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Abstract. The influenza virus A/Japan/305/57 hemag- 
glutinin (HA) can be converted from a protein that is 
essentially excluded from coated pits into one that is in- 
ternalized at approximately the rate of uptake of bulk 
membrane by replacing the HA transmembrane and 
cytoplasmic sequences with those of either of two other 
glycoproteins (Roth et al., 1986. J. Cell Biol. 102:1271- 
1283). Toddeutify more precisely the foreign amino 
acid sequences responsible for this change in HA traf- 
fic, DNA sequences encoding the transmembrane 
(TM) or cytoplasmic (CD) domains of either the G gly- 
coprotein of vesicular stomatitis virus (VSV) or the gC 
glycoprotein of herpes simplex virus were exchanged 
for those encoding the analogous regions of wild type 
HA (HA wt). HA-HA-G and HA-HA-gC, chimeras 
that contain only a foreign CD, resembled HA wt in 
having a long residence on the cell surface and were in- 
ternalized very slowly. HA-HA-gC was indistinguish- 
able from H A  in our assays, whereas twice as much 

HA-HA-G was internalized as was HA wt. However, 
HA-G-HA, containing only a foreign TM, was internal- 
ized as efficiently as was HA-G-G, a chimeric protein 
with transmembrane and cytoplasmic sequences of 
VSV G protein. Conditions that blocked internalization 
through coated pits also inhibited endocytosis of the 
chimeric proteins. Although the external domains of 
the chimeras were less well folded than that of the wild 
type HA, denaturation of the wild type HA external 
domain by treatment with low pH did not increase the 
interaction of HA with coated pits. However, mutation 
of four amino acids in the TM of HA allowed the pro- 
tein to be internalized, indicating that the property that 
allows HA to escape endocytosis resides in its TM. 
These results indicate that possession of a cytoplasmic 
recognition feature is not required for the internaliza- 
tion of all cell surface proteins and suggest that multiple 
mechanisms for internalization exist that operate at dis- 
tinctly different rates. 

Part of the process of communicating with their ex- 
ternal environment, cells maintain an active traffic 
of membranes moving between the cell surface 

and internal organelles. Solutes are absorbed through 
fluid-phase endocytosis, nutrients and hormones are con- 
centrated and internalized by receptor-mediated endocy- 
tosis, and resident proteins of the plasma membrane are 
removed for degradation in lysosomes. Cellular patho- 
gens, like many viruses, use these endocytic processes to 
enter the cell. It is clear that there are at least several dis- 
tinct pathways for this traffic (Watts and Marsh, 1992), but 
the exact number of pathways and the relations between 
them are not currently known. However, in cells that are 
not undergoing major changes in shape, such as those that 
occur during locomotion or phagocytosis, a major pathway 
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for internalization of lipid and proteins occurs through 
coated pits. 

Coated pits occupy i to 2% of the cell surface and inter- 
nalize every 1 to 2 min, taking in membrane equivalent to 
100 to 200% of the plasma membrane each hour (Ander- 
son et al., 1977; Goldstein et al., 1979; Thilo, 1985; Pearse 
and Crowther, 1987; Naim et al., 1995). There are three 
classes of cell surface proteins with respect to internaliza- 
tion through coated pits. Certain membrane proteins, such 
as Thy-1 and the influenza virus hemagglutinin A/Japan/ 
305/57 (HA), 1 are excluded from coated pits (Bretscher et 

1. Abbreviat ions used in this paper: CV-1, African Green Monkey kidney; 
VSV, vesicular stomatitis virus; HA, influenza virus A/Japan/305/57 he- 
magglutinin; G, VSV G glycoprotein; gC, herpes simplex virus-1 glycopro- 
tein C; TM, transmembrane domain; CD, cytoplasmic domain; HA wt, 
HA wild type; HA-HA-G,  HA chimera with a G protein cytoplasmic do- 
main; HA-G-HA, HA chimera with a G protein transmembrane domain; 
HA-G-G, HA chimeric protein with both TM and CD derived from G. 
Chimeric proteins with gC sequences are named analogously. The names 
for HAs with amino acid mutations contain the single letter code for the 
replacement amino acid, and its position in the HA sequence. 
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al., 1980; Roth et al., 1986; Miettinen et al., 1989; Lemanski 
et al., 1990, Keller et al., 1992) and are internalized 40 
times more slowly than is the bulk of the plasma mem- 
brane (Roth et al., 1986; Lazarovits and Roth, 1988). At 
least some of these excluded proteins are highly mobile on 
the cell surface (Ishihara et al., 1987; Fire et al., 1991, 
1995). Other proteins, such as certain cell surface recep- 
tors, appear to cluster in coated pits and are endocytosed 
at a rate many times faster than is the plasma membrane 
as a whole (Goldstein et al., 1985). A third group of pro- 
teins are internalized more slowly, at close to the rate of 
internalization of membrane surface by coated pits (Watts 
and Marsh, 1992). The mechanism by which coated pits 
achieve this selectivity is not understood precisely. Recent 
studies of receptor-mediated endocytosis have demon- 
strated convincingly that the cytoplasmic domains (CD) of 
many proteins contain one of at least three distinct small 
epitopes necessary for interaction with coated pits. The 
best studied of these signals has at least one aromatic resi- 
due (Collawn, 1990; Ktistakis et al., 1990; Canfield et al., 
1991) and is likely to interact with clathrin-associated pro- 
teins (Pearse, 1988; Sorkin and Carpenter, 1993; Sosa et 
al., 1993; Boll et al., 1995; Ohno et al., 1995). A second 
type of signal requires a di-leucine (Letourneur & Klaus- 
ner, 1992; Sandoval and Bakke, 1994) and the third re- 
quires a di-lysine motif at the third and fourth positions 
from the carboxyl terminus (Itin et al., 1995). However, 
most cell surface proteins are degraded in lysosomes, and 
not all of them contain cytoplasmic signals of the types 
currently identified. 

