigma, belongs to the large family of carotenoids [8]. Accumu-
lated evidences have demonstrated that crocetin exerted
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beneficial effects on injured tissue [9, 10] and tumor cells
[11, 12]. It has been reported that crocetin attenuated
TNBS-induced colitis in mice by reducing inflammatory cyto-
kines and lipid peroxidation [13]. A previous study has also
proved that crocetin treatment protected against burn-
induced intestinal injury via inhibiting oxidative stress and
inflammatory response [14]. Additionally, crocetin could
inhibit the growth and metastasis of tumor cells both in vitro
and in vivo [15–17]. However, the potential role of crocetin
on RIII has not been reported. In this study, we aimed to
investigate whether and how crocetin protected against RIII.

2. Materials and Methods

2.1. Cell Culture. Rat intestinal epithelial IEC-6 cells were
obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cells were maintained in high-glucose
Dulbecco’s modified Eagle’s medium (Sigma, St Louis, MO,
USA; no. D5796) with 10% fetal bovine serum, 1% penicillin/-
streptomycin, and 0.1U/mL recombinant human insulin at
37°C in a humidified atmosphere containing 5% CO2. The
culture medium was changed every 2 or 3d. The cells were
passaged as they grew to 70~80% confluence, and cells before
20th passages were used for the experiments.

2.2. Irradiation and Crocetin Treatment. The radiation pro-
cedure was performed according to our previously described
protocols [4]. Briefly, IEC-6 cells were exposed to 10Gy doses
of radiation using a linear accelerator (Siemens PRIMUS) at a
dose-rate of 300 cGy/min. IEC-6 cells were seeded into 96-
well plates at a density of 1 × 104 cells/well and grown to
70%~80% confluence prior to experiment. After 10Gy radia-
tion, IEC-6 cells were replaced with serum-free DMEM-F12
medium and subsequently treated with different doses of cro-
cetin (0, 0.1, 1, 10, and 100μM, MP Biomedicals, Santa Ana,
CA, USA; CAS no.: 27876-94-4), then incubated for 24 h at
37°C. After 24 h incubation, the culture medium was col-
lected for biochemical assay and ELISA and then replaced
with new fresh serum-free medium for subsequent condition
of IEC-6 cells. To determine the most effective concentration
of crocetin in the following experiments, cell viability was
assessed daily for the next 7 days after radiation. Further
studies were performed at the most effective concentration
to improve cell viability.

2.3. Cell Viability Assay. The viability of IEC-6 cells was
assessed by CCK-8 assay, and all the steps followed the man-
ufacturer’s instruction (Dojindo Laboratories, Kumamoto,
Japan; no. CK04). IEC-6 cells were cultured in 96-well plates
with a density of 1 × 104 cells/well for 24 h. After 10Gy radi-
ation and treatment with different doses of crocetin for 24 h,
10μL of CCK-8 was added to each well and for incubation for
another 1 h at 37°C. Cell viability was measured daily for 7
consecutive days after radiation. Absorbance of each well
was determined at 450nm using a Multiskan Spectrum
(Thermo Fisher, CA, USA). The experiment was indepen-
dently repeated at least three times.

2.4. Biochemical Measurements. Malondialdehyde (MDA,
Beyotime Institute of Biotechnology, Shanghai, China; no.

S0131) levels, superoxide dismutase (SOD, Abcam, Cam-
bridge, MA, USA; no. ab65354) activities, catalase (CAT,
Sigma, St. Louis, MO, USA; no. CAT100) activities, glutathi-
one peroxidase (GPx, Beyotime Institute of Biotechnology,
Shanghai, China; no. S0056) levels, and myeloperoxidase
(MPO, Abcam, Cambridge, MA, USA; no. ab105136) activi-
ties in the cell culture supernatants were measured at 1, 3, 5,
and 7d after radiation using commercial assay kits, respec-
tively, according to the manufacturer’s protocols.