Of the few proteins demonstrated to be "excluded" 
from coated pits, HA is by far the best characterized. To 
investigate the mechanisms by which cell surface proteins 
are recognized by coated pits, we have introduced specific 
changes into the HA protein that will allow (or cause) HA 
to enter coated pits. In previous experiments, the trans- 
membrane domain (TM) and CD of two different pro- 
teins, the vesicular stomatitis virus (VSV) G glycoprotein 
and the herpes simplex virus-1 (HSV-1) gC glycoprotein, 
were substituted by genetic engineering for the analogous 
regions of HA (Roth et al., 1986). The resulting chimeric 
proteins, HAG and HAgC, were both internalized and 
were detected by immunocytochemistry and electron mi- 
croscopy in coated pits. However, more recent work has 
shown that the VSV G protein internalizes very slowly, al- 
though it does contain a cytoplasmic tyrosine in a se- 
quence context similar to that found in internalization sig- 
nals (Gottlieb et al., 1993; Thomas et al., 1993; Thomas 
and Roth, 1994). In contrast, the short CD of the gC glyco- 
protein of herpes simplex I virus is highly basic, does not 
include an aromatic residue, and does not resemble the 
CD of any other protein known to be internalized. To in- 
vestigate which sequences are responsible for allowing the 
HAG and HAgC proteins to be internalized, we have con- 
structed new chimeric HAs that contain only a single for- 
eign topological domain. These proteins have been ex- 
pressed in CV-1 cells infected with recombinant SV40 
virus vectors and their ability to be internalized has been 
measured. We find that the VSV G protein TM, when sub- 
stituted for the HA domain, causes the resulting chimeric 
protein to be internalized. Mutations of some residues, but 
not others, in the HA TM also allow the protein to be in- 

ternalized. The property of HA that normally allows it to 
be excluded from coated pits resides in its TM sequences. 

Materials and Methods 

Recombinant DNA Techniques 
Chimeric genes, and the HA-G-G tyr- point mutation, were constructed by 
the two primer method of Zollar and Smith (1985) and genes were sub- 
cloned into SV40 vectors and stocks of recombinant viruses prepared as 
described (Naim and Roth, 1994a). HA mutants with changes in the TM 
were constructed by megaprimer PCR mutagenesis (Sarkar and Sommer, 
1990). Enzymes used were from New England Biolabs Inc. (Beverly, 
MA), Bethesda Research Laboratories (Gaithersburg, MD), or United 
States Biochem. Corp. (Cleveland, OH) and were used according to in- 
structions provided by the manufacturer. 

Cell Culture Techniques 
CV-1 fibroblasts were obtained from American Type Culture Collection 
(Rockville, MD) and passages between 22 and 32 were used for experi- 
ments. Cells were maintained in Dulbeccos' Modified Eagles' Medium 
supplemented with 10% serum plus (Hazleton Biologics, Inc., Lenexa, 
KS). Immunofluorescence techniques, pulse-chase protocols, and PAGE 
were as described (Roth et al., 1986; Lazarovits and Roth, 1988). 

Assays for Internalization 
The major internalization assay employed was as described previously 
(Lazarovits and Roth, 1988; Naim and Roth, 1994b). At 28 h postinfection 
with recombinant SV40 vectors, cells expressing chimeric proteins were 
pulse-labeled with 10-30 IxCi Trans3SS label (ICN Biomedicals, Inc., Irv- 
ine, CA) and the proteins were chased to the cell surface. Heat-inacti- 
vated rabbit anti-HA serum was allowed to bind to HAs at the cell surface 
at 4°C, and after unbound antibody was washed away, cells were warmed 
to 37°C for various intervals. Cells were returned to 4°C, and HAs at the 
cell surface were cleaved into HA1 and HA2 by trypsin added to culture 
medium at a final concentration of 50 ~g/ml. After 30 min, trypsin was re- 
moved by washing and any residual trypsin was inactivated with 10-fold 
excess soybean trypsin inhibitor (Sigma Immunochemicals, St. Louis, 
MO). Cells were lysed with 1% NP40, 0.1% SDS, 0.1 unit/ml aprotinin 
(Boehringer Mannheim Corp., Indianapolis, IN), 50 ~g/ml soybean 
trypsin inhibitor, 50 mM Tris-HCl, pH 8.0, and immunoprecipitated with 
protein A-Sepharose (Pharmacia LKB Biotechnology, Uppsala, Sweden). 
Immunoprecipitates were separated by electrophoresis on 12.5% poly- 
acrylamide gels (Laemmli, 1970) and treated for fluorography (Bonner 
and Laskey, 1974) if quantified by densitometer, or were untreated if 
quantified by Phosphorlmager. The dried gels were either exposed to pre- 
flashed XAR-5 film (Kodak, Rochester, NY) at -80°C and quantified by 
laser scanning densitometry or were exposed to Phosphorlmager plates 
(Molecular Dynamics, Sunnyvale, CA). 

For internalization assays using iodinated antibody, monoclonal anti- 
HA antibody (Fc125, a gift from Dr. Thomas Braciale, University of Vir- 
ginia) from ascites fluid was concentrated on Protein A columns and then 
iodinated with Iodobeads (Pierce, Rockford, IL) according to the instruc- 
tions of the manufacturer. The iodinated antibody was added to culture 
medium to a final concentration of 2 ~g/ml at 37°C for various intervals. 
Uninfected CV-1 cells were treated in parallel to determine nonspecific 
binding. For each time point, one half of the samples were incubated for 
30 min at 23°C with 0.2 M acetic acid in 150 mM NaCI to remove antibody 
bound to the cell surface. The remaining samples were left in PBS at 4°C 
during this incubation. All samples were rinsed twice with fresh incuba- 
tion buffer and were lysed with immunoprecipitation lysis buffer. 125I ra- 
dioactivity was measured with a counter (model 1282; Pharmacia LKB 
Biotechnology). The average nonspecific radioactivity determined from 
uninfected cells for each treatment was subtracted from the values of the 
infected cells. The percent internal proteins was determined by dividing 
the average corrected acid-resistant counts by the average corrected un- 
stripped counts × 100%. Duplicate values that differed by no more than 
15% were used for each time point. Under the conditions employed, es- 
sentially no internalization of radioactive antibody was observed for the 
first 2 min after antibody was added to the medium. Internalization data 
are plotted starting at the end of this lag period. 
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Treatment of  Cells with Hypertonic Medium or Low pH 

For experiments measuring the degree of inhibition of endocytosis of chi- 
meric HAs by hypertonic medium, cells were prepared exactly as for the 
usual internalization assay but were rinsed twice in cold DME containing 
0.45 M sucrose for several minutes just before beginning the 37°C inter- 
nalization chase in the same medium. At the end of the chase, cells were 
processed as usual. Fluid-phase endocytosis was measured by the internal- 
ization of horseradish peroxidase that had been added to the culture me- 
dium for 30 or 60 rain, as described (Wang et al., 1990). 

To examine the effect of denaturing the HA ectodomain on its interac- 
tion with coated pits, CV-1 cells were treated with 5 jxg/ml of trypsin in se- 
rum-free DME for 5-10 min at 37°C. This resulted in cleavage of HA at 
the cell surface into HA1 and HA2 subunits, which is necessary to allow 
the protein to undergo the conformational changes at low pH that result 
in membrane fusion. The medium containing trypsin was removed and 
cells were rinsed twice for 1 min at 37°C with either DME buffered to pH 
7.0 with 10 mM Hepes, or with low pH buffer (PBS containing 1 mM 
CaCI2, 1 mM MgC12, and 10 mM MES, pH 4.8-5.0). Cells were then cul- 
tured at 37°C for 60 min in DME containing ~25 ~g/ml rabbit anti-HA 
antibody. Cells were cooled on ice and then fixed at room temperature 
with 3% formaldehyde in PBS, pH 7.0. The fixative was removed and 
quenched with DME. The samples were then stained with goat anti-rabbit 
IgG conjugated to FITC (40 ixg/ml in PBS; Fisher Biotech, Pittsburgh, 
PA) to label anti-HA antibody bound to the cell surface. Samples were 
then permeabilized with 0.1% Triton X-100 in 50 mm Tris, pH 7.5, 150 
mM NaCI, 5 mM EGTA, 0.25% gelatin for 15 min at room temperature. 
Samples were labeled a second time with 40 i~g/ml goat anti-rabbit IgG 
conjugated to RITC (Fisher Biotech) to label any anti-HA that had been 
internalized. Samples were photographed with a microscope (Axioplan; 
Carl Zeiss, Inc., Thornwood, NY) using Kodak T-Max 3200 film. 

Photobleach recovery experiments were performed as previously de- 
scribed (Fire et al., 1991, 1995) on living cells that had been treated with 
trypsin and low pH buffer as described above. 

Results 

Construction of  Chimeric HAs 

Although crystallographic analysis has established the 
three-dimensional structure of a large proteolytic frag- 
ment that includes almost all of the external domain of 
H A  (Wilson et al., 1981), the structures of the other two 
topological domains of the protein have not been solved. 
The boundaries of the TM region of the H A  can be pre- 
dicted by a hydropathy program (Kyte and Doolittle, 
1982) and by comparison to sequences of HAs from other 
influenza virus strains. We have used such an analysis to 
predict that glutamine 510 is the last polar residue of the 
external domain (in other H A  strains this amino acid is as- 
partic acid) and that asparagine 538 is one of the first polar 
residues of the CD (other H A  strains have an arginine 
538). Based on these assumptions, we employed oligonu- 
cleotide-directed mutagenesis (Zollar and Smith, 1985) to 
substitute D N A  sequences encoding topological domains 
of G protein or of gC for those encoding the analogous re- 
gions of H A  wt. The carboxy-terminal sequences for the 
resulting chimeric H A  proteins are presented in Fig. 1. 
The proteins HA -G-G and HA-gC-gC differ from the 
original H A G  and HAgC proteins (Roth et al., 1986) in 
that the position joining the H A  ectodomain sequences to 
the foreign TM in the newer proteins is between the last 
polar residue of H A  and the first hydrophobic foreign res- 
idue. The original chimeric proteins were created by fu- 
sions that introduced foreign sequences into the H A  
ectodomain. We have not observed significant differences 
in stability or membrane traffic between the original chi- 
meras H A G  and HAgC and the new proteins HA-G-G 