2.5. Cell Apoptosis Assay. Cell apoptosis was detected at 1, 3,
5, and 7 days after radiation using Annexin V-FITC/PI Apo-
ptosis Detection Kit (BD Biosciences, San Diego, CA, USA)
based on our previously described procedures [18]. Briefly,
IEC-6 cells were plated in 6-well plates at a concentration
of 1 × 105 cells/well. The cells in all groups were incubated
and then harvested at 1, 3, 5, and 7d after treatment of croce-
tin, washed with PBS twice, resuspended in binding buffer,
and stained with Annexin V and propidium iodide (PI) for
10min at room temperature in the dark. Annexin V fluores-
cence was measured using a flow cytometer (BD Biosciences),
and the membrane integrity of the cells was simultaneously
assessed by the PI exclusion method.

2.6. Cytokine Assay. Proinflammatory cytokines tumor necro-
sis factor-α (TNF-α, R&D Systems, Minneapolis, MN, USA;
no. PMTA00B), interleukin-1β (IL-1β, RayBiotech, Peachtree
Corners, GA, USA; no. ELM-IL1b-1), and interferon-γ (IFN-
γ, R&D Systems, Minneapolis, MN, USA; no. PMIF00) levels
were obtained from the cell culture supernatants at 1, 3, 5, and
7 days after radiation and were measured using ELISA kits
according to the manufacturer’s instructions.

2.7. Statistical Analysis. The differences of all measured
parameters among groups were analyzed by one-way analysis
of variance followed by Student-Newman-Keuls- (SNK-) q
test and between two groups by Student t-test. All analyses
were performed with SPSS statistics package (IBM SPSS,
Chicago, IL, USA). Data were considered statistically signifi-
cant for P < 0:05.

3. Results

3.1. Crocetin Improved the Survival of Irradiated IEC-6 Cells.
To evaluate the therapeutic mechanisms of crocetin in
radiation-induced intestinal injury (RIII), we established
in vitro experimental systems (Figure 1). To determine the
optimal concentration of crocetin on irradiated IEC-6 cells,
the cell viability of each group was tested by CCK-8 assay.
The cell viability of IEC-6 cells was significantly decreased
after radiation (Figure 2(b)), whereas treatment with crocetin
at concentrations of 0.1μM, 1μM, and 10μM improved the
survival of irradiated IEC-6 cells in a dose-dependent man-
ner with the maximal effect achieved at 10μM (Figures 2(a)
and 2(b)). In contrast, 100μM of crocetin showed a decrease
on the cell viability of irradiated IEC-6 cells compared to that
of the irradiated group (Figures 2(a) and 2(b)). According to
the results, 10μM was the most effective dose of crocetin to
improve the viability of irradiated IEC-6 cells, which was
used for subsequent experiments.
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3.2. Crocetin Attenuated Oxidative Stress in Irradiated IEC-6
Cells. To investigate the effect of crocetin on oxidative stress,
we examined the levels of SOD, GPx, CAT, and MDA in
culture supernatants by colorimetric assays. While radiation
led to increased level of MDA, this increase was alleviated by
crocetin (Figure 3(b), P < 0:05). Conversely, treatment of
irradiated IEC-6 cells with crocetin significantly elevated the
activities of endogenous antioxidant enzymes (SOD, GPx,
and CAT), compared to the irradiated group (Figures 3(a),
3(c), and 3(d), P < 0:05). These data suggested that crocetin
exerted an antioxidant effect in irradiated IEC-6 cells.

3.3. Crocetin Ameliorated Apoptosis in Irradiated IEC-6 Cells.
We further evaluated the effect of crocetin on apoptosis of

irradiated IEC-6 cells by Annexin V/PI double staining.
The percentage of apoptotic cells increased after radiation
compared to the control group (Figure 4(b), P < 0:05),
whereas crocetin dramatically reduced the apoptosis of irradi-
ated IEC-6 cells on day 3 and day 5 (P < 0:05), with less effects
on day 7 (Figures 4(a)–4(c)). These results indicated that cro-
cetin reduced radiation-induced intestinal epithelial apoptosis.