Protein Ecto Transmembrane Cytoplasmic 

HAwt MGVYQ ILAIYATVAGSLSLSIMMAGISFWMCS NGSLQCRICI 

HA-HA-gC MGVYQ ILAIYATVAGSLSLSIMMAGISP/VMCS RTSCRQFIHRR 

HA-HA..G MGVYQ ILAIYATVAGsLSLSIMMAGISFWMCS RVGIHLCIKLKHTKKRQIYTDIEMNRLGK 

HA-G-G M G V Y K  SSiASFFFilGLIIGLFLVL RVGIHLCIKLKH'IXKRQIY'rDIEMNRLGK 

HA-G-HA MGVYK SSIASFFFIIGLIIGLFLVL NGSLQCRICI 

HA-gC-gC MGVYE WVGIGIGVLAAGVLVVTAIVYVV RTSQRQRHRR 

HA-gC-HA MGVYE WVGIG IGVI.AAGVLVVTAIVYVV NGSLQCRICI 

Figure 1. Amino acid sequences of chimeric HAs. The amino 
acid sequences of the transmembrane and cytoplasmic regions of 
chimeric glycoproteins are predicted from nucleic acid sequences. 
The sequences are aligned at the junction between the ectodomains 
and TMs, at the last polar amino acid of the extracellular domain. 
The three-part names of the proteins give the origin of the exter- 
nal-transmembrane-cytoplasmic domains. 

and HA-gC-gC, indicating that the foreign sequences in 
the ectodomains of H A G  and HAgC played no role in al- 
lowing them to be internalized. 

Each chimeric protein was independently constructed 
and fully characterized at least twice to insure that our ex- 
perimental results were not influenced by second-site mu- 
tations occurring during subcloning steps. Each of the re- 
combinant H A  genes was inserted in place of the late 
transcriptional unit of SV40 under control of the SV40 late 
promoter. Stocks of recombinant viruses were prepared 
that produced comparable levels of H A  protein synthesis 
in infected CV-1 monkey cells. We have reported the re- 
suits of an extensive comparison of the biosynthesis and 
the physical properties of the chimeric and H A  wt (Laz- 
arovits et al., 1990). Independently constructed isolates of 
each of our mutants gave identical results in all assays. 

Transmembrane Sequences of  Either G or gC Allow 
Internalization of  Chimeric HAs 

To determine if the chimeric proteins were internalized 
and at what rate, HAs at the surface of living cells were 
bound by anti-HA antibodies at 4°C and the cells were 
warmed to 37°C to allow endocytosis to resume (Lazaro- 
vits and Roth, 1988; Ktistakis et al., 1990; Naim and Roth, 
1994b). Cells were chased for various periods at 37°C to al- 
low internalization of cell surface proteins, and the extent 
of internalization was measured by the proportion of pro- 
tein that became inaccessible to extracellular trypsin 
added at 4°C at the end of the chase. The results of densito- 
metric scanning of autoradiographs from representative 
experiments are graphed as a function of time in Fig. 2. 
Curves were fitted to the experimental data using second- 
order polynomials (Cricket Software, Malvern, PA) and 
the internalization rates shown were taken from the initial 
slope of the curve. As a positive control in our assay, we 
included the HA-Y543 mutant HA, which is internalized 
at a rate of 8%/min, a rate similar to that reported for Fc 
receptors in CHO cells (Miettinen et al., 1989). The initial 
rate of internalization observed for the chimeras HA-G-G 
(1.8%/min) and HA-gC-gC (2.4%/min) agreed quite well 
with the rates measured for the original H A G  and HAgC 
mutants by cell surface iodination (Roth et al., 1986). The 
H A - G - H A  protein (2.1%/min) was internalized as effi- 
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Figure 2. Rates of internaliza- 
tion of HA wt, HA-Y543, and 
chimeric HAs. Internalization 
of 3SS-labeled proteins was 
measured as described in Ma- 

[] terials and Methods, using la- 
ser scanning densitometry. 
For each protein, the percent- 

3'o age of protein inaccessible to 
extraceUular trypsin is plotted 
as a function of the interval at 
which cells were shifted to 
37°C. Curves were fitted to the 
experimental data using sec- 
ond-order polynomials and 
used to derive the internaliza- 
tion rates shown. For duplicate 
experiments, both data sets are 
shown. Error bars indicate 
standard deviations for aver- 
ages of three or more experi- 
ments. For data points with 

.l~ single symbols, the error bars 

.'~ are smaller than the symbol or 
a o duplicate values are superim- 

posed. 

ciently as was HA-G-G,  and the H A - H A - G  protein was 
internalized at half the rate of the other chimeric proteins. 
This slow rate, however, was much faster than the rate of 
internalization of H A  wt (0.2%/min). The H A - g C - H A  
protein was internalized quite slowly (see Fig. 7), and thus 
the gC TM sequences, in the presence of the H A  CD, did 
not affect H A  to the same extent as did the G TM se- 
quence in H A - G - H A .  The H A - H A - g C  protein was inter- 
nalized as slowly as was H A  wt (not shown). Internaliza- 
tion of all of the proteins appeared to reach a maximum 
rate by 10 min (Fig. 2). 

The internalization assay used for the experiments 
shown in Fig. 2 employed trypsin to cleave protein at the 
cell surface at the end of the assay. However, the H A - G - H A  
protein had previously been shown to be protease sensi- 
tive (Lazarovits et al., 1990), in contrast to most  other H A  
mutants, which are very resistant to digestion except at the 

H A l - H A 2  cleavage site. To determine the internalization 
of H A - G - H A  by a method independent of  trypsin, we 
added 125I-labeled monoclonal  ant i -HA to cell culture me- 
dium at 37°C and measured the internalization of  antibody 
as a function of time. A representative experiment is 
shown in Fig. 3, comparing internalization o f  the antibody 
by cells expressing H A - G - H A  and cells expressing the 
HA,Y543 mutant, Internalization of  HA-Y543 measured 
by this method, 7%/rain, was slightly slower than mea- 
sured by the assay shown in Fig. 2 and internalization of 
HA-G-HA,  3%/min, was slightly faster. However, HA-G-HA 
internalized slowly by both assays, at less than half the ini- 
tial rate of HA-Y543. 

The internalization o f  chimeric HAs  shown in Figs. 2 
and 3 appeared to reach a maximum after 10 to 15 min, as 
is commonly observed for proteins that recycle to the 
plasma membrane  after internalization. If  one assumes 
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Figure 3. Internal izat ion of  125I-labeled monoclonal  an t i -HA an- 
tibodies by cells expressing HA-G-HA or HA-Y543. The per- 
centage of antibody that was internalized, as represented by the 
fraction of the total radioactive antibody bound that was acid- 
insensitive, is plotted as a function of chase time at 37°C. Curves 
were fitted to the data using second-order polynomials. 

that each of the proteins recycled back to the cell surface 
after internalization, so that the plateau values of the in- 
ternalization curves shown in Fig. 3 represent the steady- 
state internal fraction of the cell surface population of 
each protein, then one can estimate a recycling rate for 
each protein using the relationship that the recycling rate 
is equal to the internalization rate multiplied by the frac- 
tion of protein at the plasma membrane divided by the in- 
ternal fraction. The recycling rates for all of the chimeric 
proteins and HA-Y543 were quite similar, averaging 8%/min 
with a standard deviation of 1.3%/min. This is the same re- 
cycling rate calculated for several H A  mutants that con- 
tain internalization signals and bind with high affinity to 
coated pits (Zwart et al., 1996). It :is difficult to directly 
measure the recycling of the chimeric HA's  because they 
have a small internal fraction (the plateau values shown in 
Fig. 2) and do not release their antibody ligands after ex- 
ternalization. As an alternative for confirming that the en- 
tire population of a chimeric H A  was internalized and 
recycling, we blocked protein synthesis with 500 tLM cyclo- 
heximide and. measured the internalization of 125I-labeled 
anti-HA antibody by cells expressing H A - G - H A  after 1 or 
4 h in the drug. If  H A - G - H A  failed to recycle efficiently, 
any H A - G - H A  capable of internalizing at the rate shown 
in Fig. 2 would have been removed from the cell surface by 
4 h after protein synthesis had ceased, and no additional 
internalization would be detected at the second time point. 
In fact, we observed that 10% of H A - G - H A  was internal- 
ized in 5 min after 1 h in cycloheximide and 6.8% was in- 
ternalized in 5 min after 4 h in cycloheximide. The amount 
of antibody bound to cells expressing HA-G-HA  at the 4-h 
time point was 47% that bound at the 1-h time point. 
These observations are consistent with continued slow in- 
ternalization of H A - G - H A  with recycling to the cell sur- 
face and a degradation rate that is much slower than the 
internalization rate. 

The Single Tyrosine in the Cytoplasmic Domain of 
HA-G-G Is Not Required for Internalization 

The observation that H A - G - H A  was internalized as effi- 
ciently as HA-G-G suggested that the G TM had a domi- 
nant effect on H A  causing or allowing the protein to be in- 
ternalized. However, the fact that H A - H A - G  had a 
significantly greater rate of internalization than did H A  wt 
or HA-HA-gC could be interpreted as indicating that the 
G CD did contain some information for internalization 
and that H A - G - H A  and HA-G-G were being internalized 
by separate mechanisms. Since the CD of G contains a sin- 
gle tyrosine, and cytoplasmic tyrosines have been shown to 
be important for recognition by coated pits, we changed 
the tyrosine in the CD of HA-G-G to serine and measured 
the effect of this mutation on the rate of internalization of 
the mutant protein HA-G-G tyr- (Fig. 4). The change of the 
G protein cytoplasmic tyrosine to serine had no significant 
effect on internalization of HA-G-G.  

Internalization of HA-G-HA and HA-gC-HA Is 
Blocked by Hypertonic Medium 

The original H A G  and HAgC chimeras were observed in 
coated pits by immunocytochemistry and electron micros- 
copy (Roth et al., 1986). Since HA-G-G and H A - G - H A  
were internalized at the same rate as H A G  and apparently 
shared a recognition mechanism dependent upon the pres- 
ence of G TM sequences in the chimeric protein, it seemed 
likely that both these chimeras were also internalized 
through coated pits. However, alternative pathways of en- 
docytosis have been reported (Daukus and Zigmond, 
1985; Moya et al., 1985; Sandvig et al., 1987). To determine 
whether an alternative endocytic pathway existed in CV-1 
cells and the extent to which the internalization of HA-  
G-G and H A - G - H A  might occur by such a pathway, we 
measured the extent to which endocytosis was blocked in 
CV-1 cells treated with hypertonic medium or cytochala- 
sin D. Medium that is 0.45 M hypertonic prevents the for- 
mation of normal clathrin lattices (Heuser and Anderson, 
1989) and has been reported to block receptor-mediated 
but not fluid-phase endocytosis in leukocytes (Daukus and 
Zigmond, 1986). In fibroblasts, hypertonic medium also 
blocks most of fluid-phase internalization (Heuser and 
Anderson, 1989). Cytochalasin D has been reported to in- 
hibit nonclathrin-dependent internalization (Sandvig and 
van Deurs, 1990) but not internalization through coated 
pits. Since cells appear to differ in the extent to which non- 