3.4. Crocetin Inhibited Inflammation in Irradiated IEC-6
Cells. To explore the effect of crocetin on inflammatory
response in irradiated IEC-6 cells, the levels of proinflamma-
tory cytokines in culture supernatants were assessed. Exposure
to radiation remarkably increased the levels of TNF-α, IL-1β,
and IFN-γ, while administration of crocetin dramatically
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Figure 1: In vitro experiment design. IEC-6 cells were exposed to 10Gy of radiation, followed by treatment of different doses of crocetin
(0.1 μM, 1 μM, 10 μM, and 100 μM) for 24 h, and culture supernatants were collected for CCK-8 assay from day 1 to day 7 after radiation.
Apoptosis was detected on days 1, 3, 5, and 7 after radiation. The levels of SOD, CAT, GPx, MDA, MPO, TNF-α, IL-1β, and IFN-γ in
culture supernatants were measured on days 1, 3, 5, and 7 after radiation. SOD: superoxide dismutase; CAT: catalase; GPx: glutathione
peroxidase; MDA: malondialdehyde; MPO: myeloperoxidase; TNF-α: tumor necrosis factor-α, IL-1β: interleukin-1β, IFN-γ: interferon-γ;
IR: irradiation group.
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Figure 2: Crocetin improved the survival of irradiated IEC-6 cells in a dose-dependent manner (0.1μM, 1μM, and 10μM). IEC-6 cells were
treated with different doses of crocetin (0.1μM, 1 μM, 10μM, and 100 μM) after exposure of 10Gy radiation. (a) Cell viability was detected by
CCK-8 from day 1 to day 7 after radiation. (b) Cell viability was detected by CCK-8 on day 3 after radiation. Data represent mean ± SD of
three independent experiments. ∗ represents P < 0:05 as compared to the IR group. IR group: irradiation group.
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decreased this effect (Figures 5(a)–5(c), P < 0:05). Consistent
with the results of proinflammatory cytokines, crocetin signif-
icantly suppressed MPO activity (Figure 5(d), P < 0:05),
suggesting crocetin attenuated radiation-induced inflamma-
tion in IEC-6 cells.

4. Discussion

Though agents ameliorating radiation-induced damage by
reducing oxidants stress and inflammation may exert protec-
tive effects against RIII, the potential toxicity and tumorige-
nicity must be addressed before their clinical application
[6]. In contrast, crocetin could be an alternative radioprotec-
tor for RIII with low toxicity [19, 20] and antitumor proper-
ties [11, 21]. In our study, we demonstrated the protective
effects of crocetin against radiation-induced injury in intesti-
nal epithelial cells and the underlying mechanisms could be
attributed to inhibition of oxidative stress, cellular apoptosis,

and inflammatory response, suggesting a safe and effective
strategy for RIII.

There are some important discoveries in our work. First,
the protective effects of crocetin in different concentrations
on irradiated IEC-6 cells were investigated. In this study,
we demonstrated that lower concentrations (0.1μM, 1μM,
and 10μM) of crocetin improved the survival of irradiated
IEC-6 cells in a dose-dependent manner, showing the most
pronounced effect at the dose of 10μM. Consistent with
our findings, Yoshino et al. found that crocetin at 1~10μM
protected HT22 cells against Aβ1-42-induced neuronal cell
death [22]. Conversely, it was reported previously that high
doses of crocetin exerted cytotoxic effects on healthy mono-
cytes and Alzheimer’s disease monocytes [23]. Our study also
found that 100μM of crocetin decreased cell viability
whereas no cytotoxicity was observed at 0.1~10μM, suggest-
ing the safe concentration of crocetin should be lower than
100μM. These findings suggested that 10μM was relatively
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Figure 3: Crocetin attenuated oxidative stress in irradiated IEC-6 cells. The activities of (a) SOD, (b) MDA, (c) GPx, and (d) CAT in cell
culture supernatants were detected on days 1, 3, 5, and 7 after radiation. Data were expressed as mean ± SD of three independent
experiments. ∗P < 0:05 compared to the control group, ∗∗P < 0:05 compared to the IR group. SOD: superoxide dismutase; MDA:
malondialdehyde; GPx: glutathione peroxidase; CAT: catalase; IR group: irradiation group, IEC-6 cells exposed to 10G y of radiation.
Control group: IEC-6 cells without irradiation or crocetin.
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a safe and effective dose of crocetin to protect irradiated IEC-
6 cells.