. clathrin-mediated endocytosis occurs, we determined the 
effect of hypertonic medium and cytochalasin D on CV-1 
cells by measuring the effect of these agents on fluid-phase 
endocytosis of horseradish peroxidase. In three experi- 
ments, hypertonic medium inhibited 91.3 - 0.5% of fluid- 
phase endocytosis in CV-1 cells, indicating the presence of 
a minor internalization pathway that was presumably 
clathrin-independent. We obtained qualitatively similar 
results using FITC-dextran and fluorescence microscopy 
(data not shown). In contrast to the results with hypertonic 
medium, which were similar to previous reports in other 
cell types, we observed that treatment with 10 p~g/ml of cy- 
tochalasin D increased fluid-phase internalization in CV-1 
cells more than twofold (a mean of 230.7 +_ 15.4% of con- 
trol in three experiments). Thus, cytochalasin D could not 
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Figure 5. Internalization of HA chimeras with foreign TMs is 
blocked by hypermolar medium. Anti-HA antibody was added at 
4°C to living cells expressing chimeric HAs and the cells were 
then held at 4°C or chased for 20 min at 37°C in normal medium 
or medium containing 0.45 M sucrose. At the end of the chase, 
cells were treated with cold medium containing trypsin to cleave 
HAs at the cell surface into HA1 and HA2 subunits. The proteins 
were immunoprecipitated with protein-A Sepharose and ana- 
lyzed by PAGE. Endocytosis of the proteins is measured by the 
increase in the uncleaved HA0 polypeptide as a function of chase 
at 37°C. 
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Figure 4. The rates of internalization of HA-G-G and HA-G-G tyr- 
are compared. Internalization was measured and the data plotted 
as for Fig. 2. Values from duplicate experiments are shown. 

be used as an inhibitor of nonclathrin-mediated endocyto- 
sis in CV-1 cells. 

To determine the extent to which the slow internaliza- 
tion of chimeric HAs was inhibited by hypertonic medium, 
cells expressing HA wt or the chimeric HAs were pulse- 
labeled with 35S amino acids and the proteins were chased 
to the cell surface. Anti-HA antibody was bound to the 
proteins at the cell surface at 4°C and the cells were then 
shifted for 0 or 20 min at 37°C in normal culture medium 
or in medium containing 0.45 M sucrose. The cells were re- 
turned to the cold and treated with trypsin, and HAs were 
isolated by immunoprecipitation and analyzed by PAGE 
(Fig. 5). Treatment with hypertonic medium completely 
blocked the internalization of the HA-Y543 mutant HA, a 
protein that we have observed to enter coated pits, and 
also inhibited the internalization of the chimeric HA pro- 
teins. Approximately 10% of HA-G-HA continued to be 
internalized in hypertonic conditions, suggesting that the 

mutant protein was internalized by both pathways but that 
the pathway sensitive to hypertonic conditions was the 
principal route of internalization. Thus, the slow internal- 
ization of the chimeric proteins did not appear to be due to 
internalization by a minor pathway unrelated to coated pits. 

Disruption of  the HA External Domain Does Not 
Cause Internalization 

The proteins that were internalized best, HA-G-G, HA- 
G-HA, and HA-gC-gC, were those that had the most ex- 
tensive changes in the folding of their external domains 
(Roth et al., 1986; Lazarovits et al., 1990). Thus, one mech- 
anism by which the foreign TM might cause HA to be in- 
ternalized might be through inducing changes in the HA 
external domain. To determine whether the structural in- 
tegrity of the external domain of HA was required to keep 
the protein from being internalized, we purposely dena- 
tured HA at the surface of living CV-1 cells and measured 
the effects of this treatment on the interaction of the pro- 
tein with coated pits. To denature the external domain of 
HA, we treated CV-1 cells expressing either HA or the 
HA-Y543 mutant with low pH to induce the proteins to 
undergo the large conformational change that activates 
them as fusion proteins (White and Wilson, 1987; Bullough 
et al., 1994). The lateral mobility of HA wt and HA-Y543 
after acid treatment was measured by fluorescence pho- 
tobleaching recovery, a technique that detects the dynamic 
interactions of more slowly internalized proteins with 
coated pits as a decrease in their diffusion coefficients 
(Fire et al., 1991, 1995). We have shown that the interaction 
of HA-Y543 with clathrin coats causes a two- to threefold 
reduction in the lateral mobility of the mutant compared 
to the HA wt (Fire et al., 1991). In cells treated with a pH 
4.9 buffer for 15 min and then returned to pH 7.0 for mo- 
bility measurements, the difference between the lateral 
mobility of the HA wt and the HA-Y543 mutant remained 
unchanged (Table I). Thus, HA wt was not induced to in- 
teract with coated pits after pH-induced denaturation, nor 
did this conformational change prevent the HA-Y543 pro- 
tein from interacting dynamically with coated pits. Quali- 
tatively similar results were obtained by immunofluores- 
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Table I. Effects of Denaturation on Lateral Mobility of HA 
and HA - Y543 

D Rf 

Acid denatured Untreated Acid denatured Untreated 

H A  11.2 --- 1.2 11.7 ± 1.0 78 - 5 86 - 3 

HA-Y543 5.2 ± 0.6 4.3 ± 0.6 82 --- 3 82 ± 4 

D is the lateral mobility coefficient with units of 10 -1° cm:/s. Rf is the mobile fraction 
given in percent of labeled protein. Cells expressing HA or HA-Y543 were treated 
with pH 4.9 buffer for 15 rain (White and Wilson, 1987) to denature the external do- 
mains of the proteins, or with pH 7.0 buffer to maintain native structure. Lateral mo- 
bility measurements were then made at pH 7.0 at 37°C as previously described (Fire et 
al., 1991). Values represent more than 30 independent measurements and are given 
with standard errors. 

cence, in which cells expressing HA wt that had been 
treated with low pH were not observed to internalize anti- 
HA antibodies, whereas cells expressing HA-Y543 treated 
at low pH continued to internalize antibody (Fig. 6). The 
lack of surface labeling of acid treated cells expressing 
HA-Y543, compared to cells not acid treated (not shown), 
suggests that after internalization, acid treated HA-Y543 
proteins were not recycling efficiently to the cell surface. 

Specific Mutat ions in the H A  T M  AUow the Protein to 
Be  Internalized 

Replacing the HA TM with that of the G protein allowed 
HA to be internalized slowly, at approximately the rate of 
uptake of membrane lipid by coated pits in fibroblasts. 
One explanation for this observation would be the loss of 
some property of the HA TM that normally allows HA to 
avoid passive incorporation into coated pits. If so, then 
specific mutations in the HA TM might also change this 
feature, allowing HA to be internalized. Thus, we system- 
atically mutated the HA TM by changing blocks of amino 
acids to alanine and measured the internalization rates of 
the mutant proteins. Many mutations had no effect on HA 
internalization (Naim and Roth, manuscript in prepara- 
tion); however, mutation of four of the five amino acids at 
the position where the TM enters the outer leaflet of the 
lipid bilayer (positions 511,512, 514, and 515) resulted in a 
protein that was internalized slowly, at 1.8%/min (Fig. 7). 
This rate was faster than internalization of the HA-gC-HA 
protein, which was internalized as slowly as the HA wt 
protein in the same experiment. Thus, the ability of the 
HA protein to be highly mobile on the cell surface but 

Figure 6. Denaturation of the HA external domain does not allow HA to be internalized. Cells expressing either HA wt or HA-Y543 
were treated to cause the HAs to adopt their acid-induced conformation (White and Wilson, 1987). Rabbit anti-HA antibody was added 
to the cell culture medium for 60 min at 37°C. Cells were fixed and anti-HA present at the cell surface was labeled with goat anti-rabbit 
antibody conjugated to FITC. Cells were then permeabilized with detergent and internalized anti-HA was labeled with goat anti-rabbit- 
RITC. Acid denaturation did not induce the internalization of anti-HA by cells expressing HA wt nor did it prevent internalization of an- 
tibody by HA-Y543. 
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Figure 7. Mutation of four amino acids in the HA TM allows the 
protein to be slowly internalized. (A) The amino acid sequences 
of the TM of HA wt, HA-A520,521, and HA-A511-515 are 
shown. (B) Internalization of HA wt, HA-gC-HA, HA-A520,521, 
and HA-A511-515 are compared by the assay described in Fig. 2. 
Data was collected by phosphoimaging. Values are averages of 
two experiments. Error bars indicate the range of the two values. 
For symbols without error bars, the range of values is less than 
the size of the symbol. 

nevertheless to be preferentially excluded from coated pits 
is due to some property of its TM. 

Discussion 

Recent work has convincingly established that efficient in- 
ternalization of a variety of endocytic receptors and lyso- 
somal membrane proteins depends upon a small secondary 
structure of the CD that appears to function in the recog- 
nition of the protein by coated pits. Three distinct cyto- 
plasmic internalization signals have been identified. Although 
these signals differ in sequence and in the average rates at 
which they cause proteins to be internalized, all result in at 
least a twofold concentration of protein in coated pits rela- 
tive to the rest of the plasma membrane, assuming that 
coated pits occupy 1-2% of the surface area (Anderson 
and Kaplan, 1983). However, the identified signals do not 
explain all of the internalization of proteins through 
coated pits. Verrey et al. (1990) replaced the CD of an en- 
docytic receptor (the chicken hepatic lectin) with 11 amino 
acids of Xenopus laevis [3-globin lacking any known signals 
and observed that the chimeric protein was still internal- 
ized through coated pits. Wiley and colleagues have ob- 
served that mutant EGF receptors unable to engage in 

high affinity binding to coated pits are nevertheless inter- 
nalized by a low affinity, high capacity pathway (Lund et 
al., 1990). In each of these examples, the proteins are capa- 
ble of being internalized by coated pits but exhibit little 
concentration by them, being internalized at rates close to 
the constitutive uptake of membrane. 

This second, low affinity mechanism for internalization 
through coated pits is likely to be biologically important. 
Receptors for several viruses that require endocytosis for 
infection have been identified, and few of them are en- 
docytic receptors that are efficiently intemalized through 
coated pits (Marsh and Helenius, 1989). In addition, the 
majority of plasma membrane proteins are degraded by 
processes that are inhibited by reagents that raise the pH 
of lysosomes (Seglin, 1983), suggesting that endocytosis is 
responsible for clearing aged or damaged proteins from 
the cell surface. Since in many cell types internalization 
through clathrin-coated pits is the major pathway of en- 
docytosis (Marsh and Helenius, 1980; Heuser and Ander- 
son, 1989; Cosson et al., 1989), degradation of surface pro- 
teins in those cells probably requires an interaction with 
coated pits. 