Second, our study demonstrated the mechanisms of croce-
tin on RIII. Previous studies showed that crocetin exerted
beneficial effects on tissue regeneration by reducing oxidative
stress, inhibiting cellular apoptosis, and attenuating inflamma-
tory response [24–26]. Recently, a study further investigated
that crocetin protected ultraviolet A radiation-induced skin
damage by reducing oxygen species production and cellular
apoptosis [27]. Similar with these studies, we observed that
crocetin inhibited oxidative stress, the occurrence of apoptosis,
and inflammation in irradiated IEC-6 cells, suggesting croce-
tin could attenuate intestinal toxicity induced by radiation.

Though some substances have shown variable degrees of
radioprotective properties, the application of most agents is
hindered by toxicity and narrow therapeutic time windows
[28]. Crocetin has been reported to treat a wide range of
diseases with low toxicity [19, 20]. Milajerdi et al. suggested
that LD50 values of saffron stigma extracts containing croce-

tin could be very higher than the therapeutic dose [29]. A
clinical study also reported that no adverse changes in volun-
teers were observed after crocetin was administrated at the
dose of 37.5mg/d for 4 weeks [30]. Moreover, crocetin could
inhibit the proliferation and invasion of various tumor cells
including intestinal cancer [31]. Kim et al. have demon-
strated that crocetin could increase the death of HCT-116
colorectal cancer cells [11]. Ray et al. have also demonstrated
that crocetin could induce p53-mediated cell death by p73-
mediated FAS-FADD-caspase-8 activation and BID cleavage
in colorectal cancer cells [32]. As RIII commonly occurs in
patients with abdominopelvic malignancies receiving local
radiation therapy, crocetin represents a promising therapy
to attenuate radiation-induced injury of intestine and, at
the same time, inhibit tumor growth. However, the possible
optimal doses in vivo still need to be further studied.

This study has potential limitations. First, the effect of
crocetin on tumor cell lines after radiation was not studied
because previous studies have reported the antitumor effects

100 101 102 103

Annexin Y FITC

Pr
op

id
iu

m
2 i

od
id

e

104
100

101

102

103

104

100 101 102 103

Annexin Y FITC

Annexin V-FITC

PI

Pr
op

id
iu

m
2 i

od
id

e

104
100

101

102

103

104

100 101 102 103

Annexin Y FITC

Control group IR group IR+crocetin group

Pr
op

id
iu

m
2 i

od
id

e

104
100

101

102

103

104
0.13%

80.67%

6.60%

12.59%

6.87%

33.00%

34.73%

25.39%

7.10%

60.41%

15.91%

16.58%

(a)

Control
0

20

40

60

80

100

Ap
op

to
tic

 ra
te

 (%
)

IR IR+crocetin

⁎⁎

⁎

Viable cells
Apoptotic cells
Dead cells

(b)

Ap
op

to
tic

 ra
te

 (%
)

0
0

20

40

60

80

2 4 6
Days

8

⁎⁎

⁎⁎

IR group
IR+crocetin group

(c)

Figure 4: Crocetin ameliorated apoptosis in irradiated IEC-6 cells. (a) Apoptosis of IEC-6 cells was detected by flow cytometry after Annexin
V/PI staining 3 days after radiation. The left upper quadrant contains necrotic cells (%); the upper right quadrant contains late apoptotic cells
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control group, ∗∗P < 0:05 compared to the IR group. IR group: irradiation group, IEC-6 cells exposed to 10Gy of radiation. Control group:
IEC-6 cells without irradiation or crocetin.
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of crocetin on various tumor cells [11, 31]. Second, the
solubility and the bioavailability of crocetin require optimiza-
tion before being used as an effective radioprotective agent
[12]. This problem may be solved with cyclodextrins or
similar molecules. For example, Wong et al. suggested that
crocetin-γ-cyclodextrin inclusion complex could enhance the
solubility, bioavailability, and applicability of crocetin [33].
Puglia et al. showed that solid lipid nanoparticles containing
crocetin improved its solubility, stability, and pharmacokinetic
properties, offering an appropriated approach to resolve this
issue [34]. Third, this is a study in cell model only providing
preclinical clues for radioprotection of crocetin; more studies
are needed to demonstrate its effects on RIII in animal models
and further in clinical studies.

5. Conclusions

In conclusion, the present study suggests that crocetin could
be an attractive agent for RIII not only attenuating intestinal
injury induced by radiation via inhibiting oxidative stress,
cellular apoptosis, and inflammatory response but also
improving the efficacy of cancer cure with potential antitu-
mor effects.
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