However, proteins that are internalized through coated 
pits without being concentrated in them are not just occu- 
pying available space. Recently, we have shown that the 
influenza virus HA, when expressed from a cDNA in the 
absence of influenza proteins, is highly mobile in the 
plasma membrane but does not appear to bind to coated 
pits, even when it is present at 5 million copies/cell (Fire et 
al., 1991; Naim and Roth, 1995; Fire et al., 1995). Another 
highly mobile protein, Thy-1 (Ishihara et al., 1987) is also 
apparently excluded from coated pits (Bretscher et al., 
1980; Lemanski et al., 1990). The existence of mobile pro- 
teins, like HA, that are internalized an order of magnitude 
slower than the slowly internalized class of proteins means 
that the latter proteins must interact with components of 
the pit in some way. In this report, we have shown that re- 
placement of the transmembrane sequences of HA with 
the analogous region from the VSV G glycoprotein al- 
lowed the chimeric HA to be internalized. Replacement of 
the HA TM with the analogous sequences of the HSV-1 
gC glycoprotein had much less effect. Substitution of four 
bulky hydrophobic residues in the NH2-terminal portion 
of the HA TM with alanine allowed HA to be internalized 
more rapidly than when the entire domain was exchanged 
with that of gC. At the positions of the HA TM shown to 
:be important for preventing HA internalization, the analo- 
gous gC residues also have large side chains, whereas the 
G residues at the same positions are small (serines and ala- 
nines). Internalization of these proteins is unlikely to be 
due to changes in their external domains, since HA wt that 
was induced to unfold by treatment with low pH showed 
no increased binding to coated pits or internalization. 
Thus, the interaction responsible for the endocytosis of 
these proteins probably occurs within the lipid bilayer or 
in the cytoplasm. 

Although we have not rigorously proven that all inter- 
nalization of HA's with changes in the TM occurs through 
coated pits, there are several reasons why we believe that 
this is the case. Our evidence and previous reports (Doxey 
et al., 1987; Heuser and Anderson, 1989; Cosson et al., 
1989) indicate that clathrin-mediated endocytosis is likely 
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to be responsible for most of the internalization of mem- 
brane in this cell type. We have shown that the CV-1 cells 
used in our experiments have only a minor pathway for 
fluid-phase internalization that continues to operate in hy- 
perosmotic conditions that inhibited endocytosis of both 
HA-Y543, a mutant HA known to enter coated pits (Laz- 
arovits and Roth, 1988; Ktistakis et al., 1990), and the chi- 
meric HAs. Thus, the minor, clathrin-independent path- 
way was not responsible for internalization of the chimera. 
In addition, the original HAG and HAgC proteins were 
observed by immunocytochemistry and electron micros- 
copy to enter into coated pits (Roth et al., 1986) and 
coated vesicles (Roth, unpublished data) in CV-1 cells. In 
all of our assays, the HA-G,G and HA-gC-gC proteins be- 
haved identically to HAG and HAgC; most importantly, 
they were internalized at the same rates as the original chi- 
meras. 

At present, we do not know whether proteins lacking a 
cytoplasmic internalization signal for high affinity binding 
to coated pits interact with a component of the pits within 
the lipid bilayer or in the cytoplasm. Nor do we know 
whether the interaction involves a protein component of 
the pit or membrane lipid, Currently, little is known of the 
role that specific lipids might play in the function of 
plasma membrane domains, and one cannot eliminate the 
possibility that membrane curvature or composition al- 
lows some proteins to enter coated pits and excludes oth- 
ers. Whatever the mechanism for internalizing HA pro- 
teins having changes in the TM, it seems unlikely that the 
interaction is due to the presence of a specific amino acid 
sequence. It is possible that in the HA-G-HA and HA- 
A511-A515 proteins, the transmembrane sequences can- 
not fold properly and may act to "denature" the HA trans- 
membrane and cytoplasmic sequences, perhaps exposing 
hydrophobic residues to the cytosol or polar residues to 
lipids in the bilayer. If so, those sequences might be recog- 
nized by a "chaperon-like" protein much as denatured cy- 
toplasmic proteins are during conditions of stress. An at- 
tractive aspect of such a mechanism is that plasma membrane 
proteins would not need to encode any special information 
to be recognized by coated pits. Specificity of the interac- 
tion would be controlled by some event that changed the 
structure of the CD and/or TM. 

Although the initial interaction between coated pits and 
endocytic receptors or chimeric proteins such as HA-G-HA 
must involve different structural features of the glycopro- 
teins, it is still possible that all cell surface proteins are in- 
ternalized by coated pits through a central mechanism. 
The dynamic, high affinity binding event in the cytoplasm 
involving the "tyrosine" recognition feature found on pro- 
teins that concentrate in coated pits could serve to collect 
endocytic receptors into the vicinity of a forming clathrin 
coat. Commitment to internalization, however, might re- 
quire a second event, such as the formation of protein 
complexes large enough to slow their diffusion out of the 
pit. Chimeric HAs and other proteins lacking cytoplasmic 
recognition signals for clathrin associated proteins might 
be incapable of the first event but able to participate in the 
second. Proteins like the HA wt, unable to participate in 
either event, would be excluded from the pit. 
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